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Для анализа механизмов формирования артефактов на ультразвуковом изображении легких че-
ловека (так называемых B-линий) были созданы экспериментальные фантомы, состоящие из 
слоя силикона для акустической имитации межреберных мышц, слоя в виде мелкопористой 
противоожоговой губки, имитирующего здоровую или отечную ткань легких, фрагмента губ-
ки, сокового мешочка мандарина и капли УЗИ геля, имитирующих структуры легочной ткани. 
Ультразвуковые (УЗ) изображения регистрировались линейным ультразвуковым датчиком L7-4, 
подключенным к УЗ сканеру Verasonics V-1. Дополнительно было построено изображение нахо-
дящегося на поверхности воды сокового мешочка мандарина, используя метод синтезированной 
апертуры с применением фокусированного пьезоэлектрического преобразователя Olympus V307. 
Полученные эхограммы были сопоставлены с изображениями, регистрируемыми в клинических 
случаях патологий легочной ткани. Показано, что возникновение B-линий связано с эффектами 
множественной реверберации в заполненных жидкостью структурах, имитирующих ткани лег-
ких, при этом их яркость и ширина на эхограмме зависят от характерного размера и внутренней 
структуры фантома.
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1. ВВЕДЕНИЕ
Необходимость лечения легочных заболеваний 

и их побочных эффектов стимулировала развитие 
методов диагностики и терапии данных патологи-
ческих состояний [1]. Интерес к таким подходам 
особенно усилился в последние годы в связи с пан-
демией SARS‑CoV‑2 [2–4]. Наиболее универсаль-
ным методом исследования и выявления различ-
ных легочных дисфункций, таких как пневмония, 
пневмоторакс, фиброз и консолидация считает-
ся компьютерная томография (КТ) [5, 6]. Альтер-
нативой является ультразвуковое исследование 
(УЗИ), хотя диагностические возможности этого 
метода ограничены, поскольку газонасыщенная 
ткань легких препятствует распространению в ней 
ультразвука. С другой стороны, КТ использует ио-
низирующее рентгеновское излучение, имеет ряд 

противопоказаний и уступает УЗИ по безопасно-
сти, стоимости и мобильности.

Источником информации при ультразвуковом 
исследовании патологических состояний легкого 
является эхографическая картина, характеризую-
щаяся наличием множественных акустических ар-
тефактов, называемых “кометами” или B-линия-
ми. Наблюдение таких артефактов коррелирует с 
увеличением внесосудистой жидкости в легких и с 
интерстициальными заболеваниями легких, кото-
рые характеризуются утолщением межальвеоляр-
ных перегородок с исходом в фиброз легких [7, 8]. 
Характеристики и физические механизмы возник-
новения артефактов еще до конца не изучены [9].

Клинические случаи можно условно разде-
лить на две группы по расположению легочной 
патологии: заболевания, поражающие плевру, 
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и заболевания, нарушающие внутреннюю структу-
ру легкого, а именно интерстиций и альвеолярную 
структуру. Проявление патологий плевры на УЗ 
изображениях остается за рамками рассмотрения 
данной работы, но безусловно также представляет 
научный интерес [10, 11].

Отдельные вертикальные эхогенные артефакты 
(B-линии) возникают при отеках и воспалительных 
процессах в легких различной этиологии, конту-
зиях, остром респираторном дистресс синдроме 
(ОРДС), и других заболеваниях. Указанные пато-
логии сопровождаются изменениями интерстици-
альной ткани легкого, такими как накопление вне-
сосудистой жидкости, утолщение междольковых 
перегородок, развитие фиброза [12]. Чем большее 
число В-линий появляется на эхограмме, тем более 
тяжелым является поражение легкого [11]. Соглас-
но существующим диагностическим протоколам, 
наличие не более двух В-линий в одном межреберье 
обычно считается нормой. Появление трех или бо-
лее B-линий принято считать признаком наруше-
ния аэрации легкого, связанного с накоплением и 
увеличением объема жидкости различной природы 
и/или фиброзной ткани в интерстиции по отноше-
нию к воздушному компоненту в легких [7, 13]. В 
случаях резко выраженных интерстициальных из-
менений заполнение интерстиция патологической 
жидкостью происходит в более обширной области, 
что ведет к серьезному уменьшению аэрации лег-
кого; при этом ультразвуковая картина меняется на 
сплошной эхогенный фон за плевральной линией. 
Такой вид картины, называемый “белым легким”, 
обладает диагностической силой и свидетельствует 
о наличии тяжелой интерстициальной патологии 
легкого, которая может предшествовать его консо-
лидации [13, 14]. Одним из важных примеров за-
болеваний, представляющим особый интерес для 
УЗ диагностики легких, в тяжелых случаях которо-
го наблюдается артефакт в виде “белого легкого”, 
является острый респираторный дистресс синдром 
(ОРДС) у новорожденных, для которых неприме-
нимы многие виды иной диагностики [4].

