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Теоретически оценены возможности использования лучевого и дифракционного методов кор-
рекции аберраций, применяющихся в неинвазивной нейрохирургии для фокусировки ультраз-
вука высокой интенсивности через кости черепа на различных глубинах в мозге человека. При 
анализе использовались данные компьютерной томографии головы с различными геометриче-
скими характеристиками черепа в рамках анонимизированного набора из восьми пациентов. 
В качестве излучателя рассматривалась фазированная решетка с абсолютно плотным мозаич-
ным заполнением поверхности 256 элементами, рабочей частотой 1 МГц, имеющая форму сфе-
рической чаши с радиусом кривизны и диаметром 200 мм. Компенсация аберраций лучевым 
методом проводилась путем расчета набега фаз вдоль лучей, исходящих из целевой точки к цен-
трам элементов. В дифракционном методе при коррекции аберраций и расчете фокусировки 
ультразвука использовалась комбинация интеграла Рэлея и псевдоспектрального численного 
метода решения волнового уравнения в неоднородной среде, реализованного в программном 
пакете k-Wave. Показано, что наибольшие искажения поля наблюдаются для черепов с более 
выраженной вариацией толщины костной ткани. Дифракционный метод позволяет повысить 
эффективность фокусировки, а также проводить коррекцию на меньших глубинах по сравнению 
с лучевым методом.
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ВВЕДЕНИЕ
На сегодняшний день в клинической практи-

ке проводятся неинвазивные нейрохирургические 
операции на мозге с использованием высокоинтен-
сивного фокусированного ультразвука [1]. С помо-
щью подобных операций проводится, например, 
абляция опухолей головного мозга [2], лечение не-
вропатических болей [3], эссенциального тремо-
ра  [4, 5], тремора при болезни Паркинсона [6, 7], 
а также мышечной дистонии [8]. Суть метода за-
ключается в фокусировке мощного ультразвука в 
задаваемую область головного мозга через интакт-
ный череп, что приводит к быстрому локальному 

перегреву и абляции ткани [9]. При этом неодно-
родности геометрии, толщины и внутренней струк-
туры костей черепа на пути ультразвукового пучка 
ведут к искажению, смещению и размытию фо-
кальной области, а также формированию неже-
лательных побочных максимумов поля  [10,  11]. 
В связи с этим для проведения транскраниальных 
операций используются многоэлементные фази-
рованные решетки, которые позволяют сформи-
ровать такой волновой фронт, который после про-
хождения неоднородностей оказывается близок к 
сферическому и эффективно фокусируется в целе-
вую точку [9–14].
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В клинической системе ExAblate (InSightec Ltd., 
Tirat Carmel, Israel) используется многоэлементная 
решетка полусферической формы диаметром 30 см, 
состоящая из 1024 элементов с рабочей частотой 
680 кГц. Для нахождения корректирующих фаз на 
элементах решетки применяется лучевой метод, 
который заключается в нахождении задержек фаз 
вдоль лучей, идущих из целевой точки фокусиров-
ки в центры масс элементов излучателя [11]. Систе-
ма успешно используется в нейрохирургии, однако 
обладает рядом ограничений, которые не позволя-
ют проводить фокусировку вне центральной части 
мозга [15]. Эти ограничения связаны с неэффек-
тивностью электронной фокусировки в точки, уда-
ленные от центра кривизны решетки, опасностью 
перегрева костей черепа, а также с ограниченными 
возможностями механического смещения фокуса. 
При механическом перемещении решетки большое 
число ее элементов начинает излучать под углами 
к черепу, превышающими критические, что при-
водит к сильному отражению ультразвука, а также 
возбуждению сдвиговых волн и перегреву черепа. 
При этом отключение всех таких элементов ведет к 
потере мощности поля в фокусе. 

