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ABSTRACT:
Theoretical and numerical models were developed to calculate the polariscopic integrated light intensity that forms a

projection of the dynamic stress within an axisymmetric elastic object. Although the model is general, this paper

addressed its application to measurements of stresses in model kidney stones from a burst wave lithotripter for stone

fragmentation. The stress was calculated using linear elastic equations, and the light propagation was modeled in the

instantaneous case by integrating over the volume of the stone. The numerical model was written in finite

differences. The resulting images agreed well with measured images. The measured images corresponded to the

maximum shear stress distribution, although other stresses were also plotted. Comparison of the modeled and

observed polariscope images enabled refinement of the photoelastic constant by minimizing the error between the

calculated and measured fields. These results enable quantification of the stress within the polariscope images,

determination of material properties, and the modes and mechanisms of stress production within a kidney stone.

Such a model may help in interpreting elastic waves in structures, such as stones, toward improving lithotripsy

procedures. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0001386
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I. INTRODUCTION

Photoelastic imaging is a well-known method for study-

ing mechanical stress. Certain transparent materials that are

optically isotropic when unstressed become anisotropic and,

thus, birefringent when stressed. This property allows visu-

alization of stresses in optically transparent solids, such as

plastics, using polarized light.1 When light propagates

through a stressed material, the state of polarization changes

depending on the local stress, and those changes are accu-

mulated from point to point along the optical path.

Therefore, the polariscope provides a projection image of

the stress field.

Polariscope imaging of transient stress, i.e., dynamic

photoelastic imaging, is more challenging as it requires

short light exposures to freeze stress patterns during illumi-

nation. Dynamic photoelastic imaging has been used in frac-

ture mechanics and related fields for a number of decades

already,2 and many authors have applied this technique to

study stress created by elastic waves.3–7 Use of such imag-

ing to study stress in kidney stone phantoms created by lith-

otripter shock waves was first published by Xi and Zhong.8

Such studies have helped identify and confirm the mecha-

nisms leading to stone fracture by this noninvasive technol-

ogy. In a recent paper by the present authors, the dynamic

polariscope was used to study stone fragmentation mecha-

nisms in relation to burst wave lithotripsy.9 Burst wave lith-

otripsy uses cyclic pulses of focused ultrasound rather than

singular shock waves to noninvasively fragment kidney

stones.10 The stone fracture, in this case, differs from shock

wave lithotripsy, and photoelastic imaging has been a pri-

mary method used to identify elastic waves occurring as a

result of this acoustic exposure.

Theoretical reconstruction of photoelastic fringe pat-

terns is easier for simplified geometries, e.g., for thin plates

or uniformly stressed specimens. Typical examples and the

corresponding literature reviews can be found in books on

photoelasticity.1,11 In more general cases, such as kidney

stones, the analysis may be more cumbersome. Because the

image is an integration of light through the volume dis-

played as a projection, the complex pattern of the image

may be impossible to decipher without some type of numeri-

cal modeling which can provide additional interpretation of

the image in terms of stress. Such elastic wave models have

been employed to identify mechanisms of lithotripsy12,13

and are supported by experimental observations of stone

fracture.14

In the current paper, we present a theoretical recipe to

perform numerical modeling of polariscope images when

mechanical stresses are created by a focused ultrasound

wave in solid cylindrical objects mimicking kidney stones.

A theoretical approach is developed and implemented using

finite-difference calculations of acoustical and optical fields,
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and the theoretically predicted fringe patterns are compared

with experimental results. In the experiment, a high-speed

camera was used to record images of an epoxy stone model

during exposure to ultrasound waves generated by a focused

source.

II. MATERIALS AND METHODS

A. Theoretical model of a polariscope

An optical ray propagating through a stressed material

is considered. To analyze the case when stresses are inho-

mogeneous along the optical path, it is convenient to per-

form the analysis from first principles, based on Maxwell’s

equations. In many cases, including phenomena studied in

the current work, the anisotropy created by mechanical

stress is weak, and, thus, the corresponding light propaga-

tion can be considered as a process of a slowly accumulating

change of the wave polarization. An elegant approach for

analyzing such a case was developed by Ginzburg;15 more

detail can be found in the literature.11 Here, we implement

this theory as finite-difference modeling of mechanical

stresses in a cylindrically shaped solid object mimicking a

kidney stone.

