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Abstract—When designing phased antenna arrays for use in noninvasive ultrasound surgery, it is desirable to
provide the highest possible power for a given array dimensions. At the same time, it is necessary to take into
account the limitations on the maximum allowable ultrasound intensity at the array elements and to ensure
suppression of spurious diffraction maxima in the spatial structure of the emitted field. The problem can be
solved by designing an irregular arrangement combined with the densest filling of the array surface with ele-
ments. This paper presents a modification of such a method for creating fully populated arrays with nonperi-
odic tessellation distribution of elements, based on the restriction of the relaxation mechanism in an iterative
array design algorithm. A computer model that allows for controlling the degree of irregularity in distribution
of the array elements was developed. The stability of maintaining the low level of acoustic intensity in
unwanted grating lobes was tested for various random realizations of the element arrangements by analyzing
a statistical ensemble of 500 model arrays. The advantages of the considered arrays in comparison with exist-
ing models of fully populated arrays are demonstrated.
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INTRODUCTION
Multielement phased arrays [1, 2] with radiating

elements situated on a spherical segment [3, 4] are
currently widely employed in noninvasive high-inten-
sity focused ultrasound (HIFU) surgery. The key
requirement for many clinical applications is to pro-
vide high acoustic power of the array, which is suffi-
cient to reach focal intensity levels necessary for a sur-
gical operation. For example, an ultrasound beam suf-
fers substantial power loss in transcranial irradiation of
the brain [5–7] or in the treatment of deep-seated
pancreatic tumors [8]. Such losses can be compen-
sated by increasing the total power of the array. In this
case, the key limitation is a maximum technically
allowable intensity of about 30–40 W/cm2 at the
piezoelectric elements [4, 9, 10]. Given this limitation,
one of the main approaches to increasing acoustic
power of an array is to increase its active (radiating)
surface, i.e., to maximize the filling factor of the array

, where  is the total area of all
radiating elements and  is the total area of the array
surface. When developing an array model, one should
also consider the need of a non-periodic arrangement

of elements on the array surface for suppressing grating
lobes formed by electronic steering of the focus [11–
13]. In addition, individual elements must be of equal
area since differences in their areas complicates
matching the outputs of power amplifiers with the ele-
ments and deteriorates the characteristics the acoustic
field when electronically steering of the focus.

In the last decade, various attempts have been
made to increase the filling factor of arrays by arrang-
ing the elements in tessellations with different tilings.
The authors of [14] proposed two array configurations
based on the Penrose rhombus tiling (filling factor of
about  = 70% with 0.5 mm gaps between the ele-
ments) and on non-periodically arranged rectangular
elements (  = 71% with 0.5 mm gaps) (Figs. 1a and
1b, respectively). Recently, an array model with ele-
ments shaped as Voronoi tessellation cells and
arranged following the pattern of Fermat’s spiral was
proposed [15]. Such array has a filling factor of about

= 78% with 0.5 mm gaps between the elements
(Fig. 1c). Hence, in English literature, this array was
named a Voronoi Tessellation Fermat’s Spiral array
(VTFS array). Such arrays are already used in practice
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Fig. 1. Sketches of arrays with various tessellation filling by elements: (a) Penrose tiling, (b) rectangular tiling, (c) Voronoi tessel-
lation Fermat’s spiral array, and (d) fully populated tiling with cells of equal area. 
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Fig. 2. Dependence of cell area  on its number n for
partitioning of the array surface by cells of VTFS tessella-
tion (dashed curve) and by capacity-constrained tessella-
tion (solid curve). Both tessellations have the same mean
cell area of 74 mm2 and are constructed on a spherical seg-
ment with radius of curvature F = 160 mm and aperture
D = 160 mm. Cell numbers n are ordered in accordance
with distance of their center of mass from the center of the
array. 
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[16]. Despite the dense pattern of VTFS array ele-
ments, its geometry does not yield the maximum pos-
sible filling factor due to unfilled areas at the periphery
of the transducer (Fig. 1c). Furthermore, the polygo-
nal cells of the Voronoi tessellation used in the array
construction have different areas. The dashed curve in
Fig. 2 shows the dependence of the cell area  on its
number n, where the numbers are ordered as the dis-
tance between the center of mass of the cell and the
center of the array increases. The maximum difference
between the cell areas is 19% of the mean cell area,
whereas most strong differences are observed for the
central cells.