Целью данной работы являлось изучение воз-
можных физических механизмов возникновения 
на УЗ изображении “комет” или B-линий, форми-
рование которых обусловлено распространением 
и рассеянием ультразвуковых волн в дискретно аэ-
рированных тканях переменной плотности. В мо-
дельном эксперименте исследовалось образование 
эхогенных артефактов на специально подобранных 
по акустическим свойствам фантомах, имитирую-
щих структурные элементы легких.

2. МЕТОДЫ
2.1. Изготовление фантомов  

и экспериментальная установка с УЗ датчиком
При УЗ визуализации легких упругая волна про-

ходит три слоя ткани с различными акустическими 

свойствами: межреберная мышца, плевральный 
мешок и сама ткань легкого, которая в разной сте-
пени может быть заполнена жидкостью [15, 16]. В 
работе были созданы двухслойные фантомы, пер-
вый слой которых в виде двухкомпонентного сили-
кона имитировал мягкие ткани; второй слой в виде 
сухой или влажной мелкопористой противоожого-
вой губки, ее фрагмента, сокового мешочка манда-
рина или капли УЗ геля являлся имитацией разных 
состояний тканей легких.

Для изготовления первого слоя фантома из 
двухкомпонентного силикона (Tool Decor  15 на 
основе Elastosil, Германия) жидкий силикон и 
платиновый катализатор вулканизации смеши-
вались в специально подобранной под установку 
(11 × 11 см) гладкой стеклянной форме. После за-
твердевания слой силикона извлекался из формы, 
закреплялся между металлическими пластинами 
(8 × 4 см) и плотно зажимался болтовым соедине-
нием. На слой силикона последовательно помеща-
лись следующие фантомы: сухая либо заполнен-
ная водой мелкопористая губка; фрагмент губки 
на прослойке из геля; две капли воды, покрытые 
губкой; соковый мешочек мандарина; капля уль-
тразвукового геля (“Медиагель”, Гельтек-Медика, 
Москва, Россия).

В работе использовались две эксперименталь-
ные установки, схемы которых представлены на 
рис. 1. Наблюдение артефактов изображений для 
различных фантомов легочной ткани проводилось 
на установке (рис. 1а), состоящей из ультразву-
кового сканера Verasonics V-1 (Redmond, США), 
штатива с фиксатором (на рисунке не показаны),  
УЗ датчика L7-4 (ATL, Bothell, США), слоя силико-
на и пяти различных фантомов ткани легкого.

С помощью стереомикроскопа (Stemi 2000, Carl 
Zeiss, Германия) был сделан снимок мелкопористой 

(а)
1
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3

(б)
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Рис. 1. (а) — Схема установки для наблюдения артефактов 
изображений для различных фантомов легочной ткани: 
1 — фантом, 2 — слой силикона, 3 — УЗ датчик L7-4 (ATL, 
Bothell, США). (б) — Схема установки для регистрации сиг-
нала пьезоизлучателя, отраженного от разных точек поверх-
ности воды и фантома отечной области легких в виде соко-
вого мешочка мандарина. УЗ преобразователь OlympusV307 
перемещается параллельно поверхности воды.
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губки (рис. 2а), на котором хорошо различимы ее 
структура и размеры пор. По этому снимку можно 
судить о соответствии характерных размеров пор 
губки и легочных альвеол (~0.2 мм), что говорит 
об адекватном выборе модели и ее схожести с ре-
альной легочной тканью (рис. 2б) [17, 18]. Анало-
гично, характерный размер сокового мешочка ман-
дарина (3 × 5 мм) сопоставим с размером ацинуса 
легких (рис. 2б). Фрагмент влажной губки и каплю 
УЗ геля можно сопоставить с долькой легкого (ха-
рактерный размер 1–2 см, рис. 2в).