Maxwell’s equations in a dielectric nonmagnetic medium

provide r�H ¼ c�1@D=@t and r� E ¼ �c�1@H=@t,
where H is the magnetic field, E is the electric field, D is the

electric displacement field, and c is the velocity of light in a

vacuum. For harmonic processes �e�ixt, the aforementioned

equations result in the following wave equation:

DE�r r � Eð Þ þ x=cð Þ2D ¼ 0: (1)

For linear anisotropic media, the electric displacement

D ¼ ðDx;Dy;DzÞ can be expressed through the electric field

E ¼ ðEx;Ey;EzÞ by the following three relationships:

Dm ¼
X

n

emnEn; m; n ¼ x; y; z; (2)

where emn ¼ emnðx; y; zÞ is the permittivity tensor.

In most practical cases, the characteristic scale of inho-

mogeneities associated with mechanical stresses is much

larger than the optical wavelength. As a result, the propaga-

tion of light through a stressed medium can be studied in the

geometrical optics approximation, i.e., by considering rays.

Moreover, in short distances, the effect of the ray bending

(refraction) can be neglected, and, therefore, those rays can

be considered as straight lines. Let us consider a collimated

light beam entering the object under study. This optical

beam can be represented by a family of parallel rays that

propagate, say, along the x axis of a Cartesian coordinates

system (see Fig. 1, where a ray is shown as a dashed line).

The electromagnetic field propagating along a ray can be

considered as a plane wave �eik�r, where vectors D and H

are perpendicular to the wave vector k, which is directed

along the x axis. In such a wave, the electric field vectors E

and D in Eq. (1) depend only on the propagation coordinate

x, and, therefore, Eq. (1) is reduced to the following two

equations:

� d2Ey

dx2
¼ x

c

� �2

Dy; (3)

� d2Ez

dx2
¼ x

c

� �2

Dz: (4)

From D?k, it follows that Dx ¼ 0. Therefore, according

to the first of the three equalities of Eq. (2), exxEx ¼ �exyEy

� exxEy. The second and third equalities can then be written

as follows:

Dy ¼ eyy �
e2

xy

exx

 !
Ey þ eyz �

exyexz

exx

� �
Ez; (5)

Dz ¼ eyz �
exzexy

exx

� �
Ey þ ezz �

e2
xz

exx

� �
Ez: (6)

The undisturbed medium is isotropic, i.e., emn ¼ e dmn,

where dmn is the Kronecker delta, and e is the permittivity in

the absence of stresses. We assume the anisotropy to be

weak, so the non-diagonal tensor components emn (m 6¼ n)

are small. Neglecting such second-order terms, from the pre-

vious equations, we can write

Dy � eyyEy þ eyzEz (7)

and

Dz � eyzEy þ ezzEz: (8)

Note that Eqs. (7) and (8) follow directly from Eq. (2) if

we neglect the longitudinal component of the electric vector,

Ex. It is convenient to rewrite Eqs. (7) and (8) in the follow-

ing forms:

Dy ¼ eEy þ eyy � eð ÞEy þ eyzEz (9)

and

Dz ¼ eEz þ eyzEy þ ezz � eð ÞEz: (10)

Here, the perturbations of diagonal elements emm � e,
m ¼ y; z, and the off-diagonal element eyz arise because of

FIG. 1. Orientation of the electromagnetic wave vectors relative to the coor-

dinate axes.
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mechanical stresses and are small. Equations (3) and (4)

then become

d2Ey

dx2
þ k2Ey ¼ �k2

eyy � eð Þ
e

Ey þ
eyz

e
Ez

� �
(11)

and

d2Ez

dx2
þ k2Ez ¼ �k2 eyz

e
Ey þ

ezz � eð Þ
e

Ez

� �
; (12)

where k ¼
ffiffi
e
p

x =c is the wavenumber in a non-stressed

medium. In the absence of stresses, the right-hand sides of

Eqs. (11) and (12) disappear, which gives the solutions in

the form of a plane wave: Ey ¼ Ayeikx and Ez ¼ Aze
ikx,

where Ay and Az are constants. When the stresses are pre-

sent, it is convenient to write the solution in the same form

but with the amplitudes varying along the propagation dis-

tances Ey ¼ AyðxÞeikx, Ez ¼ AzðxÞeikx. Substituting these

expressions in Eqs. (11) and (12), we obtain

2ik
dAy

dx
þ d2Ay

dx2
¼ �k2

eyy � eð Þ
e

Ay þ
eyz

e
Az

� �
(13)

and

2ik
dAz

dx
þ d2Az

dx2
¼ �k2 eyz

e
Ay þ

ezz � eð Þ
e

Az

� �
: (14)

