
ISSN 2070-0482, Mathematical Models and Computer Simulations, 2023, Vol. 15, No. 1, pp. 109–117. © Pleiades Publishing, Ltd., 2023.
Russian Text © The Author(s), 2022, published in Matematicheskoe Modelirovanie, 2022, Vol. 34, No. 7, pp. 49–62.
Numerical Simulation of the Evolution
of an Intense Aerodynamic Jet in the Far-Field 

of Propagation
S. N. Gurbatova,*, I. Yu. Demina,**, A. A. Lisina,***,

S. A. Karabasova,b,****, and A. V. Tyurinac,*****
a Lobachevsky State University, Nizhny Novgorod, Russia

b Zhukovsky Central Aerohydrodynamic Institute, Zhukovsky, Moscow oblast, 140181 Russia
c Lomonosov Moscow State University, Moscow, Russia

*e-mail: gurbatov.sergey@gmail.com
**e-mail: demin@rf.unn.ru

***e-mail: lisin.artem.a@gmail.com
****e-mail: s.karabasov@qmul.ac.uk
*****e-mail: vanilch22@gmail.com

Received February 21, 2022; revised February 21, 2022; accepted April 18, 2022

Abstract—The conditions for the outflow of an underexpanded supersonic jet from an experiment
conducted at the Laboratory for Turbulent Research in Aerospace and Combustion (LTRAC),
Monash University, Australia are considered. The characteristic parameters of linear and nonlinear
transport for the LTRAC jet are analyzed using LES solutions from the near and far acoustic fields. In
both cases, the fulfillment of the conditions of the linear scenario of sound transfer over distances
characteristic of the LTRAC acoustic experiment is shown. To verify the theoretical estimates, numer-
ical solutions of the spherical Burgers equation are also obtained using the initial data from the LES
calculation. Solutions are obtained without and in the presence of a term in the Burgers equation cor-
responding to quadratic nonlinearity. The solutions respond to sound transfer at distances that are
orders of magnitude greater than the distance between the acoustic microphone and the jet in the
LTRAC experiment.
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1. INTRODUCTION
One of the most important areas of nonlinear acoustics is the study of the acoustic noise of aircraft:

their prediction during takeoff and during operation is the most important problem in the development of
aviation. Aerodynamic noise is usually emitted in a wide frequency band and is caused, for example, by
the unevenness and turbulence of the air f low, when the pressure at the outlet of the aircraft nozzle is not
equal to the ambient pressure. This pressure discrepancy is overcome by the jet passing through the
regions of expansions and contractions, which are quasi-periodic shock cells interacting with turbulent
vortices emanating from the edge of the nozzle. These noise sources are visible in the far-field spectra as
multiple peaks near the shock cells. For acoustic waves of sufficiently high amplitude, the steepness of the
acoustic wave front can play a significant role in changing the noise spectrum sufficiently far from the
source before the linear dissipation mechanism becomes dominant.

Ever since the first Concorde flights [1], the importance of nonlinear effects for the propagation of high-
intensity jet noise has been noted. Measurements of jet engine noise at full power have shown that nonlinear
distortions of the acoustic spectra have a significant effect on the noise field, and an anomalous enhance-
ment of the high-frequency part of the noise spectrum was found compared to the linear prediction.

However, the effect of nonlinear propagation is not the only possible mechanism for the formation of
shock fronts of acoustic waves [2]. In particular, for laboratory-scale jets [3], the effects of nonlinear prop-
agation can be important only in the near field of the jet, while the effect of nonlinearity on the propaga-
tion of the far field is insignificant. For example, another mechanism responsible for the formation of
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shock acoustic waves in the far zone includes the interaction of a shock wave with turbulent shear layers,
whose wave structures are linearly transmitted in the far zone [4]. Nonlinear wave propagation competes
with the linear effects of atmospheric absorption. The interaction between nonlinear and linear dissipa-
tion effects is expressed in terms of the reciprocal acoustic Reynolds number (Goldberg number), which
not only strongly depends on the f low conditions such as the pressure-temperature ratio in the nozzle but
also on the effective distance to the jet.