In 2018 the authors of the current paper proposed a
novel type of tessellation arrays with maximum possi-
ble filling factor (Ψ = 100% if the area of technological
gaps between the elements is negligible), i.e., the fully
populated arrays (Fig. 1d) [17]. The proposed model
was based on the concept of random elements
arrangement (randomization) [11, 18], the capacity-
constrained tessellation was used as a pattern, and
equal areas of the elements were achieved with a spe-
cific algorithm described in [19].

The dispersion in the cell areas of the two densely
packed arrays, which are the VTFS array [15] and the
proposed fully populated array with elements shaped
as the capacity-constrained tessellation cells, is com-
pared in Fig. 2 [17]. Both arrays have the same outer
contour and mean cell area (Figs. 1c, 1d). Due to the
absence of empty boundary elements, the number of
elements in the second array (291) exceeds the number
of elements in the first one (256). The element areas of
the fully populated array are shown in Fig. 2 by a solid
curve, and the element areas of the VTFS array by a
dashed curve. Note that the algorithm of the capacity-
constrained tessellation is numerical; therefore, the
equality of the element areas is approximate: the max-
imum difference between the cell areas is 2.8% of the
mean cell area. If necessary, this difference can be
decreased to the required level by increasing the num-
ber of points in the tessellation algorithm (see below).
In contrast to the capacity-constrained tessellation,

cell
Σ
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the VTFS array has a considerably larger dispersion in
the element areas, especially far from the edge of the
array. For the example considered here, the maximum
deviation of the element area from the mean value is 19%.

Despite the fact that the elements of such fully pop-
ulated arrays are arranged in a random manner, the
periphery layer of cells at the outer boundary is inevi-
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Fig. 3. Two-dimensional distributions of normalized

amplitude of acoustic pressure  in array axial plane

zy: (a) for existing VTFS array and (b) for fully populated
array. In both distributions, dimensionless values of focal

amplitude  are indicated above the focal region.

Amplitude  in the most intensive sidelobe located

outside rectangular focus vicinity ABCD are shown for the
distribution (b). The longitudinal dimension and location
of contour ABCD were selected so that it contains two axi-
ally located prefocal and two postfocal lobes. Similarly,
transverse boundary of the rectangle satisfies condition that

ABCD region contains two side grating lobes at both sides. 
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tably quasi-annular; therefore, these periphery layers
also line up into an annular-like structure. The effect
of such partial regularity of the element arrangement is
almost negligible for arrays with a large number of ele-

ments ( ); however, it can be noticeably stron-
ger for arrays with smaller number of elements. As an
illustration of this side effect, distributions of the

dimensionless pressure amplitude  are plotted in

the zy plane (x = 0), which passes through the array

axis z (Fig. 3). Here,  is the pressure at the element
surface; x and y are the axes of the rectangular coordi-
nate system in a plane perpendicular to the z axis of the
array, with the origin at its center of symmetry. The
distributions for the VTFS array (Fig. 3a) are com-
pared to the fully populated one (Fig. 3b). When the
focus is shifted by 30 mm from the center of curvature
(F = 160 mm) of the arrays along the z axis toward the
array surface, the grating lobes at the axis of the VTSF
array without annular periodicity almost do not
appear, whereas the side lobes are clearly seen at the
axis of the fully populated array.