These equations are equivalent to Eqs. (11) and (12),

but better suited to apply the classical method of the slowly

varying amplitude approximation,16 which considers the dis-

tortions caused by stress to be small. Indeed, because the

right-hand sides of both Eqs. (13) and (14) are small, the

first terms on the left-hand side are of the same order of

smallness, and, thus, the second terms are even smaller:

jd2Ay;z=dx2j � 2kjdAy;z=dxj. Neglecting them, we obtain the

following equations:

dAy

dx
� ijAy � i

k

2

eyy � ezz

2e
Ay þ

eyz

e
Az

� �
(15)

and

dAz

dx
� ijAz � i

k

2

eyz

e
Ay �

eyy � ezz

2e
Az

� �
: (16)

Here,

j x; y; zð Þ ¼
k

2

eyy þ ezz

2e
� 1

� �
: (17)

For an isotropic medium and elastic deformations, the fol-

lowing relationship between the dielectric tensor emn and the

stress tensor rmn holds:1

emn ¼ edmn þ 2
ffiffi
e
p

C1rmn þ C2

X3

k¼1

rkkdmn

 !
; (18)

where dmn is the Kronecker tensor, and C1 and C2 are con-

stants. Taking into account Eq. (18), from Eqs. (15) and

(16), we obtain the following equation for the electrical field

vector:

d

dx

~Ey
~Ez

� �
¼ iC0

ryy�rzzð Þ=2 ryz

ryz � ryy�rzzð Þ=2

� �
~Ey
~Ez

� �
;

(19)

where

~Ey;z ¼ Ay;z exp �i

ðx

0

j x0; y; z
� �

dx0
� �

are renormalized electric field complex amplitudes. Also,

C0 ¼ k0C1, k0 ¼ k=
ffiffi
e
p
¼ 2p=k0, and k0 is the wavelength

of light in a vacuum. Therefore, only the constant C1 plays a

role in the change of the polarization; the other constant, C2,

does not influence the process. Note that the constant C1 is

marked as C in Eq. (1.13) of Ref. 11. With the use of ~Ey;z,

we have the following expressions for the electric vector

components:

Ey;z ¼ ~Ey;z x; y; zð Þei
Ð x

0
kþj x0;y;zð Þ½ �dx0

: (20)

The light intensity is proportional to I ¼ jEj2 ¼ EyE	y
þEzE

	
z ¼ ~Ey

~E
	
y þ ~Ez

~E
	
z . From Eq. (19), it follows that

dI

dx
¼ d ~Ey

dx
~E
	
y þ

d ~Ez

dx
~E
	
z þ c:c: ¼ 0;

i.e., energy is conserved as it should be.

The general solution of Eq. (19) can be expressed in the

following form:

~Ey
~Ez

� �
¼ Û

~Ey0

~Ez0

� �
; (21)

where Û is the Jones matrix,17 and ~Ey0 and ~Ez0 are the elec-

tric vector components at the entrance to the medium. The

Jones matrix can be represented in the following way:

Û ¼ a �b	

b a	

� �
; (22)

where det Û ¼ jaj2 þ jbj2 ¼ 1, i.e., Û is a unitary unimodu-

lar matrix.11 The latter expression directly follows from the

fact that I ¼ jEj2 ¼ const. In Eq. (22), complex numbers a
and b are functions of the stress distribution between the

points of entrance and exit of the corresponding ray that

propagates through the stressed specimen. To find a and b
numerically for a known stress field, it is sufficient to con-

sider the propagation of linearly polarized light of vertical

polarization and unit amplitude: ~Ey0 ¼ 1 and ~Ez0 ¼ 0. As

seen from Eqs. (21) and (22), in such a case at the exit from

the medium, ~Ey ¼ a and ~Ez ¼ b. Once the Jones matrix is

found, the propagation of light with arbitrary polarization

can be calculated.
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Experimental analysis of stresses in a photoelastic

object is performed using a polariscope—an optical device

in which the object is illuminated by polarized light.11 A

specimen under study may be positioned in a bath sub-

merged in a liquid that has the same refractive index as the

specimen to minimize reflection and refraction effects at the

interfaces.18 The liquid is also chosen to acoustically match

to the surrounding water as closely as possible to minimize

acoustic effects as well.