To quantify the importance of nonlinear propagation effects on supersonic jet noise, several studies
have compared the solution of linear and nonlinear sound propagation models for the same initial condi-
tions. Models in the literature can be divided into two categories. The first category includes theoretical
models that use semianalytical solutions of the one-dimensional Burgers equation and the Navier–Stokes
equations [5, 6]. These models are computationally efficient but fail to take into account the effects of high
Reynolds number turbulence and the distributed nature of supersonic jet noise sources. Compared to
them, the second category of models includes fully computational studies that include 3D Navier–Stokes
effects, extending the simulation domain to the far field, and combining the Navier–Stokes solution with
the Euler solution at a distance from the jet [7]. However, due to the computational costs, these latter
models typically use idealized nozzle conditions, such as the jet stream emerging from cylindrical pipe
without compression.

Despite the use of high-resolution techniques, such studies usually show limited comparison with the
experimental data, especially in the near field of reactive noise. In addition, the range of far-field noise
propagation distances considered using such methods is limited to several hundred initial jet diameters,
which may not be sufficient for a complete description of nonlinear-linear propagation modes, including
the linear dissipation region.

In this paper, we consider modeling the far-field aerodynamic noise generated by a cold supersonic
flow of an underexpanded jet in accordance with the conditions of a f low experiment conducted at the
Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC) Supersonic Jet Facility at
Monash University [8]. The specific jet conditions correspond to the case of the fastest LTRAC jet, when
the jet exits the nozzle with a high area ratio at a nozzle pressure ratio of 4.2, producing noticeable shock
cells and a Mach disk due to the mismatch between the nozzle exit pressure and ambient pressure. The
interaction of shock cells with turbulence in the shear layer leads to intense shock wave noise (BBSAN),
which is typical of characteristic peaks in the far-field acoustic spectra for the observation angles from the
side. The peaks are primarily related to the regions of interaction between these shock cells and turbulent
eddies in the shear layers. To simulate the propagation of the BBASN of an LTRAC jet in the far field, a
three-level model was implemented using the domain decomposition approach. In the region of the non-
linear jet f low, the Navier–Stokes equations are solved within the monotonically integrated LES
approach, starting from the exit of the nozzle, where the conditions are set from the LTRAC Particle
Image Velocimetry (PIV) dataset. The LES results are checked against PIV data. In the second step, the
LES solution is combined with the permeable formulation of the Ffowcs Williams–Hawkings (FW-H)
method [9, 10] to obtain acoustic near-field noise spectra solutions for several of the most interesting
observer angles in terms of BBSAN.

Then the proposed three-level models of acoustic spectra of the near field are used to generate realiza-
tions of the initial acoustic noise for the numerical solution of the spherical generalized Burgers equation
[2, 11]. The Burgers equation is solved numerically by going into the frequency domain, where the non-
linear partial differential equation for the field is converted into an ordinary differential equation for its
Fourier transform, which is approximated by an explicit first-order scheme and solved in the far zone of
sound transfer until the distances, at which the effect of linear dissipation is no longer dominant, are
reached. To estimate the effect of nonlinearity on the noise spectra in the far zone, the solutions are com-
pared with and without taking into account the nonlinear term in the Burgers equation.

2. NUMERICAL SIMULATION OF THE SOLUTION 
OF THE EVOLUTIONARY BURGERS EQUATION

We consider the evolutionary Burgers equation describing the propagation of nonlinear spherical
waves in viscous media without dispersion [11, 12]

(1)β∂ ∂ ∂+ − =
∂ ∂ ρ ∂
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MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 15  No. 1  2023



NUMERICAL SIMULATION OF THE EVOLUTION 111
where V(r, t) is the speed of the acoustic wave, c is the speed of sound in free space, ρ is the density of the
medium, b is the kinematic coefficient of viscosity, r is the distance from the wave source, and β is the
nonlinear parameter of the medium (for air, approximately 0.5).