Для расширения области воздействия ультраз-
вука были предложены решетки с более высокой 
рабочей частотой и с меньшими углами фокуси-
ровки, что дает возможность разрушать ткани моз-
га механически, не нагревая их, а также смещать 
и вращать излучатель вокруг головы пациента и, 
как следствие, увеличить зону эффективной фо-
кусировки ультразвука [13, 16–20]. Однако с уве-
личением частоты растет влияние дифракционных 
эффектов и аберраций, связанных с неоднородно-
стями внутренней структуры и геометрии черепа. 
В связи с этим возникает вопрос о возможности 
использования лучевого метода коррекции аберра-
ций для нового класса решеток при механическом 
смещении фокуса на расстояния, превышающие 
достижимые в существующей системе ExAblate 
(примерно 25 мм от центра таламуса). Кроме того, 
активно ведутся работы, направленные на разви-
тие более точных дифракционных моделей коррек-
ции аберраций. Одним из таких методов является 
расчет корректирующих фаз в полной волновой 
модели, при котором численно моделируется рас-
пространение волны из виртуального точечного 
источника, расположенного в фокусе, на поверх-
ность излучателя [12–14].

Целью данной работы было сравнение возмож-
ностей лучевого и дифракционного методов ком-
пенсации аберраций при фокусировке ультразвука 
на различных глубинах в мозге для черепов с раз-
личными средней толщиной и ее вариацией. Коли-
чественный анализ проводился с использованием 
нескольких метрик, характеризующих смещение 
точки фокуса, максимальную амплитуду давле-
ния, изменение фокального объема, величину 

побочных максимумов и эффективность фокуси-
ровки, определяемую как интеграл интенсивности 
в целевом объеме [14, 21–23]. 

Акустические модели строились на основе ано-
нимизированных данных компьютерной томогра-
фии (КТ) различных пациентов, из которых были 
отобраны восемь: по две модели с большими и 
малыми значениями средней толщины черепа и 
с большими и малыми значениями вариации его 
толщины. Для построения акустических моделей 
была разработана программа автоматической сег-
ментации изображений КТ. В качестве излучате-
ля использовалась разработанная ранее решетка с 
абсолютно плотным мозаичным заполнением по-
верхности и относительно малым углом фокуси-
ровки [17, 24]. Исследовалось влияние геометрии 
черепа на качество фокусировки ультразвуково-
го пучка на различных глубинах в мозге без ком-
пенсации аберраций и при проведении компен-
сации двумя различными методами: лучевым и 
дифракционным. 

МЕТОДЫ
Построение и отбор акустических 

моделей головы человека
В качестве модели излучателя в работе исполь-

зовалась решетка с абсолютно плотным мозаич-
ным заполнением поверхности 256 элементами с 
частотой 1 МГц, с радиусом и апертурой равными 
200 мм (рис. 1а) [17, 24].

Для построения трехмерных акустических мо-
делей головы пациента использовались аноними-
зированные данные КТ, предоставленные Меди-
цинским научно-исследовательским институтом 
МГУ имени М.В. Ломоносова (МНОИ МГУ). 
Компьютерная томография выполнялась на томо-
графе Somatom Scope (Siemens Healthineers, ФРГ) 
с 16 срезами, без контрастирования, со стандарт-
ным напряжением 120 кВ и модуляцией силы тока 
на трубке. Толщина срезов равнялась 0.625 мм, 
а перекрытие срезов составляло 0.1 мм. Данные 
реконструировались со стандартным и костным 
фильтрами. Анонимизированные данные КТ для 
последующего анализа были ретроспективно вы-
браны в случайном порядке из базы данных отдела 
лучевой диагностики МНОИ МГУ. Исследования 
головы у всех пациентов (возраст от 28 до 79 лет) 
выполнялись по клиническим показаниям с целью 
исключения патологии головного мозга, во всех 
случаях по данным КТ в костях черепа патологи-
ческих изменений выявлено не было. На первом 
этапе анализировались 50 КТ исследований, из ко-
торых в результате было отобрано 8. Во всех случа-
ях использовались наборы компьютерной томогра-
фии с костным фильтром.

Интенсивность изображений КТ характеризует-
ся значениями рентгеновской плотности по шкале 
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Хаунсфилда (HU), которые связаны с плотностью 
биологической ткани [25, 26]. При этом скорость 
звука в костях черепа однозначно определяется 
значением плотности [26]. Таким образом, из дан-
ных КТ можно получить информацию о распреде-
лениях плотности и скорости продольных звуко-
вых волн в каждом вокселе трехмерной модели. 