The simplest example is a so-called plane polariscope—

an arrangement in which the specimen is placed between two

linear polarizers (referred to as the polarizer and analyzer on

the light transmission and reception sides, respectively). To

simulate a plane polariscope, the boundary condition at the

point where light enters the specimen should correspond to a

linearly polarized light beam created by the polarizer; by tak-

ing ~Ey0 ¼ E0 cos hp and ~Ez0 ¼ E0 sin hp, where hp is the angle

between the polarizer axis direction and the vertical axis y, and

E0 is the initial wave amplitude. After the ray passes through

the sample, the electric vector changes in accordance with Eq.

(21), and, in the general case, the wave becomes elliptically

polarized. It then passes through the analyzer, i.e., the output

electrical vector is projected to the direction of the analyzer

axis oriented at an angle ha relative to the vertical axis. This

gives the following expression for the output amplitude:
~Ea ¼ ð ~Ey cos ha þ ~Ez sin haÞjexit. The corresponding intensity

Iðy; zÞ ¼ j ~Eaj2 provides the photoelastic image. Light intensity

of the undisturbed background follows Malus’s law, i.e., inten-

sity is proportional to cos2ðhp � haÞ. In particular, when hp �
ha ¼ 90
 (the polarizer and analyzer axes are perpendicular),

the background is dark.

A circular polariscope is another more convenient

arrangement, which employs circularly polarized light for

the specimen illumination (Fig. 2). To create circularly

polarized light, the plane polariscope is modified by adding

two properly orientated quarter-wave plates. One of these

plates is placed after the polarizer in front of the specimen,

and another plate is placed behind the specimen in front of

the analyzer. Suppose the polarizer is turned by hp ¼ 45


relative to the vertical axis, then, ~Ey ¼ E0 cos hp ¼ E0=
ffiffiffi
2
p

,

~Ez ¼ E0 sin hp ¼ E0=
ffiffiffi
2
p

. Let the fast axis of the first

quarter-wave plate be oriented horizontally, i.e., a 90
 phase

shift is created between ~Ey and ~Ez. Then, for Eqs. (23)

and (24), we have the following boundary conditions:
~Ey0 ¼ E0=

ffiffiffi
2
p

and ~Ez0 ¼ �iE0=
ffiffiffi
2
p

. After passing through

the specimen, the electrical field components ~Ey and ~Ez are

modified in accordance with Eq. (21) and, then, additionally

changed by the subsequent quarter-wave plate. If the fast

axis of this plate is directed vertically, a 90
 phase shift is

added to the z component: ~Ez ! i ~Ez. The analyzer filters the

projection and, thus, provides ~Ea ¼ ~Ey cos ha þ i ~Ez sin ha.

From here, for ha ¼ 45
, the output amplitude is ~Ea

¼ ð ~Ey þ i ~EzÞjexit=
ffiffiffi
2
p

. The corresponding intensity distribu-

tion Iðy; zÞ ¼ j ~Eaj2 provides the photoelastic image. Note

that the benefit of the circular polariscope is that the

photoelastic image is insensitive to the orientations of the

polarizer and analyzer relative to the specimen, and only

their mutual orientation plays a role. This setup, therefore,

simplifies interpretation of the experimental data.

B. Theoretical model for elastic waves in an
axisymmetric stone

The equations presented above allow calculation of a

photoelastic image in the case where the mechanical stress

distribution does not depend on time. This is a reasonable

approximation, even for dynamic photoelasticity imaging,

because dynamic or time varying stresses are associated

with elastic waves, which propagate with velocities that are

typically 5–6 orders of magnitude smaller than the speed of

light. Therefore, time-dependent photoelastic images can be

modeled based on instantaneous distributions of mechanical

stress. It is, thus, convenient to perform the calculation of a

photoelastic image together with the calculation of the

mechanical stress so that optical modeling is performed at

every time step of the acoustical modeling.