Первым шагом в создании двуслойных образцов 
было изготовление силиконового слоя, толщина и 
однородность которого играет большую роль. Да-
лее подготавливался второй слой в виде выбран-
ных заранее фантомов, измерялись и корректиро-
вались их характерные размеры. Для фантомов с 
влажной губкой проводилось ее предварительное 
вымачивание с последующим отжатием под водой 
для того, чтобы минимизировать содержание воз-
духа в порах. Далее проводилась сборка установки, 
осуществлялось подключение УЗ датчика ATL L7-4 
(Philips, Bothell, США) с предварительно нанесен-
ным на рабочую поверхность УЗ гелем к ультразву-
ковому сканеру Verasonics V-1, после чего проводи-
лось сканирование. Бóльшая часть эхограмм была 
получена с использованием мелкопористого фан-
тома (рис. 3а) в трех разных состояниях: сухая губ-
ка; губка, полностью заполненная водой; и губка, 
абсорбировавшая две капли воды с поверхности 
силикона. Последующая серия измерений прово-
дилась с тремя меньшими по размеру фантомами: 

влажным фрагментом губки, соковым мешочком 
мандарина и каплей УЗ геля (рис. 3б–3г). Все они 
по очереди помещались на слой силикона для ре-
гистрации изображения линейным УЗ датчиком, 
как показано на рис. 1а. Для обеспечения акусти-
ческого контакта и удержания фантомов в верти-
кальном положении их нижний конец смазывался 
небольшим количеством УЗ геля.

2.2. Эксперимент с одноэлементным 
фокусированным пьезоэлектрическим 

преобразователем
Для количественного анализа формы отражен-

ных от фантомов сигналов использовался одно
элементный фокусирующий ультразвуковой пре-
образователь Olympus V307 с диаметром 14.5 мм и 
фокусным расстоянием 25.4 мм (Waltham, США), 
обладающий той же частотной полосой, что и ли-
нейный датчик L7-4 (4–7 МГц по уровню — 6 дБ). 
Преобразователь работал в одноканальном режи-
ме как на излучение, так и на прием. Чтобы убе-
диться в идентичности временной формы акусти-
ческих импульсов, излучаемых линейной мно-
гоэлементной УЗ-решеткой и одноэлементным 
фокусирующим пьезоизлучателем, были проведе-
ны гидрофонные измерения профилей генериру-
емых сигналов.

Капсульный гидрофон HGL-0200 (Onda, Вели-
кобритания) и УЗ датчик L7-4 размещались друг 
напротив друга в бассейне с водой. Гидрофон кре-
пился к механической системе позиционирова-
ния, а УЗ датчик — на статичный штатив. Были 

(а) (б)
0.2 мм

5 мм
1–

2 см

(в)

0.5 мм

Рис. 2. (а) — Снимок сухой мелкопористой губки под микроскопом (Stemi 2000 фирмы Carl Zeiss, Германия).  
(б) — Характерные размеры пор губки соизмеримы со структурными элементами человеческих легких, а именно с 
альвеолами (0.2 мм); характерный размер сокового мешочка мандарина (3 × 5 мм) соответствует размерам ацинуса. 
(в) — Фрагмент влажной губки и капля УЗ геля соизмеримы с долькой легкого (1–2 см).
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проведены измерения профилей электрического 
сигнала гидрофона в зависимости от времени на 
двух разных расстояниях (15 и 50 мм). Далее УЗ 
датчик заменялся на одноэлементный пьезопре-
образователь Olympus V307 и записывался сигнал 
гидрофона при его расположении в точке фокуса 

излучателя. Изменением частоты и количества пе-
риодов сигнала, задаваемого на генераторе, дости-
галась похожесть сигнала гидрофона с сигналом, 
измеренным при использовании в качестве излу-
чателя УЗ датчика L7-4. Как показано на рис. 4, 
сигналы действительно оказались практически 

(а) (б)

(в) (г)

Рис. 3. Фотографии фантомов, использованных в эксперименте: (а) – мелкопористая противоожоговая губка (толщи-
на – 8 мм); (б) – влажный фрагмент губки (7 мм × 10 мм); (в) – соковый мешочек мандарина (3 мм × 5 мм); (г) – капля 
УЗ геля (6 мм × 7 мм).
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Рис. 4. (а) — Сравнение временных профилей и (б) — спектров импульсных сигналов УЗ датчика L7-4 (синяя кривая) и 
одноэлементного пьезоизлучателя Olympus V307 (оранжевая кривая).
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идентичными. Это позволило исследовать влияние 
фантома (сокового мешочка мандарина) на форму 
отраженного сигнала фокусирующего источника, 
а затем применить метод апертурного синтеза для 
построения УЗ изображения указанного фантома 
(см. ниже).