Для задания коэффициента поглощения про-
водилась сегментация данных КТ на следующие 
сегменты: кожа, череп, мозг и среда вне головы 
(вода). Величины коэффициента поглощения для 
каждого сегмента были взяты из справочной лите-
ратуры [27]. Для отбора наиболее репрезентатив-
ных черепов с различными значениями толщины и 
ее вариации предварительно строились модели для 
большой выборки КТ-сканов (N = 50). Процесс 

сегментации был автоматизирован с целью его 
ускорения и во избежание влияния человеческого 
фактора. Сначала с помощью пороговой сегмен-
тации выделялась костная ткань, имеющая высо-
кие значения рентгеновской плотности HU. Далее, 
также пороговым методом в отдельные сегменты 
разделялись мягкие ткани (кожа и мозг) и воздух. 
Значения HU для кожи и тканей мозга различают-
ся незначительно, поэтому их разделение проводи-
лось исходя из положения рассматриваемого вок-
селя относительно сегмента черепа. Внешней среде 
между решеткой и моделью головы присваивались 
акустические параметры воды.

Поскольку трехмерная сетка данных КТ не яв-
лялась эквидистантной, проводилась интерполя-
ция акустической модели на сетку 0 5 0 5 0 5. . .× ×  мм  
с использованием графического процессора. Этот 
шаг был необходим в связи с тем, что в алгорит-
ме пакета k-Wave (k-wave.org) используется экви-
дистантная пространственная расчетная сетка. 
Таким образом, каждая из построенных моделей 
представляла собой структуру, состоящую из трех 
трехмерных матриц, задающих распределения 
плотности, скорости звука и коэффициента погло-
щения. Диапазоны значений плотности и скорости 
звука в тканях, а также коэффициенты поглощения 
в них приведены в табл. 1.

Далее был проведен отбор акустических моделей 
по параметрам, по две на каждый из классов: чере-
па с большой средней толщиной (> 8 2.  мм) и боль-
шой вариацией толщины, в дальнейшем просто 
вариацией (> 1 3.  мм) (класс A); черепа с большой 
средней толщиной и малой вариацией (< 0 8.  мм)  
(класс B); черепа с малой средней толщиной (< 6 3.  мм) 
и большой вариацией (класс C) и черепа с малой 
средней толщиной и малой вариацией (класс D) 
(рис. 2). Расчет толщины черепа проводился вдоль 
лучей, идущих из геометрического фокуса решет-
ки в центры масс ее элементов: за толщину чере-
па вдоль каждого луча бралась длина его участка, 
располагающегося в сегменте черепа. Полученные 
данные для всех лучей использовались для расче-
та средней толщины черепа и ее вариации на каж
дой из выбранных глубин фокусировки от -40 мм  
до 10 мм от центра таламуса (рис. 1б) и далее до-
полнительно усреднялись по всем глубинам. 

(а)

(б)

Δφ =
c(r)12

∫
dr

xy

–40 мм

0
10 мм

2

1

Рис. 1. (а) — Схема расположения элементов излу-
чателя и (б) — схема облучения. Синие стрелки ил-
люстрируют этапы расчета поля от излучателя до 
плоскости xy и от плоскости xy до фокуса. Красные 
стрелки — этапы расчета поля из фокуса до плоско-
сти xy и от плоскости xy до поверхности излучате-
ля для нахождения компенсирующих фаз. Зеленая 
стрелка — схема расчета фаз на элементах излуча-
теля лучевым методом, где 1 — фокус, 2 — центр 
элемента.

Таблица 1. Диапазоны значений плотности ρ, ско-
рости продольных звуковых волн c и коэффициента 
поглощения α на частоте 1 МГц в рассматриваемых 
моделях.

кожа кость мозг
ρ, кг/м3 552–1189 1245–2254 878–1116
c, м/с 1016–1722 1652–2914 1364–1642
α, Нп/см 0.21 1.02 0.024
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На рис. 3 представлены распределения тол-
щины моделей черепов, рассчитанные вдоль лу-
чей, идущих из фокуса решетки, расположенного 
в центре таламуса, на сетку из 100 100×  точек на 
сферической поверхности излучателя. Изображе-
на проекция распределения на плоскость xy, гра-
ница проекции поверхности излучателя выделена 
черным контуром. Можно видеть, что в пределах 
каждого из классов распределения толщины близ-
ки между собой. Заметны также существенные 
различия между классами черепов, отличающи-
мися либо по толщине, либо по ее вариации. Так, 
в области конуса излучателя толщины составляют 
3.6–13.6 мм для черепов класса А, 5.5–11.3 мм для 
черепов класса B, 1.5–9.8 мм для черепов класса C, 
и 3.5–8.1 мм для черепов класса D.