The objective of this work was to develop a modifi-
cation of the method for designing fully populated

256N >

A 0p p

0p
random arrays that would suppress the effect of peri-
odicity in element arrangement and decrease the cor-
responding level of grating lobes that form with elec-
tronically steering the array focus.

THEORETICAL MODEL

The proposed modification for constructing a fully
populated array was implemented in a step-by-step
procedure, the first part of which was the same as in
the recently proposed method [17]. To illustrate the
sequence of operations for the existing method, the
example of constructing a four-element array in the
form of a spherical segment is presented first:

(1) The surface of the array is filled with a large
number of sampling points, which are randomly gen-
erated over its surface with uniform distribution over a
solid angle (Fig. 4a). In other words, the probability

that a random point belongs to an element area  at

the array surface of total area  is defined as  and

does not depend on the position of the element on the
sphere.

(2) All points are divided into N classes containing
an equal number of points M (Fig. 4a). The division of
the points into classes occurs randomly, therefore the
“point clouds” of different classes are strongly mixed,
and each cloud densely “covers” the entire surface of
the array. This initial state is considered as the zero
iteration S = 0. In this example, N = 4, M = 250, and

the total number of points is NM = 103. The points of
four different clouds are depicted by different types of
markers in Fig. 4a (plus signs, circles, dots, and
squares).

(3) Next, the iteration process of pairwise separa-
tion of point clouds of different classes is imple-
mented. It can be visualized as a separation of N differ-
ent “immiscible liquids” mixed in a two-dimensional
“container.” Each liquid consists of the same number
of particles M, tending to join each other and to form
compact cells. The final state after separation of such
“liquids” (Fig. 4b) will correspond to partitioning the
volume of the “container”, i.e. the array surface, into
equal-sized cells. Separation occurs as follows. For
each iteration S, all possible pairs of point clouds of
different classes are considered. As an example, con-
sider the clouds depicted with “+” and “o” markers in
Fig. 4a. Denote the radius–vectors of the points in the

first cloud at the Sth iteration as  (i = 1, …, M).
Introduce “the center of mass” of the cloud as

(1)

where S is the iteration number. Similarly, for the sec-

ond point cloud, the radius-vectors  and the corre-

sponding center of mass BS (j = 1, …, M) are intro-

duced. Note that in general, the centers of mass deter-
mined from Eq. (1) are not located at the spherical
surface of the array. Therefore, an additional projec-
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Fig. 4. Illustration of the capacity-constrained tessellation algorithm for 100% filling of array surface by equal-area polygonal ele-
ments for constructing four-element array. The points of corresponding clouds are depicted by different types of markers (plus
sign, circle, point, and square). Initial location of points with full mixing (zero iteration) is shown at (a). Final result of dividing
point clouds into cells is presented for two cases: (b) array without limitation of relaxation and (c) array with limitation of relax-
ation at the fifth iteration. 

(а) (b) (c)
tion of the centers of mass to the array surface is per-
formed along the normal to the surface and the
obtained points are further considered as the centers of
mass. To implement the process of separating point

clouds, all possible pairs  are considered. If the

point  of the first cloud is located in the zone of
influence of the center of mass of the second cloud
(the corresponding criterion is given below) and the

point  of the second cloud is located in the zone of

influence of the center of mass of the first cloud, the

points are exchanged. In this case, the point  is

assigned to the first cloud and the point —to the
second one. As a quantitative criterion, the following
decision function was introduced in [19], which iden-
tifies pairs of points to be exchanged:

(2)

Here,  is the distance between the two points

in the spherical metric, or, in other words, the arc
length of the great circle passing through the points X
and Y. If , then the points are

exchanged, otherwise no exchange occurs. Thus, the
exchange between points of two clouds during the Sth
iteration terminates after overrun of all possible pairs

of points . Then, the location of centers of

mass of clouds is corrected using Eq. (1) and the same
procedure is performed for all other possible pairs of
clouds. For the pairs of clouds already considered, the
condition (2) can be violated during the iteration, but
on average, the clouds become more separated. The
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iteration process  continues until

the condition  is satisfied for all

points from an arbitrary pair of clouds. Fulfillment of
this condition indicates complete separation (Fig. 4b).
It should be noted that after separation, each of the N
clouds contains the same number of M points, since
the exchange of points between the clouds has always
been pairwise.