Mechanical strains and stresses in brittle materials, such

as kidney stones, can be calculated using a linear elastic

model.12,14 The elastic specimen and immersion liquid are

considered as mechanically isotropic media. We consider,

here, an axially symmetric case where the specimen (a

model kidney stone) has an axisymmetric shape with the

axis of symmetry oriented along the direction of acoustic

wave propagation. It is, then, convenient to use cylindrical

coordinates ðr; z;uÞ, where r and z are the radial and axial

distances, respectively, r is the radial coordinate, and u is

the azimuth angle. Because of the axial symmetry, the

velocity vector has only two components: radial, vr, and

axial, vz, and the stress tensor has only four nonzero compo-

nents: rrr; rzz; ruu; and rrz. These six functions describing

FIG. 2. (Color online) Geometry of the experiment. An acoustic source pro-

duces a focused ultrasound burst, which propagates along the axis of an

elastic specimen (z axis). A photoelastic image is formed with the use of a

circular polariscope consisting of a polarizer, two quarter-wave plates, and

an analyzer. A collimated optical beam from a pulsed light-emitting diode

(LED) is projected onto the specimen along the x axis.
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the mechanical field are governed by the following evolu-

tion equations:12

@vr

@t
¼ q�1 1

r

@ r rrr � ruuð Þ½ �
@r

þ @rrz

@z
þ @ruu

@r

	 

; (23)

@vz

@t
¼ q�1 1

r

@ rrrzð Þ
@r

þ @rzz

@z

� �
; (24)

@rrr

@t
¼ k

1

r

@ rvrð Þ
@r
þ @vz

@z

� �
þ 2l

@vr

@r
; (25)

@rzz

@t
¼ k

1

r

@ rvrð Þ
@r
þ kþ 2lð Þ @vz

@z
; (26)

@ruu

@t
¼ k

@vz

@z
þ kþ 2lð Þ 1

r

@ rvrð Þ
@r
� 2l

@vr

@r
; (27)

@rrz

@t
¼ l

@vz

@r
þ @vr

@z

� �
: (28)

Here, k and l are the Lam�e constants, and q is the mass

density. In the numerical modeling, it is convenient to consider

the liquid and elastic objects as one inhomogeneous medium

whose parameters q, k, and l are functions of the coordinate

locations. The parameters are related to the longitudinal sound

speed, cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
, and shear wave speed, ct ¼

ffiffiffiffiffiffiffiffi
l=q

p
.

Equations (23) and (24) represent Newton’s second law of

motion, and the remaining four equations, Eqs. (25)–(28), cor-

respond to Hooke’s law. Using the stress-strain relation in the

form of Hooke’s law, we did not take into account the dissipa-

tion of elastic energy. Although viscoelastic terms could easily

be included in the model, they were omitted in the present study

for simplicity. In our previous study, we estimated the acoustic

attenuation in epoxy to be approximately 3 dB/cm/MHz.9 With

this absorption coefficient, the amplitude of the ultrasonic burst

changes by only 25% when passing through a stone 20 mm

long. Therefore, it is minimal for a single pass through the

specimen. That is, such attenuation will only affect the ampli-

tude of the stresses over a longer period after the ultrasound

burst falls on the specimen but will not change the pattern of

stresses, which was the main interest in the current study.

To solve Eqs. (23)–(28) in finite differences, the partial

differential equations are discretized using a central

differencing scheme with staggered grids in both space and

time.12,14 Velocity and stress in the elastic specimen and

surrounding liquid are initially set to zero. To account for an

incident acoustic wave, a proper boundary condition is set at

the calculation box boundary and is described as follows.

The calculation region is rectangular on the ðr; zÞ plane,

which corresponds to a cylindrical region in three-

dimensional (3D) space. The typical spatial grid steps for

the coordinates z and r were hz ¼ hr ¼ 50 lm, and the tem-

poral step was ht ¼ 0:5hz=cl � 10 ns, which is sufficient to

maintain stability and accuracy. A perfectly matched layer

(PML) layer of 1.5-mm thickness is placed at the boundary

of the calculation region. A cylindrical elastic specimen is

represented by a rectangle placed in the center of the

calculation region. The diameter of the specimen and the

acoustic and optical parameters of the specimen and immer-

sion liquid are given in Table I.