Расчет фокусировки ультразвука через череп 
На рис. 1б представлена схема облучения моз-

га при фокусировке на различной глубине [12, 24]. 
Для моделирования акустического поля была ис-
пользована комбинация двух численных методов. 
На первом этапе с помощью интеграла Рэлея вы-
числялось акустическое поле (распределения фазы 
и амплитуды волны), создаваемое излучателем в 
однородной среде (воде) на горизонтальной пло-
скости xy, расположенной в водной среде вбли-
зи поверхности головы. Для ускорения расчетов 
применялось аналитическое решение интеграла  
Рэлея, полученное в приближении дальнего поля 
для излучающих поверхностей в форме прямо-
угольных треугольников — подэлементов, на 

A1

T = 8.29 ± 1.80 мм T = 9.70 ± 0.65 мм

B1 C1 D1

A2 B2 C2 D2

T = 6.30 ± 1.43 мм T = 5.43 ± 0.70 мм

T = 9.19±1.52 мм T = 8.43 ± 0.80 мм T = 6.02 ± 1.30 мм T = 6.28 ± 0.54 мм

Рис. 2. Рассматриваемые пары черепов: толстые с большой вариацией толщины (A1, А2), толстые с малой вариацией 
(В1, В2), тонкие с большой вариацией (С1, С2) и тонкие с малой вариацией толщины (D1, D2). Красными отрезка-
ми отмечены границы наибольшего и наименьшего по размеру сечения на поверхности черепа конусов облучения.

A1 B1 C1 D1

A2 B2 C2 D2

T, мм
15

10

5

0

Рис. 3. Проекции распределений толщин черепов на поверхность излучателя для положения фокуса решетки в центре 
таламуса. Черепа пронумерованы в соответствии с текстом: черепа с большой толщиной и большой вариацией тол-
щины (A1, А2); с большой толщиной и малой вариацией (В1, В2); с малой толщиной и большой вариацией (С1, С2); с 
малой толщиной и малой вариацией толщины (D1, D2). Черным контуром выделена граница поверхности излучателя.
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которые разбивались многоугольные элементы ре-
шетки (рис. 1а) [12, 24]:

	 A
c v ab ikr I a x I b y

r ax r by r
подэл

exp
=

( ) ( ) - ( ) 
-( )

ρ

p
0 0 0 0

0 0 02

ˆ , ,
.	(1)

Здесь I a x ikax r kax r, exp( ) = -  - 2 20 0sinc , I b x,( ) 
рассчитывается аналогично, a и b — катеты пря-
моугольного треугольника, ρ0, c0 — плотность 
и скорость звука в воде, k  — волновое число, 
ˆ expv v i0 0 0= ( )ϕ  — комплексная амплитуда ко-
лебательной скорости на поверхности элемента, 
r x y z0

2 2 2= ′ + ′ + ′ и ′ ′ ′( )x y z, ,  — координаты точ-
ки наблюдения в локальной системе координат под-
элемента. Полное поле излучателя вычислялось на 
плоскости xy как суперпозиция полей от всех таких 

треугольников: A Amn

т

M

n

N n

=
==

∑∑ подэл

подэл
эл

11

, где Mn
подэл — 

количество подэлементов в n-м элементе многоу-
гольной формы, Nэл — количество элементов.

На втором этапе проводился расчет поля вну-
три модели головы, при этом граничным условием 
было посчитанное поле на плоскости xy. Данный 
расчет проводился с использованием псевдоспек-
трального метода моделирования распространения 
акустических волн в неоднородной среде, реализо-
ванного в программном пакете k-Wave [12, 28–30]. 
Пространственные шаги сетки в расчетах поля, 
∆ ∆ ∆x y z= = = 0 5.  мм, совпадали с шагами акусти-
ческой модели головы. Шаг расчетной сетки по 
времени был выбран в соответствии с критерием 
Куранта–Фридрихса–Леви CFL c t x≡ max∆ ∆ , где 
CFL = 0.1, а cmax  — максимальная скорость звука 
в рассматриваемой модели. Алгоритм моделиро-
вания, реализованный в k-Wave, учитывает нали-
чие неоднородностей акустических параметров, 
дифракцию, рефракцию, отражение и поглощение 
акустических волн. Поскольку ранее было показа-
но, что генерация сдвиговых волн при нормальном 
падении луча на костную ткань слабо влияет на ис-
кажение ультразвукового пучка, данный эффект не 
учитывался, что позволило значительно ускорить 
расчеты [14, 31]. Время расчета поля на плоскости 
xy составляло в среднем 80 с при использовании 
процессора Intel Core i5-13600k, а время расчета 
распространения от плоскости xy к фокусу в неод-
нородной среде — 110 с при использовании графи-
ческого процессора Nvidia RTX-4090. 