(4) In order to make the transition from a discrete
representation of clouds to a continuous one, a convex
rim is constructed surrounding the outer points of
each cloud (Fig. 4b). In the case of a large number of
sampling points, the resulting polygons are precisely
tessellation cells, which fill the array surface without
any gaps. In accordance with the algorithm, each cell
contains the same number of M sampling points ran-
domly generated and uniformly distributed over the
sphere. Therefore, according to the Monte Carlo
method, in the limit of a large number of points M, the
areas of cells are equal.

The example in Fig. 4 shows that after building a
tessellation of four elements, certain regularity (and
periodicity) appears in the arrangement of cells: the
construction performed actually led to the division of
the spherical surface into four almost identical sectors
(Fig. 4b).

To diminish the effect of periodicity, here it was
proposed to modify the step 3 of the algorithm,
namely, to change the decision-making function (2).
Clearly, the decision function  depends on both coor-

dinates  and  of the sampling points and locations

AS and BS of the centers of mass, whereas the argu-

ments of the function are changed at each iteration. In
this case, at each S-th iteration of partition, two sepa-
rate processes occur. First, points are exchanged

max1 ...S S S→ + →
( )max maxχ , 0
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Fig. 5. Frontal view of arrays with different types of tessellation. All arrays are constrained by the same circular contour and have
elements of equal averaged area: (a) 256-element VTFS array, (b) 291-element fully populated array without limitation of relax-
ation, (c) similar array with limitation of relaxation. Upper insets show enlarged images of several array elements to better illus-
trate element shape and gaps between them. The parameters of arrays are as follows: frequency f = 1.2 MHz, radius of curvature
F = 160 mm, aperture D = 160 mm, gap between elements 0.5 mm, and mean area of each element 66 mm2. 

(а) (b) (c)
between clouds according to the condition

, which results in separation of

the point clouds (future cells) among themselves. The
second process is a displacement of the centers of mass
AS of each of the clouds at the end of the iteration (1),

which moves the cloud as a whole, resulting in the
final establishment of the equilibrium position at the
last iteration, i.e., “relaxation”. Namely, the process
of relaxation of the center of mass leads to formation of
cells similar to each other in shape and to periodicity
in their final locations. Indeed, let the relaxation be

limited at some iteration , e.g.,  = 5. This

means that at all iterations , the centers AS and

BS for any pair of point clouds will be fixed at locations

, . The new decision-making func-

tion will look as follows:

(3)

This change allows for considerable reduction in
periodicity: the final pattern is spatially more nonuni-
form (Fig. 4c) and the cells are more different in shape
from each other. It is important to note that this con-
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struction fulfills the condition of equal areas, since the
exchange of points between clouds remains pairwise as
before.

Consider the influence of the introduced limita-
tion of relaxation on the array capabilities of electronic
steering the focus. Compare the 256-element VTFS
array (Fig. 5a) [15], the fully populated array with cells
of a given area without limitation of relaxation
(Fig. 5b) [17], and the fully populated array with lim-
ited relaxation proposed here (Fig. 5c). For a proper
comparison, the same array parameters were chosen,
which correspond to the existing VTFS array: the
operating frequency is 1.2 MHz, the radius of curva-
ture is F = 160 mm, and the aperture is D = 160 mm.
For all types of arrays, the same average area of the
elements was chosen and the same technological gaps
between the adjacent sides of neighboring elements
(0.5 mm) were introduced, which in practice allows
for avoiding electrical breakdown between the ele-
ments (Fig. 5, top insets) [3, 4, 16].