Using a change of variables, Eq. (1) can be reduced to the dimensionless Burgers equation for spherical
waves

(2)

where the dimensionless quantities are given in the following form:

(3)

When obtaining Eq. (2) and expressions (3), it was assumed that the initial disturbance of the velocity
V0(t) = V(t, r = r0) was characterized by some typical amplitude V0 and frequency ω0.

Formulas (3) contain two important parameters: the characteristic distance of the formation of discon-
tinuities (shock fronts) in the acoustic wave rnl and the characteristic distance rl at which the effect of vis-
cous dissipation becomes important. The ratio of these distances determines the reciprocal acoustic
Reynolds number  =  (or the Goldberg number ε). Number R0 is given as the ratio of the
inner radius of the spherical wave source to the characteristic nonlinear distance and determines the range
of wave propagation. In addition, the physical meaning of the parameter R0 is to characterize how far the
starting point of acoustic wave emission (effective source) is from the region of interaction of nonlinear
waves. It is clearly seen from the dimensionless equation (2) that εg(R) plays the role of the effective vis-
cosity coefficient, which, in addition to the ratio of dissipation to nonlinear effects, also contains the wave
propagation coefficient [12]. The last factor arises from the fact that, compared to the one-dimensional
(plane) propagation of nonlinear waves, the energy of three-dimensional waves is distributed over a spher-
ical surface.

Let us determine the energy spectrum of the acoustic wave

through the direct Fourier transform

(4)

Then the inverse Fourier transform will allow us to determine the wave profile

(5)

The solution of the Burgers equation (2) in the frequency domain can be represented in an iterative form
with step ∆R, and F and F–1 (denoting the direct and inverse Fourier transform) are determined by for-
mulas (4) and (5)

(6)

The program for solving the evolutionary Burgers equation for spherical random waves by the pseudo-
spectral method (6) was written in Python.
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As the initial condition  was considered a random process  = , where
ξ = A + iB was a random Gaussian process, A = B = 0, A2 = B2 = 1, and G0(ω) was the initial spec-
trum, which was chosen in the form [13]

(7)

The maximum of the spectrum is at the frequency ω =  = 2, and the characteristic scale of the mani-
festation of nonlinearity is equal to  =  ≈ 0.58. The Reynolds number Re in the

experiments was 100. Initial spectrum parameters: , . The averaging was carried out over 1000
realizations, each of which contained 214 readings.

In numerical simulation, two modes of propagation of acoustic noise with the initial spectrum (7) were
considered: the first one was the solution of the original nonlinear problem (6) and the second one was
the solution of the linear problem, which corresponded to the artificial removal of the quadratic velocity
term from the right side of Eq. (6). This was done to evaluate the effect of nonlinearity on acoustic noise
propagation. Figure 1 shows a comparison of the evolution of acoustic noise for the linear (Fig. 1a) and
nonlinear (Fig. 1b) propagation modes at different distances from the source: the given distance (x/R0).
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Fig. 1. (a) Evolution of a spherical acoustic wave for the Reynolds number Re = 100 and various distances from the source
x/R0 for the solution of a linear model; (b) Evolution of a spherical acoustic wave for the Reynolds number Re = 100 and
various distances from the source x/R0 for the solution of a nonlinear model.
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Fig. 2. (a) Evolution of energy spectra for the Reynolds number Re = 100 for the solution of linear and nonlinear models
at distances before the formation of a discontinuity of x/R0 = 0.1 (left) and x/R0 = 0.5 (right); (b) Evolution of energy
spectra for the Reynolds number Re = 100 for the solution of linear and nonlinear models at the stage of developed dis-
continuities of x/R0 = 19 (left) and x/R0 = 147 (right).
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From the profiles of the spherical random wave given above, it is clearly seen that at x/R0 = 1.7 for the
nonlinear model, sawtooth wave fronts appear in the solution, which subsequently leads at the stage of
developed discontinuities to the merging of nonlinear fronts—there is a rapid decay of the amplitudes of
the nonlinear wave profiles compared to the regime of linear propagation of spherical random waves.