Методы компенсации аберраций
В работе применялись два метода компенсации 

аберраций. Первый из них, лучевой, подразумева-
ет вычисление набегов фаз вдоль лучей (рис. 1б), 
идущих из геометрического центра решетки, пред-
ставляющего собой целевую точку фокусировки 

(отмечено индексом 1 на рисунке), в центры масс 
соответствующих элементов (отмечено индек-
сом  2). Для расчета луч разбивался на большое 
число равных отрезков, после чего набег фазы вы-
числялся как сумма обратных скоростей в точках, 
соответствующих центрам данных отрезков:

	 ∆ϕ p=
=

∑2
1

1

fdr
cnn

N

,	 (2)

где N — число отрезков, dr = F/N — длина отрез-
ка, F = 200 мм — фокусное расстояние, cn — ско-
рость звука в центре n-го отрезка. Число отрез-
ков N = 40000 было подобрано исходя из условия, 
что удвоение этого числа приводило к изменению 
фазы менее чем на 1/100 радиана.

Дифракционный метод расчета компенсации 
выполнялся в два этапа. На первом этапе проводи-
лось численное моделирование распространения 
сферической волны из виртуального точечного 
источника, расположенного в фокусе решетки (це-
левой точке), на поверхность xy с помощью про-
граммного пакета k-Wave на сетке, совпадающей с 
сеткой акустической модели головы [12, 24]. Далее, 
на втором этапе, решалась обратная задача подбо-
ра фаз на элементах решетки таким образом, что-
бы ультразвуковое поле (амплитуда и фаза) излуча-
теля в плоскости xy наилучшим образом соответ-
ствовало полученному на первом этапе. Для этого 
поле на плоскости xy представлялось в виде векто-
ра комплексных амплитуд в узлах расчетной сет-
ки. Согласно (1), комплексная амплитуда давления 
в узле j плоскости xy, где j J xy= 1,..., , J xy  — общее 
количество узлов, является линейной комбинаци-
ей комплексных амплитуд колебательной скорости 
каждого k-го элемента v̂k

0 , с известными весами С jk,  
зависящими от взаимного расположения k-го эле-
мента и j-го узла плоскости xy:

	 b C v j Jj jk
k

k

N

xy= =
=

∑ ˆ , ,...,0
1

1
эл

.	 (3)

Выражение (3) является переопределенной си-
стемой из J xy > 104 линейных уравнений (по коли-
честву узлов плоскости xy) с Nэл  = 256 неизвест-
ными v̂k

0 , k N= 1,..., эл. Такая система может быть 
решена лишь приближенно, например, методом 
наименьших квадратов, который обеспечивает ми-
нимум невязки между левой и правой частью систе-

мы (3): Сv bˆ min- →
2

. Здесь система (3) перепи-
сана в матричном виде с сохранением обозначений. 
Решение системы может быть представлено в виде 

v̂ C C C b= ( )-
T T

1
 [12]. Наконец, фазы найденных  

комплексных амплитуд ϕ0 0 1k kv k N= ( ) =arg ˆ , ,..., эл 
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инвертировались, для компенсации аберраций ме-
тодом фазового сопряжения. При этом амплитуды 
на всех элементах v vk k

0 0= ˆ  устанавливались оди-

наковыми (v vk
0 0≡ ), поскольку форма волнового 

фронта после коррекций в основном определяется 
фазовой картиной, а равные амплитуды обеспечи-
вают возможность максимизации мощности излу-
чаемой волны [12]. Далее, для удобства моделиро-
вания, амплитуды были нормированы таким об-
разом, чтобы характерная амплитуда давления на 
элементеp c v0 0 0 0= ρ  была равна единице.