Both models of fully populated arrays were con-
structed using the same number of sampling points

M = 5 × 105 per element. When constructing the fully
populated array with limited relaxation, this restric-

tion was applied on the 8th iteration (  = 8). To vali-0S
ACOUSTICAL PHYSICS  Vol. 66  No. 4  2020
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date the method reliability, 500 such models of fully
populated arrays were constructed with various initial
distributions of mixing points generated in a pseudo-
random manner.

For detail evaluation of dynamic focusing capabil-
ities of the three arrays (Fig. 5), a series of calculations
was performed with electronic focus steering of the
existing and proposed arrays to the nodes of a certain
grid in the axial plane zy (x = 0 mm). The same ampli-
tudes of the normal velocity at the surface of the array
elements were considered; the focus was steered by
changing the velocity phase that was calculated along
the rays connecting the centers of mass of each ele-
ment and the focus point. For each focus location

, the distributions of pressure ampli-

tude  were calculated, and two parameters

of the field quality, “efficiency” and “safety” of irradi-
ation, were automatically analyzed. In accordance
with the criteria introduced in earlier studies [13, 20],
sonication is considered efficient if the intensity at the
steered focus is higher than 50% of the maximum
achievable value, and sonication is considered safe if
the intensity of the grating lobes is less than 10% of the
intensity in the steered focus. For analyzing the effi-
ciency of sonication, the focus was steered in the axial
plane over a rectangular grid with spatial windows of

110 mm 200 mm and −20 mm 20 mm,

and steps of 0.25 mm. As analyzing the
safety of sonication required a larger number of oper-

ations; a rougher grid steps of 2.5 mm
were chosen, and the spatial windows of
110 mm 200 mm and −20 mm 20 mm
were kept the same for each focus location

. Therefore, the array field had to be

calculated 629 times.

The considered ultrasound arrays are composed of
spherical polygon-shaped elements as illustrated in
Fig. 5. To calculate the fields generated by these
arrays, an analytical method based on the calculation
of the Rayleigh integral was used:

(4)

Here,  is the complex pressure amplitude at the
point r for a harmonic wave with a time dependence

described as , i is the imaginary unit,

 is the angular frequency of the array,

 is the wavenumber,  is the ultrasound

speed,  is the ambient density of the medium,  is

the active surface area of the array,  is the ampli-

tude of the normal component of the velocity at point

 on the array surface,  is the surface element with

the center at the indicated point, and  is the

distance from the indicated surface element to the
observation point.
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The integral (4) was calculated for each array ele-
ment using the far-field approximation [13, 17]. Each
polygon-shaped element of the array oscillating in a
piston-like manner with the normal velocity ampli-

tude  was divided into right triangle-shaped subele-
ments. Since the characteristic diameter of the subele-
ments is much smaller than the array’s radius of curva-
ture F, the field of each subelement can be
approximated by an analytical solution for its far field
already at small distances from the array [17]:

(5)

Here ,  and 

are the legs of the right triangle,  is the
characteristic pressure at the surface of the element,

, and (x, y, z) are the coordinates of
the observation point. The field of each element there-
fore was calculated analytically as the sum of the fields
(5) of its subelements. It has been previously shown
that such analytical method allows for accelerating the
field calculation by several orders of magnitude in
comparison with direct numerical calculation of the
integral (4) [13, 17].

RESULTS

With the introduction of a technological gap of
0.5 mm, the filling factor of the array surface decreases
from 87 to 78% for the VTFS array and from 100 to
89% for the fully populated arrays. For the VTFS array
with 256 elements, the mean area of elements, taking

into account the gaps, was = 66 mm2. Since fully
populated arrays have no inactive regions on the
periphery of their surface (Figs. 5b, 5c), for the same
area of elements, their number increased to N = 291.

With M = 5 × 105 sampling points per element used in
constructing fully populated arrays, a variation coeffi-

cient of their element areas was < 1%, which

makes it possible to consider them as being equal.