2.3. Построение УЗ изображения 
методом апертурного синтеза

Преобразователь Olympus V307 помещался в 
бассейн на фокусном расстоянии от поверхности 
воды (рис. 1б) и перемещался с помощью системы 
позиционирования с ЧПУ UMS-3 (Precision Acous-
tics, Великобритания). Соковый мешочек манда-
рина закреплялся вертикально над поверхностью 
воды таким образом, чтобы его нижняя часть ка-
салась поверхности, образуя мениск. Таким обра-
зом осуществлялась имитация отечного участка 
легкого, контактирующего с прилегающими мяг-
кими тканями плевры, проводящими ультразвук. 
Акустический импульс, излучаемый пьезопреоб-
разователем в разных положениях, отражался от 
границы вода–воздух или от поверхности соково-
го мешочка мандарина с воздухом и принимался 
тем же преобразователем. Излучатель перемещали 
и проводили измерения эхо-сигналов в плоскости, 
параллельной поверхности воды с шагом 0.2 мм. 

Перед формированием B-скана сигналы предва-
рительно были отфильтрованы в полосе частот 
от 0.1 до 20 МГц с использованием окна Блэкма-
на–Харриса для подавления внешних шумов [19]. 
Затем строилась огибающая сигналов методом 
Гильберта [20]. В результате комбинирования по-
лученных линейных (вертикальных) профилей 
эхо-сигналов по их пиковым значениям было со-
ставлено двумерное изображение, вдоль централь-
ной линии которого формировался B-скан, ана-
логичный получаемым с помощью УЗИ сканера и 
линейного датчика L7-4.

3. РЕЗУЛЬТАТЫ

3.1. Артефакты УЗ изображений фантомов
С помощью медицинского линейного датчика 

L7-4 (рис. 1а) были получены эхограммы различ-
ных фантомов, на которых проявлялись артефак-
ты, схожие с B-линиями на эхограммах при пато-
логических состояниях легких.

На рис. 5 представлены УЗ сканы первой серии 
эхограм, показывающие различия между изобра-
жениями полностью сухой губки, имитирующей 
здоровую легочную ткань, полностью смочен-
ной губки, имитирующей тяжелый отек легко-
го, и слоя воды одинаковой толщины с губкой.  
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Рис. 5. УЗ изображения, полученные в режиме В-моды (УЗ датчик L7-4 расположен сверху) через слой силикона: (а) — 
полностью сухая мелкопористая губка; (б) — полностью влажная губка, (в) — слой воды, толщина которого равна толщине 
губки (8 мм). Сплошной красной стрелкой отмечена эхогенная линия, соответствующая отражению от границы силико-
нового слоя с губкой, штриховой красной стрелкой отмечено первое переотражение в указанном слое. Желтая стрелка 
указывает на слабое отражение от тыльной границы полностью влажной губки (б). Синяя сплошная стрелка соответствует 
границе воды с воздухом, а синие штриховые стрелки отмечают многократные переотражения в слое воды (в).
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На изображениях датчик находится сверху, от-
счет расстояния ведется от датчика вниз. Про-
странственные координаты исходного изображе-
ния были масштабированы таким образом, чтобы 
толщина силиконового слоя соответствовала ис-
тинной (15 мм). При этом слой воды толщиной 
8 мм виден на изображении как слой с толщиной 
5 мм из-за различия скоростей звука в силиконе 
и воде.

Как видно из рис. 5а, в случае сухой губки про-
исходит полное отражение сигнала от ее границы с 
силиконом, которое проявляется в виде яркой эхо-
генной горизонтальной линии на расстоянии 15 мм 
от датчика (отмечена красной сплошной стрелкой). 
При этом изображение сухой губки абсолютно 
темное, не наблюдается ее дальняя от датчика гра-
ница, но виден артефакт в виде эхогенной линии 
на расстоянии 30 мм от датчика, соответствующей 
первому переотражению сигнала в силиконовом 
слое (отмечен красной штриховой стрелкой).