Figure 2 shows the evolution of the energy spectra for the linear and nonlinear model of the numerical
solution according to scheme (6) in the frequency domain for the distances up to the formation of discon-
tinuities (Fig. 2a) and at the stage of developed ruptures (Fig. 2b) in a spherical random wave.

From Fig. 2a at short distances from the source (before the formation of discontinuities in the profiles
of spherical random waves at r – r0 < rnl), it can be seen that, except for the high-frequency region, the
nonlinear model does not differ from the linear propagation model, apart from the high frequencies—the
spectra are barely affected by nonlinearity. At long distances (Fig. 2b), which correspond to the stage of
interaction of the developed discontinuities (rnl < r − r0 < rl), the nonlinear interaction of the waves leads
to faster dissipation, a decrease in energy and a shift of the spectrum maximum to the low-frequency
region, which differs from the linear mode of the evolution of random waves (x/R0 = 19). There is also a
difference between the linear and nonlinear solutions for the energy spectra in the high-frequency part
until the dissipation mechanism becomes definitive for most of the noise spectrum (x/R0 = 147).

3. LTRAC SUPERSONIC JET: FAR FIELD SIMULATION
The supersonic underexpanded jet stream considered as the initial conditions corresponds to the con-

ditions of the experiment carried out at the LTRAC [18]. In the LTRAC experiment, compressed air is
supplied to the plenum chamber at a temperature of approximately Tk = 288 K. The plenum was con-
nected to the mixing chamber under normal atmospheric conditions, where the velocity measurements of
the f low were taken by laser diagnostics with a high spatial resolution (PIV). Compressed air exits from an
axisymmetric nozzle Dj = 15 mm with a 5-mm-thick edge. The fully expanded flow conditions are Mfe =
1.59 NPR = 4.2, Def = 16.73 mm, and Re = 1.06 × 106. The nozzle has an inlet to outlet area ratio of 93.44
with a short converging section so that the outlet f low is sonic at a velocity of Uj = 310 m/s. The converging
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 15  No. 1  2023
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Fig. 3. Scheme of the LTRAC experiment.
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section consists of a profiled wall with a curvature radius of 67.15 mm and a short parallel section at the
outlet (Fig. 3).

To simulate the f low of the LTRAC jet, the Cabaret scheme is used in the framework of the large eddy
method (MILES). Cabaret’s properties include low dispersion and dissipative error. The use of a space-
time spaced compact computational template and an explicit asynchronous time step in Cabaret provides
good accuracy on inhomogeneous grids. Inhomogeneous grids are built semi-automatically using the
OpenFOAM snappyHexMesh (sHM) utility [14–16]. The Cabaret calculation results for the average lon-
gitudinal f low velocity are compared with the experiment on two computational grids in Fig. 4.

The LES grid of the LTRAC jet contains 41 million cells and starts from the nozzle exit. The f low con-
ditions at the nozzle outlet are set using the f low and radial mean f low velocity from the PIV data by super-
imposing the nozzle outlet sonic conditions and assuming the same stagnation pressure as in the upstream
chamber. The grid is locally thickened near the nozzle edge, and the resolution of the grid in the longitu-
dinal, radial, and azimuthal directions is ∆x/Dj = 0.02, ∆r/Dj = 0.011, and r∆θ/Dj = 0.02.

For higher frequencies, the current LES solution is not sufficiently resolved. However, the main peak
of the BBSAN spectra around 0.4–0.5 is clearly captured by the LES solution, especially at an observation
angle of 120°. The peak of the BBSAN hump is 12–15 dB higher than the frequency amplitude of about
0.2–0.3, which corresponds to the peak jet mixing noise for the same side viewing angles and is shown
in Fig. 2.