Here,  is the standard deviation of the element area.

In the procedure of constructing the fully popu-
lated array with limited relaxation, the fixed number of

iterations (  = 8) was chosen from the following con-
sideration. Prior to the iteration process, some point
cloud, which finally formed an array element, was
selected. The displacement of the center of mass

 of this cloud was observed at each

iteration S with respect to the previous one. As
depicted in Fig. 6, starting from S = 5, the location of
the center of mass varies insignificantly

( < 0.5 mm) slightly oscillating up to the last itera-
tion. In other words, the locations of the centers of
mass of elements are mainly settled at early iterations,
and the subsequent elements only change shape, with-
out changing their location, becoming increasingly
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Fig. 6. Typical dependence of shift  of

center of cell mass on iteration number S for construction
of tessellation with elements of equal area without limita-

tion of relaxation. Here,  is radius vector of cell center
of mass at Sth iteration. For convenience, the results are

presented in logarithmic scale on both axes. 
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rounded up to the last iteration (Figs. 5b, 5c). The lim-
itation of relaxation thus can be set at any iteration
starting from S = 5, and the sooner this is done, the
more elongated the final elements will be. When con-
structing the fully populated array with limitation of
relaxation considered here, the limitation was set at

iteration = 8 to avoid extreme elongation of the
array elements.

First, compare the sketches of the arrays. Indeed,
the limitation of relaxation allows for considerable
weakening the regularity in the shape and arrangement
of the array elements (Fig. 5c) compared to the case of
no limitation of relaxation (Fig. 5b): the elements are
slightly more asymmetric and randomly oriented. To
assess the degree of elongation of the elements, the fol-

lowing factor:  is introduced, where 

and  are the mean perimeter and area of the ele-
ment. For a circular element shape, which is the most
compact compared to other element shapes,

, i.e., = 1. For elongated elements ,
and the stronger the element is elongated, the greater
is the value of . For the VTFS array, the array without
limitation of relaxation, and the array with limitation

by  = 8, these factors are 1.173, 1.168, and 1.258,
respectively.

Now compare the fields generated by these three
arrays. First, consider the case of focusing at the center
of curvature F = 160 mm, when all the elements of the
arrays work in phase. Figure 7a shows the distributions

of the pressure amplitude  on the array axis z
normalized to the initial pressure  for the VTFS
array (thick solid curve) and two fully populated arrays
without limitation of relaxation (dashed curve) and

0S
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with limitation of relaxation (thin solid curve). These
distributions show that the normalized pressure
amplitude at the focus of the VTFS array is

= 83, whereas for the two fully populated

arrays, it is 13% larger: = 94. Hence, the fully

populated arrays allow achieving a 28% higher focal
intensity, which corresponds to the ratio of the effec-
tive areas or the number of array elements. Here, we

use the relations that , .

To demonstrate the degree of randomness of ele-
ment arrangement, steering of the focus toward the
array surface by 30 mm along the beam axis

( = 0 mm, = 0 mm, = 130 mm) was ana-
lyzed. The amplitude distributions (Fig. 7b) show two
side effects related to the discrete structure of the
arrays. The focal pressure amplitude decreases com-
pared with the case without electronic steering
(decrease in efficiency); behind the focus, a region of
grating lobes forms (decrease in safety). As a quantita-
tive estimate of the grating lobe amplitude, maximum

field amplitude  beyond the focal maximum

and first two adjacent lobes (Fig. 3b, contour line
ABCD) were introduced. The results indicate that the
amplitude of grating lobes for the fully populated array
with limitation of relaxation (Fig. 7b, thin solid curve,

= 11.7) is 48% less than for the fully populated

array without limitation of relaxation (dashed curve,

= 22.4). These results confirm the assump-

tion of additional suppression of the regularity in the
location of elements by limitation of relaxation. Even

lower level of grating lobes (  = 8.7) are

achieved in the field of the VTFS array (thick solid
curve). However, in this case, the amplitude in the

steered focus is lower ( = 64) than for the two

fully populated arrays ( ).