Изображение влажной губки (рис. 5б) представ-
ляет собой светлую эхогенную область с убываю-
щим по глубине контрастом, расположенную после 
ее границы с силиконом. Линия границы силико-
на и влажной губки (красная сплошная стрелка) 
менее яркая по сравнению со случаем сухой губ-
ки (рис. 5а), поскольку не происходит полного от-
ражения акустического сигнала. Тыльная грани-
ца губки (желтая стрелка) и артефакт повторной 
границы силикона (красная штриховая стрелка) 
на изображении еле заметны, что свидетельству-
ет о том, что ультразвук хорошо проникает через 
границу силикона и губки, многократно рассеи-
вается внутри губки, практически не доходя до ее 
дальней границы, и возвращается к датчику через 
ближнюю границу губки с увеличивающимися за-
держками. Таким образом, влажная губка является 
сильным рассеивателем, однако ультразвук прони-
кает на некоторую глубину и многократно рассе-
ивается, а не отражается от границы с силиконом 
как в случае сухой губки.

На рис. 5в показано изображение слоя воды на 
силиконе той же толщины, что и у губки (8 мм). 
Хотя по импедансу вода и влажная губка близки и 
ультразвук хорошо проникает в обоих случаях через 
границу с силиконом, в воде отсутствуют рассеива-
тели, что приводит к формированию существенно 
иного изображения. На эхограмме слоя воды крас-
ной сплошной стрелкой отмечена ее граница с си-
ликоном, синей сплошной стрелкой — наиболее 
яркая линия, соответствующая отражению УЗ-сиг-
нала от границы с воздухом на расстоянии 20 мм 
от датчика, а на расстояниях 25, 30 и 35 мм видны 
три повторные яркие полосы, возникающие из-за 
переотражений в слое воды между его граница-
ми с силиконом и воздухом. На расстоянии 30 мм 
от датчика также возможно присутствует слабый 

эхогенный артефакт переотражения в силиконо-
вом слое (красная штриховая стрелка).

Вторая серия эхограмм (рис. 6) была получена 
при помещении на поверхность силикона двух ка-
пель воды и в результате их абсорбции в исходно 
сухую мелкопористую губку. В отсутствие губки в 
результате переотражений внутри свободных ка-
пель в каждой из них возникает акустическая ло-
вушка, формирующая В-линии с неоднородной 
структурой (рис. 6а). На начальном участке ли-
ний видны две яркие горизонтальные полоски, 
соответствующие переотражениям между тыль-
ной поверхностью капли и ее границей с силико-
ном. После помещения губки на капли структура 
В-линий становится иной (рис. 6б, 6в). В резуль-
тате проникновения воды в поры губки форма, 
размер и структура акустической ловушки посте-
пенно изменяются. Многократное перерассеяние 
акустического сигнала в смоченной каплями части 
губки приводит к постепенному выходу ультразву-
ковых волн из губки к датчику с увеличивающими-
ся задержками, формирующими В-линии с более 
однородной структурой. Как видно из сравнения 
длины эхогенных линий на рис. 6а и 6б, акусти-
ческие волны задерживаются в свободных каплях 
(рис. 6а) на меньшее время, чем в губке, впитав-
шей эти капли (губки с “отеком”). В свою очередь, 
некоторое уширение В-линий на рис. 6в по срав-
нению с рис. 6б можно объяснить диффузией воды 
по порам губки со временем, что приводит к рас-
ширению области “отека”.

Третья серия схожих между собой эхограмм 
была получена для трех фантомов, имитирующих 
отдельные структурные элементы легких (рис. 3): 
влажный фрагмент мелкопористой противоожого-
вой губки (7 × 10 мм), соковый мешочек мандари-
на и капля УЗ геля. На эхограммах, представленных 
на рис. 7, видны типичные одиночные артефакты в 
виде B-линий, что подтверждает сделанные ранее 
предположения о соответствии выбранных фан-
томов по акустическим свойствам патологической 
легочной ткани. Пространственные координаты 
исходного изображения, как и на рис. 5, 6, масшта-
бированы таким образом, чтобы толщина силико-
нового слоя соответствовала истинной (15  мм). 
Пунктирными контурами проиллюстрированы 
характерные геометрические контуры и размеры 
фантомов в предположении, что скорость звука в 
них равна скорости в воде.