The problem considered in the modeling is related to

burst-wave lithotripsy (BWL)—a method for noninvasive kid-

ney stone fragmentation using focused ultrasound bursts.10 To

set the corresponding boundary condition in the numerical

model, it is supposed that on the left side of the calculation box

at the plane z ¼ z0 ¼ 1:5 mm (at the interface of the PML),

the normal component of the particle velocity vzðr; z0; tÞ repre-

sents a focused beam with a bell-curve distribution of its

amplitude in the lateral direction and a tone-burst dependence

in time. The acoustic pressure waveform at the focus in the

absence of the specimen, pfocðtÞ, and the corresponding lateral

beamwidth at the -6 dB level, b6�dB, have been measured

experimentally. For the considered tone burst at the central fre-

quency of 340 kHz, the beamwidth b6�dB equals 5.0 mm.

These experimental data were used to set the parameters of an

equivalent quasi-Gaussian beam, which represents an exact

analytical solution of the Helmholtz equation for a continuous

wave (CW) field:19

S r; z;xð Þ
Sfoc xð Þ ¼

zd

2 sinh2 kzdð Þ

� ekzd

sin k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ z�F� izdð Þ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ z�F� izdð Þ2

q
0
BB@

�e�kzd

sin k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ z�Fþ izdð Þ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ z�Fþ izdð Þ2

q
1
CCA:

(29)

TABLE I. Stone dimensions and properties of the materials used in the experi-

ment and modeling. The stone is made from a low-viscosity infusion epoxy

(Wessex Resins and Adhesives, Hampshire, UK). The photoelastic constant

was estimated from the polariscope images for blue light with a 0.45lm wave-

length. The immersion liquid is Benzyl benzoate (Sigma-Aldrich Corp., MO),

which has a refractive index matching the epoxy. Hydrophone measurements

were performed in water, and the water values are used to convert the pressures

to those obtained in the immersion liquid. Acoustically, the liquid and water

are well matched to minimize the effect on the acoustics. The low index of

refraction of water also shows why the immersion liquid was needed.

Parameter Value

Stone length (mm) 20.8

Stone diameter (mm) 6.3

Stone density, q (kg/m3) 1100

Stone longitudinal velocity, cl (m/s) 2440

Stone shear velocity, ct (m/s) 1295

Stone refractive index, n 1.58

Stone photoelastic constant, C0 (Pa�1 m�1) 2.4 � 10�4

Immersion liquid density, q (kg/m3) 1100

Immersion liquid speed of sound, c (m/s) 1493

Immersion liquid refractive index, n 1.58

Water density, q (kg/m3) 1000

Water speed of sound, c (m/s) 1500

Water refractive index, n 1.33
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Here, Sðr; z;xÞ is the complex amplitude of a CW acoustic

pressure field and represents the spectral component at cir-

cular frequency x, where z is the axial coordinate, r is radial

(transversal) coordinate, k ¼ x=c0 is the wavenumber, and

zd ¼ ka2=2 is the characteristic diffraction length.

Equation (29) describes an axisymmetric focused beam

with its focal waist located at z ¼ F. The focal amplitude

SfocðxÞ of a spectral component at frequency x is calculated

using the Fourier transform of the experimentally measured

focal pressure pfocðtÞ. According to Eq. (29), for kzd � 1, the

radial distribution of the spectral amplitude in the focal

plane has the following Gaussian shape: Sðr;F;xÞ
� SfocðxÞexp ð�r2=a2Þ. From here it follows that the radius a
of the quasi-Gaussian beam in the focal plane is related to the

experimentally determined beamwidth b6�dB as follows:

a ¼ b6�dB=2
ffiffiffiffiffiffiffiffiffi
ln 2
p

� 0:60 b6�dB. Once the SfocðxÞ and a are

calculated from the experimental measurements, the spectrum

of the equivalent quasi-Gaussian beam is completely defined

by Eq. (29). The spectral amplitude for the z-component of

the particle velocity, Svðr; z;xÞ, is analytically expressed

from the pressure spectral amplitude, Sðr; z;xÞ, as follows:

Sv ¼ �iðkq0c0Þ�1@S=@z. The corresponding expression for

Svðr; z;xÞ is somewhat unwieldy and not presented here. The

particle velocity at the source boundary vzðr; z0; tÞ is, then, cal-

culated using the inverse Fourier transform of Svðr; z0;xÞ. To

check the correctness of the set boundary condition, the focal

pressure waveform was calculated by the finite-difference

algorithm and compared with the measured waveform in the

absence of the elastic specimen. The two waveforms coincided

with a high accuracy, which was also an indication of the high

precision of the finite-difference algorithm.