Figure 8 shows simulation results for electronic
focus steering of the existing and proposed arrays into
the nodes of a certain grid in the array’s axial plane zy
(x = 0 mm). The sonication efficiency and safety lev-
els were analyzed for each focus location. The results
are presented as contours of the regions of safe (the
intensity of sidelobes does not exceed 10% of the focal
intensity, thick curves) and efficient (the intensity in
the shifted focus is higher by 50% of the maximum
possible value, thin curves) focus steering in the axial
plane yz. Dashed curves correspond to the contours
for the VTFS array, and solid and dotted curves are
contours for fully populated arrays with and without
limitation of relaxation, respectively.

The region of safe focusing for the VTFS array
(thick solid curve) clearly appears as the most elon-
gated in the axial direction with a size along the z axis
of about 87 mm. For the fully populated array without
limitation of relaxation, this size along the z axis is
considerably smaller, about 57 mm (thick dotted
curve). The length of the mean safe focusing region for
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Fig. 7. Distributions of acoustic pressure amplitude  normalized to initial pressure  along axis of symmetry of array (axis z)
for (a) focusing to center of curvature and (b) electronic steering of focus along axis z by 30 mm toward array surface. Thick solid
curve corresponds to VTFS array and thin solid and dashed curves correspond to fully populated arrays with limitation of relax-
ation and without it, respectively.
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Fig. 8. Contours surrounding regions of efficient and safe
electronic focus steering in axial plane zy. Focusing inside
the contours can be considered efficient (thin curves) and
safe (thick curves). Dashed curves correspond to VTFS
array; solid and dotted curves correspond to fully popu-
lated arrays with and without limitation of relaxation,
respectively. 
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the fully populated array with limitation of relaxation
is 76 mm (thick solid curve). The difference between
the arrays in the length of safe focusing regions is rea-
sonable and confirms the assumption on diminishing
the annular structure of element arrangement via a
transition from unlimited to limited relaxation. A
decrease in the periodicity weakens the grating lobes;
therefore, the length of the safe focusing region along
the z axis increases. Note that regardless of the thresh-
old of the limitation of relaxation, the outer elements
of the fully populated array will always be located on
its round boundary and form a ring. This explains the
fact that the array with limitation of relaxation still has
a safe focusing region 11 mm shorter than the VTFS
array, which by design contains no annular structures.
In the transverse direction along the y axis, all three
arrays exhibit close sizes of safe transverse focusing
regions ~35 mm in width with local deviations up to 2
mm.

The regions of efficient focusing (thin curves in
Fig. 8) for all three arrays differ from each other less
significantly than the regions of safe focusing. For the
VTFS array (thin dashed curve) and fully populated
array without limitation of relaxation (thin dotted
curve), the sizes of these regions along the z and y axes
are 58 × 22  and 56 × 21 mm, respectively. Corre-
sponding dimensions for the fully populated array with
limitation of relaxation are 55.5 × 20 mm along the z
and y axes (thin solid curve), which is 1–2.5 mm
smaller than for the other arrays. This slight difference
in capabilities of effective steering for the VTFS array
and fully populated arrays can be explained as follows:
although the arrays have the same mean element area

, the element areas in the VTFS array differ from
each other more than the element areas of the fully

elΣ
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populated arrays (Fig. 2). Moving away from the array

center, the elements of the VTSF array become

smaller and starting from the 110th element are smaller

in area than the elements of the fully populated array.