Метрики оценки качества фокусировки
Для количественного описания степени иска-

жения (аберраций) акустического поля при фоку-
сировке через череп, а также возможностей их ком-
пенсаций, использовались следующие метрики, 
проиллюстрированные на рис. 4: максимально до-
стигаемая амплитуда давления, нормированная на 
таковую при фокусировке в воде (показано черным 
крестом); смещения положения максимума поля 
от геометрического фокуса излучателя (красный 
крест) в аксиальном и радиальном направлениях 
(белые стрелки); отношение амплитуды давления 
максимального по величине побочного максимума 
к максимуму поля; фокальный объем, определяе-
мый по уровню –6 дБ от максимума поля (белый 
контур) и нормированный на фокальный объем 
при фокусировке в воде (красный штриховой кон-
тур) [14, 21–23]. 

Рассматривалась также метрика эффективно-
сти фокусировки — интеграл от интенсивности по 
“целевому объему”. Под целевым объемом пони-
малась область вокруг целевой точки, в которой 
интенсивность при фокусировке в воде превыша-
ла –6 дБ от максимального значения (рис. 4б) [24]. 
При расчете эффективности делалась поправка на 
поглощение волны: метрика эффективности в воде 
умножалась на коэффициент поглощения, равный 
усредненному по лучам поглощению ультразвука 
на пути от центров элементов излучателя к фокусу:

	 ε a= ( )
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где I(r) — интенсивность ультразвука, a aI = 2  — ко-
эффициент поглощения по интенсивности в ткани, 
W — целевой объем, а r — координата вдоль луча.

РЕЗУЛЬТАТЫ 
Оценка влияния геометрических параметров 
черепа на искажения ультразвукового пучка 

при транскраниальном облучении
Ниже приводятся результаты, полученные для 

случая облучения без компенсации аберраций, 
при котором все элементы решетки работают син-
фазно. Была проведена оценка точности фокуси-
ровки и вносимых черепом искажений в структу-
ру ультразвукового пучка в зависимости от геоме-
трических параметров черепа, а именно, средней 

(a)

Целевая точка

Максимум поля

Целевая область по уровню –6 дБ в воде

Фокальная область по уровню –6 дБ

(б)

p /pA 0

Смещение
фокуса Δz
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максимумы
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Рис. 4. Распределение нормированной амплитуды давления pA/p0 в плоскости оси излучателя с максимальной ве-
личиной побочного максимума (а) — в отсутствие коррекции; (б) — после дифракционной коррекции.
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толщины и ее вариации, значения которых приве-
дены в табл. 2. 

Для корреляции различных видов искажения 
ультразвукового пучка и параметров черепа были 
рассчитаны введенные выше метрики. Рассма-
тривались: смещения максимума поля от целевой 
точки вдоль оси (rz) и в радиальном направлении 
(rxy), величина побочного максимума относитель-
но основного (SLR), величины фокального объе-
ма по уровню –6 дБ (V Vфок вода ) и эффективности 
с компенсацией на поглощение энергии пучка от 
излучателя до целевой точки (ε). Посчитанные мет
рики, усредненные по всем исследуемым глубинам 
фокусировки, приведены в табл. 3.

Можно видеть, что вариация толщины черепа 
оказывает наибольшее влияние на искажение поля 
и на изменение рассматриваемых метрик (чере-
па A, C). Толщина черепа за счет усиления эффек-
тов рефракции оказывает дополнительное влияние 
на смещения максимума поля вдоль оси излучате-
ля. Наибольшее смещение наблюдается вдоль оси 
пучка (от 1.7 до 10.9 мм), в радиальном направле-
нии смещение не превышает 3.0 мм (рис. 5а). Ве-
личина побочных максимумов относительно ос-
новного увеличивается вплоть до 90% в некоторых 
случаях как за счет снижения амплитуды давления 
в основном максимуме, так и за счет расщепления 
фокальной области на несколько равнозначных 
областей. При этом в литературе принято рассма-
тривать безопасным уровень побочных максиму-
мов, составляющий по величине менее 25% по ин-
тенсивности относительно основного [14, 22, 23]. 