The two initial conditions for the propagation of a spherical wave are considered: the acoustic velocity
spectra obtained from the LES-FW-H solution at an observer angle of 90° and 120°. First, the LES solu-
tion in the acoustic near field at 0 < x/DJ < 3 and r/DJ = 3 is used to estimate the characteristic velocity
fluctuation at the initial radius of a source that is close to the intense BBSAN source but does not have a
noticeable distortion by the hydrodynamic field. For the second set of initial conditions, the solution of
the pressure spectra obtained by the FW-H method at R/Dj = 20 and an observation angle of 90° relative
to the jet stream, is converted to the characteristic velocity oscillation under the assumption of a linear
relationship between the pressure and velocity oscillations in the acoustic wave . For both of
these datasets, the corresponding sound wave propagation frequency can be estimated from the BBSAN
peak frequency, which for the LTRAC jet is 13.12 kHz.

In general, this completely determines the parameters for the numerical analysis of the evolutionary
Burgers equation (2) and (3), whose solution is described by a pseudospectral scheme in the frequency
domain (6), and which are summarized in Table 1.

∼ ρ ⋅' '/( )u p c
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Table 1. Input parameters of the initial jet for the numerical analysis of the evolutionary Burgers equation in the far
propagation zone

Initial parameters rl rnl ε R0

LES for R/Dj = 3 38841.34 14.6 0.000375802 0.0031
LES and FW-H for R/Dj = 20 38841.34 7470 0.1923 0.00004
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Fig. 4. Visualization of the comparison of the results of the experiment and the model (on a fine grid of 70 million cells
and a coarse grid of 24 million cells).
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It can be noted that both sets of data given in Table 1 qualitatively correspond to the same mode of
propagation of acoustic waves R0  rnl  rl. This means that the source of spherical random waves is
located far from the region of the formation of nonlinear waves and where the formation of shock fronts
and the effects of viscous dissipation take place.

� �
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At the next stage, the acoustic spectrum at an observation angle of 90° with R/Dj = 20 is scaled appro-
priately and then used as the initial condition to replace the analytical Gaussian energy spectrum (7). After
determining the initial spectrum, the problem of spherical wave propagation (2)–(6) is solved for
1000 realizations. The obtained spectral solutions, averaged over the ensemble at two distances from the
source, are shown in the figure for both linear and nonlinear sound propagation models. The initial spec-
trum is also shown in Fig. 5.

It can be seen that the nonlinear solution of the Burgers equation does not qualitatively differ from the
linear one, while the fronts of acoustic waves do not show significant steepening. This explains why,
for the considered LTRAC jet, nonlinearity does not play a role in the formation of noise spectra in the
far field.

4. CONCLUSIONS

In order to answer the question on whether nonlinear acoustic propagation effects can be important
for the studied LTRAC jet over long propagation distances, a generalized Burgers model is considered that
describes the propagation of spherical waves. To numerically solve the Burgers equation, a pseudospectral
solution method in the frequency domain is used to obtain the energy spectra of a spherical acoustic wave
at various distances from the source. It is shown that, in accordance with the theory, depending on how
the distance of the wave from the source is related to the nonlinear and linear-viscous scales of the prob-
lem, the numerical solution reveals either the initial linear regime, the nonlinear regime of wave interac-
tion, or the linear regime of viscous dissipation. Furthermore, using the LTRAC jet LES solution as the
input to the Burgers equation, it has been shown that even at wave distances up to 200000 nozzle diameters
from the nozzle exit (a distance of 3 km), sound propagation is completely determined by linear effects,
where the effects of the nonlinear interactions of noise waves are negligible. Therefore, the case of the
considered LTRAC jet falls into the category of small-scale supersonic jets, where the nonlinear wave
effects that are important for the jet in the near field become insignificant for acoustic wave propagation
in the far field.
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