3.2. Артефакты УЗ изображения, построенного 
методом синтезированной апертуры

Для исключения возможности влияния ме-
тода построения изображения диагностиче-
ской УЗИ системой, который может вносить 
дополнительные артефакты, был проведен 
следующий эксперимент, заключающийся в постро-
ении изображения методом апертурного синтеза.  
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Рис. 6. В-линии на УЗ изображениях: (а) — двух капель воды на силиконовом слое в отсутствие губки; (б) — сразу же после 
сорбции капель сухой губкой, (в) — по прошествии 60 с после помещения губки на капли. УЗ датчик находится сверху. 
Сплошной красной стрелкой отмечена эхогенная полоса, соответствующая отражению от границы силиконового слоя с 
губкой; штриховая красная стрелка отмечает первое переотражение в указанном слое.
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Рис. 7. Ультразвуковые изображения фантомов легочной ткани, расположенных на поверхности силиконового слоя 
(рис. 1а): (a) — влажного фрагмента губки; (б) — сокового мешочка мандарина; (в) — капли УЗИ геля. Ультразвуковой 
датчик находится сверху. Сплошной красной стрелкой отмечена эхогенная линия, соответствующая отражению от гра-
ницы силиконового слоя с губкой, штриховая красная стрелка указывает на первое переотражение в указанном слое. 
Пунктирными контурами проиллюстрированы характерные геометрические контуры и размеры фантомов.
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Схема установки представлена на рис. 1б. Целью 
данного эксперимента было наблюдение артефак-
тов в виде B-линии при построении изображения 
по эхо-сигналам от сокового мешочка мандарина, 
помещенного на поверхность воды. Для измерений 
использовался ультразвуковой пьезоизлучатель 
Olympus V307, сигнал которого схож с сигналом, 
генерируемым линейным датчиком Phillips ATL 
L7-4 (рис. 4).

На рис. 8 представлены результаты измерения 
эхо-сигналов, их фильтрации и построения дву-
мерного изображения фантома ткани на поверх-
ности воды. Применяя метод синтезированной 
апертуры, с помощью системы позиционирования 

был просканирован прямоугольный участок по-
верхности воды, и в результате обработки набо-
ра линейных профилей сигнала (рис. 8а) было 
получено распределение пиковых значений оги-
бающих (рис.  8б), в центре которого находится 
мениск, образованный соковым мешочком ман-
дарина. Выбрав для B-скана плоскость, проходя-
щую через центр фантома (отмечена красной ли-
нией на рис. 8б), можно наблюдать картину (рис. 
8в), аналогичную УЗ изображению, получаемому в 
B-режиме при использовании диагностической УЗ 
системы. Временная шкала t задержек эхо-сигна-
лов была пересчитана на рисунке в соответствую-
щее расстояние z = ct/2, где c = 1480 м/с — скорость 
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Рис. 8. (а) — RAW (голубой) — исходный сигнал, filtered (оранжевый) — сигнал после фильтрации окном Блэкмана–
Харриса с 0.1 до 20 МГц, envelope (красный) — огибающая сигнала, полученная с помощью преобразования Гильбер-
та после отсечения нулевой частоты. (б) — Прямоугольный скан сокового мешочка мандарина на поверхности воды. 
Красной линией отмечен срез на плоскости, вдоль которой строилось изображение сокового мешочка в режиме В-моды.  
(в) — B-скан, на котором красный штриховой контур соответствует форме, размерам и расположению сокового мешочка.
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звука в воде, z = 0 соответствует расстоянию 2 мм 
над поверхностью воды. Отчетливо виден арте-
факт, аналогичный рис. 6б, подтверждающий, что 
механизм возникновения B-линии в рассматрива-
емом случае обусловлен не процессами обработки 
сигнала датчика диагностической УЗИ системой, а 
физическим процессом реверберации акустическо-
го импульса внутри фантома и соответствующими 
задержками выхода и удлинением эхо-сигнала.