Объем фокальной области по уровню –6 дБ от ос-
новного максимума существенно расширяется и 
может превышать объем фокальной области в воде 
от 1.5 до 9 раз. Размытие и смещение фокальной 
области приводят к тому, что эффективность кон-
центрации энергии акустического поля в целевом 
объеме относительно фокусировки в воде с учетом 
компенсации поглощения на пути от излучателя к 
фокусу составляет от 5% до 60%. Эффективность 
фокусировки в среднем уменьшается при увеличе-
нии глубины, изменения остальных метрик не за-
висят от глубины.

Оценка диапазонов глубин применимости лучевого 
и дифракционного методов компенсации аберраций

Компенсация аберраций проводилась с помо-
щью лучевого и дифракционного методов в диапа-
зоне глубин фокусировки от –40 до 10 мм от глуби-
ны центра таламуса. Оба подхода значительно уве-
личивают эффективность фокусировки, улучшают 
структуру поля и уменьшают смещение максимума 
поля из целевой точки. При этом качество коррек-
ции по всем параметрам выше у дифракционно-
го метода в сравнении с лучевым. Преимущества 
дифракционного метода особенно проявляются в 
снижении уровня побочных максимумов в черепе 
и вблизи него при фокусировке на малых глубинах, 
а также в увеличении эффективности фокусировки 
на больших глубинах. Смещение максимума поля 
после коррекции не превышает 2.5 мм во всех на-
правлениях при использовании лучевого подхода 
(рис. 5б). Дифракционный подход практически 

Таблица 2. Среднее значение T и стандартное отклонение σ толщин черепов, посчитанные вдоль лучей, иду-
щих из фокуса в центры элементов и усредненные по всем исследуемым глубинам.

A1 A2 B1 B2 C1 C2 D1 D2
T, мм 8.23 9.19 9.70 8.43 6.30 6.02 5.43 6.28
σ, мм 1.80 1.52 0.65 0.80 1.43 1.30 0.70 0.54

Таблица 3. Средние величины метрик, рассчитанных для результатов в случае фокусировки без коррекции 
аберраций.

rxy, мм rz, мм pфок /pвода, % SLR, % Vфок /Vвода, % ε, %

A1 3.0 10.9 44.7 71.7 557 5.5
A2 1.4 6.8 47.2 60.0 335 9.0
B1 0.5 3.5 65.2 44.9 278 35.8
B2 0.5 3.6 66.9 36.2 170 33.0
C1 2.4 6.1 33.7 90.2 907 9.9
C2 1.8 6.9 43.4 82.9 674 8.8
D1 0.3 2.6 74.9 27.5 148 54.8
D2 0.3 1.7 79.0 19.9 139 62.1
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полностью компенсирует как радиальное, так и 
аксиальное смещения (рис. 5в).

Если в воде максимальная величина первого 
предфокального максимума составляет 8.9%, то 
при фокусировке в мозг формируются побочные 
максимумы, величина которых увеличивается по 
мере приближения фокуса к черепу и составляет в 
среднем 56.3% для лучевого и 38.5% для дифрак-
ционного подходов на минимальных глубинах и 
17.8% для лучевого и 12.9% для дифракционного 
подходов на больших глубинах фокусировки. Объ-
ем фокальной области по уровню –6 дБ увеличива-
ется в среднем на 150% в случае лучевого метода и 
на 120% в случае дифракционного по сравнению с 
фокусировкой в воде независимо от глубины. 

Эффективность концентрации энергии в целе-
вом объеме в среднем составляет 46% для лучево-
го и 65% для дифракционного подходов, при этом 
максимальная амплитуда давления составляет в 

среднем 65% для лучевого и 80% для дифракцион-
ного подходов. Наиболее сильный эффект коррек-
ции аберраций виден в случаях сильных изначаль-
ных искажений поля для черепов с большой вари-
ацией толщины. 

Для всех черепов можно видеть, что как макси-
мальная амплитуда давления, так и эффективность 
концентрации энергии при использовании дифрак-
ционного метода слабо зависят от глубины. В то же 
время при использовании лучевого метода макси-
мальная амплитуда уменьшается на 4–19% от мак-
симальной амплитуды в воде, а эффективность с 
глубиной уменьшается на 10–17% от эффективно-
сти в воде. Для черепов с небольшими толщиной и 
вариацией толщины оба подхода дают близкие ре-
зультаты по всем остальным метрикам на всех глу-
бинах. Для черепов с большой толщиной или ва-
риацией толщины основные различия между под-
ходами состоят в величинах побочных максимумов 
и эффективности концентрации энергии в целевом 
объеме: на малых глубинах достигается двукратное 
различие в величине побочного максимума (рис. 
6а), в то время как на больших глубинах достигает-
ся двукратное различие в величине эффективности 
концентрации поля в целевой области (рис. 6б).