The peripheral elements of the VTFS array therefore

are smaller in size and exhibit a wider directivity pat-

tern, which yields a slightly larger region of efficient

focusing along the axis z. Therefore, a small gain in the

size of the efficient focusing region for the VTFS array

is caused by variations in the area of its elements,

which itself is a serious problem in array design. The

fully populated array with limitation of relaxation

exhibits the smallest efficient focusing region, since its
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Fig. 9. (a) Examples of fully populated arrays with limitation of relaxation. The arrays have same parameters but various pseudo-

random distributions of elements. (b) Histogram of distribution of 500 such arrays over amplitude  of grating lobe normalized

to focal pressure amplitude  when steering the focus along axis z by 30 mm toward array surface. Parameters of all arrays are as
follows: frequency f = 1.2 MHz, radius of curvature F = 160 mm, aperture D = 160 mm, gap between elements 0.5 mm, and

mean area of each element 66 mm2. 
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elements (Fig. 5c) are slightly more elongated com-
pared to the other arrays. This is confirmed by values
of factor , which describes the degree of elongation.
The width of the directivity pattern for elements of the
array with limitation of relaxation are slightly smaller,
which leads to a slight decrease in the size of the region
of efficient focusing.

Finally, simulation results for each array demon-

strated that the region of both safe and efficient (i.e.,

“allowable”) focus steering is determined by the effi-

cient focusing region. Only for the fully populated

array without limitation of relaxation the safe focusing

region intersects that of the efficient focusing by

1 mm. Therefore, when developing arrays for practical

purposes, relaxation limitation  can be chosen in a

broad range. With an increase of > 8, its value can

be selected so that it yields the optimum degree of

roundness of the elements, i.e., yielding an efficient

focusing region close to the maximum possible size

and locating it within the safe focusing region.

An important characteristic of the proposed

method of limitation of relaxation is its application

reliability for different realizations of a random distri-

bution of elements over the array surface. Indeed, the

algorithm for constructing the fully populated array

has two sources of randomness: generation of a large

number of points on its surface (MN ~ 108) and their

subsequent separation into randomly mixed point

clouds (Fig. 4a). The diagrams of four arrays as exam-

ples from the set of 500 arrays considered in this paper

are shown in Fig. 9a. Since the location of elements

κ

0S
0S
influences the level of grating lobes when steering the

focus electronically, the array fields are compared in

terms of the degree of their manifestation. Figure 8

shows that the appearance of periodicity in element

arrangement mainly influences the dimensions of

steering at the array axis, where the contours of safe

focusing region becomes closer to that of the efficient

focusing (thick and thin dashed curves in Fig. 8).

Therefore, a point of focus steering with coordinates

= 0 mm, = 0 mm, and = 130 mm, which is

close to the boundary of the region of efficient steering

of the focus, is chosen here to analyze a comparative

parameter of the level of grating lobes with respect to

normalized focal pressure amplitude  when

steering the focus to this point.

The distribution of 500 arrays over the level of the

parameter  is shown in the histogram divided

into ten intervals of equal length (Fig. 9b). The height
of each column corresponds to the number of arrays

for which the parameter  falls into a given

interval. It can be seen that the distribution of the ran-

dom value  has a typical bell-shaped pattern.

The level of grating lobes  is in the interval

0.19 0.29, and the most frequently occur-

ring level obtained for 129 of the 500 arrays lies in the

interval 0.22 0.23. It is important that the

safe sonication condition is satisfied for all arrays.
Nevertheless, this statistical analysis allows the selec-
tion of the best array realization shown in Fig. 5c with

the minimum value of the parameter .
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CONCLUSIONS

In this work, a modification of the method for con-
structing fully populated arrays with a random distri-
bution of radiating elements was proposed. A filling
factor of such arrays is Ψ = 100% without introducing
technological gaps between their elements. The pro-
posed method allowed decreasing the level of grating
lobes caused by certain quasi-periodicity of element
arrangement while simultaneously maintaining the
maximum filling density of the elements. The advan-
tages of the proposed method were analyzed in com-
parison with the current methods of developing fully
populated arrays with a non-regular distribution of
elements.
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