4. ЗАКЛЮЧЕНИЕ
В работе были созданы две экспериментальные 

установки для моделирования ультразвуковых ар-
тефактов изображений, характерных при легоч-
ных заболеваниях. Проведена оценка характер-
ных размеров структурных элементов фантомов, 
выбранных для моделирования. Показано, что на 
фантомах легочной ткани с отеками в виде фраг-
мента мелкопористой губки, сокового мешочка 
мандарина и капли УЗ геля наблюдаются УЗ арте-
факты, идентичные вертикальным эхогенных ар-
тефактам, возникающим при различных патологи-
ческих состояниях легких. Предложено качествен-
ное объяснение корреляции между полученными 
ультразвуковыми изображениями и артефактами, 
возникающими в медицинских исследованиях. 
Для подтверждения физического механизма возни-
кающих артефактов в виде B-линий были постро-
ены изображения сокового мешочка мандарина 
на поверхности воды методом синтезированной 
апертуры с помощью одноэлементного датчика 
Olympus V307, использующегося в качестве источ-
ника и приемника одновременно. Были получены 
изображения с артефактом в виде В-линии, анало-
гичным зарегистрированным с помощью УЗИ ска-
нера на различных фантомах.

Проведенные в работе эксперименты на про-
стых фантомах, имитирующих легочную ткань, ил-
люстрируют гипотезу о том, что механизмом воз-
никновения артефакта В-линий является захват 
и реверберация ультразвукового импульса внутри 
акустической ловушки. Хотя общая концепция 
и физический механизм акустической ловушки 
являются признанными и обычно используются 
при интерпретации возникновения артефактов в 
виде В-линий, полного понимания соответствия 
различных патологических состояний легких мо-
делям ловушек с определенными параметрами на 
сегодняшний день не достигнуто. В работе рассма-
тривались и сравнивались несколько простых мо-
делей формирования В-линий в легких, которые 
можно отнести к разным этиологиям. Проанали-
зировано, какие из проявлений В-линий они мо-
делируют и чем отличаются. Такого сравнения до 
сих пор не проводилось. В перспективе, при даль-
нейшем развитии, подобные модели с хорошо кон-
тролируемыми акустическими свойствами могут 

использоваться как в образовательных целях, так 
и для разработки специфических режимов УЗ диа-
гностики легочных заболеваний.

Проведенные прямые измерения ультразву-
ковых эхо-сигналов и построенное на их основе 
ультразвуковое изображение также иллюстрируют 
новые возможности анализа возникающих арте-
фактов и корреляции их с различными заболева-
ниями. Так, например, изменение этих сигналов 
при изменении акустической проницаемости ле-
гочной ткани может быть использовано для мони-
торинга состояния больных [2]. Регистрация и ко-
личественное исследование особенностей “сырых” 
акустических сигналов позволит продвинуться в 
интерпретации получаемых изображений, пони-
мании наблюдаемых артефактов, развитии новых 
методов диагностики больных с легочными пато-
логиями и создания новых устройств, специально 
предназначенных для сонографии легких.

Авторы выражают благодарность А.В. Кадреву 
за полезные обсуждения работы.

Проведенные исследования выполнены в рам-
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Experimental modelling of imaging artifacts in ultrasound examination  
of human lungs

S. D. Sorokina,*, M. V. Ryabkova, S. A. Tsysara, O. A. Sapozhnikova, V.A. Khokhlovaa

aLomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, Moscow, 119991 Russia
*e-mail: srknstepan@gmail.com

To determine the nature of artifacts on the ultrasound image of human lungs (so-called B-lines), ex-
perimental phantoms were created consisting of a silicone layer for acoustic imitation of intercostal 
muscles, a layer formed with fine-pored anti-burn sponge imitating healthy or edematous lung tissue, 
a sponge fragment, a mandarin juice pouch and a drop of ultrasound gel imitating the structures of the 
lung fabrics. Ultrasonic (US) images were recorded by a linear ultrasonic probe L7-4 connected to a 
Verasonics V-1 ultrasound scanner. Additionally, an image of a tangerine juice sac located on the surface 
of the water was constructed based on the synthesized aperture method using a focused piezoelectric 
transducer Olympus V307. The resulting echograms were compared with images recorded in clinical 
cases of pulmonary pathologies. It is shown that the appearance of artificial B-lines is associated with 
the effects of multiple reverberation in liquid-filled structures imitating lung tissue, while their brightness 
and width on the echogram depend on the characteristic size of the internal structure of the phantom.

Keywords: lungs, ultrasound diagnostics, artefacts of ultrasonic images, B-lines.
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