ЗАКЛЮЧЕНИЕ 
В данной работе на примере акустических мо-

делей восьми различных черепов, различающихся 
по средней толщине и ее вариации, было проведе-
но сравнение лучевого и дифракционного методов 
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Рис. 5. Распределения нормированной амплитуды 
давления pA/p0 на трех глубинах (–35 мм, –15 мм и 
0 мм от глубины центра таламуса, соответственно, 
колонки 1, 2 и 3) в аксиальной плоскости излучателя 
zy для случаев (а) — без коррекции, (б) — с лучевой и 
(в) — с дифракционной коррекцией для черепов A2 
и C1 (с большой вариацией толщины).
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Рис. 6. Зависимости метрик (а) — эффективности и 
(б) — величины побочного максимума от глубины 
фокусировки для дифракционного (сплошная ли-
ния) и лучевого (пунктирная линия) методов ком-
пенсации аберраций для черепов A2, C1 (с большой 
вариацией толщины).
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коррекции аберраций при фокусировке на раз-
личных глубинах. С использованием ряда количе-
ственных метрик было показано, что как в случае 
без коррекции, так и в случае лучевой и дифракци-
онной коррекции аберраций наибольшее влияние 
на результаты фокусировки оказывает вариация 
толщины черепа. Наилучшую коррекцию дает диф-
ракционный метод, причем различие между двумя 
методами коррекции аберраций возрастает по мере 
приближения фокуса к черепу. При приближении 
к черепу, в случае применения лучевой коррекции, 
высокие побочные максимумы как в черепе, так и в 
мозге, возникают раньше, чем в случае применения 
дифракционного метода. На больших глубинах диф-
ракционный метод позволяет получить значительно 
более высокую концентрацию энергии в фокальной 
области, а также снизить отклонение точки фокуса 
до одного шага расчетной сетки (менее 0.5 мм).

Считая, что безопасное проведение операции 
возможно при величине побочного максимума ме-
нее –6дБ в отсутствие смещения в радиальном на-
правлении и со смещением вдоль оси излучателя 
менее 2 мм, было показано, что дифракционный 
метод может позволить расширить область эффек-
тивной фокусировки на 10–15 мм в зависимости от 
черепа, а также применять методы неинвазивной 
HIFU-нейрохирургии в ряде черепов с наименее 
подходящими для фокусировки параметрами, на 
глубинах от –15 мм от глубины таламуса. 

Работа поддержана грантом Программы раз-
вития МГУ (проект № 23-Ш06-02) и стипендией 
фонда “Базис” № 22-2-10-6-1.
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Comparison of ray-tracing and diffraction methods for correcting aberrations  
in transcranial focusing of ultrasound field
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The study theoretically evaluated the possibilities of using ray-tracing and diffraction-based methods 
to aberration correction, which are used in noninvasive neurosurgery for focusing high-intensity ultra-
sound through the skull bones at various depths in the human brain. The analysis is based on using head 
computed tomography (CT) data of skulls with various geometric characteristics from an anonymized 
set of eight patients. A mosaic 1 MHz phased array shaped as a spherical bowl with radius of curvature 
and diameter of 200 mm, and absolutely dense filling of the surface with 256 elements, was considered 
as the transducer. In the ray-tracing method, aberration correction was carried out by calculating the 
phase shift along the rays emanating from the target point to the centers of the elements. In the diffrac-
tion-based method, a combination of the Rayleigh integral and a pseudospectral numerical method for 
solving the wave equation in an inhomogeneous medium, implemented in the k-Wave software package, 
was used for aberration correction and ultrasound focusing simulations. It is shown that the strongest 
field distortions are observed for skulls with more pronounced variations of bone thickness. The dif-
fraction-based method allows for increasing the focusing efficiency, as well as performing correction at 
shallower depths in the brain compared to the ray-based method.

Ключевые слова: High-intensity focused ultrasound, multi-element phased array, Rayleigh integral, com-
puted tomography, noninvasive neurosurgery
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