C. Coupling of the polariscope operation with the
elastic wave model

Finite-difference modeling of Eqs. (23)–(28) provided

spatial distributions of stress tensor components in the grid

points of the calculation region at every calculation time

step. The stress tensor components were used to calculate

the corresponding photoelastic image.

Figure 3 describes the geometry of the problem and the

orientation of the light ray relative to the cylindrical specimen.

In the case of axial symmetry of both the specimen and

acoustic field, it is convenient to represent the stress tensor in

cylindrical coordinates: ryy ¼ ruu cos2uþ rrr sin2u and

ryz ¼ rrz sin u, where r is the radial coordinate, and u is the

azimuth angle. For an optical ray directed along the x axis,

ryy ¼ ruuð1� y2=r2Þ þ rrry
2=r2 and ryz ¼ rrzy=r. The spa-

tial derivative along the ray is @=@x ¼ sgnðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=r2

p
@=@r.

Equations (19) and (20) can be written, respectively, as follows:

sgn xð Þ @
~Ey

@r
¼ iC0

"
ruu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=r2

p
þ rrr

y2=r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=r2

p
 

� rzzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=r2

p
!

~Ey

2
þ rrz

y=rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=r2

p ~Ez

#

(30)

and

sgn xð Þ @
~Ez

@r
¼ iC0

"
rrz

y=rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=r2

p ~Ey

� ruu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=r2

p
þ rrr

y2=r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=r2

p
 

� rzzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=r2

p
!

~Ez

2

#
; (31)

and they should be integrated first from r ¼ r0 to r ¼ y
using sgnðxÞ ¼ �1, and then from r ¼ y to r ¼ r0 using

sgnðxÞ ¼ 1, where r0 is the radius of the cylindrical speci-

men (see Fig. 2). As was noted earlier, the Jones matrix ele-

ments are calculated by considering linearly polarized light

with ~Ey0 ¼ 1 and ~Ez0 ¼ 0.

The square-root terms in Eqs. (30) and (31) create inte-

grable singularities when r ! y. In the numerical modeling

of Eqs. (30) and (31), at each integration step dr, it is useful

to apply the following analytical expressions for exact

differentials:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=r2

p
dr¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� y2

p
� yarctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� y2

p
=y

� �h i
;

(32)

y2=r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=r2

p dr ¼ d y arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p
=y

� �h i
; (33)

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=r2

p ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

ph i
; (34)

y=rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=r2

p dr ¼ d y ln r þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p� �h i
: (35)

For Eqs. (23) and (24), we obtain the boundary conditions
~Ey0 ¼ E0=

ffiffiffi
2
p

and ~Ez0 ¼ �iE0=
ffiffiffi
2
p

. After passing the speci-

men, the electrical field components ~Ey and ~Ez are modified

by the subsequent quarter-wavelength plate. If its fast axis is

now directed vertically, a 90
 phase shift is added to the z

FIG. 3. (Color online) The cross-sectional geometry of an optical ray tra-

versing the elastic specimen. The index of refraction of the liquid surround-

ing the cylinder has been matched to the index of refraction of the cylinder

to minimize light refraction.
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component, ~Ez ! i ~Ez. The analyzer filters the projection
~Ea ¼ ~Ey cos ha þ i ~Ez sin ha, and so for ha ¼ 45
, the output

amplitude is ~Ea ¼ ð ~Ey þ i ~EzÞjexit=
ffiffiffi
2
p

. The corresponding

intensity distribution Iðy; zÞ ¼ j ~Eaj2 is produced in the pho-

toelastic image.

D. Experimental arrangement

The ultrasound source was a focused piezoelectric

transducer, which radiated a tone burst shown in Fig. 4. The

transducer was placed in a water bath.

The test samples were made of an epoxy (INF 114/212;

West System, Bay City, MI), which, in addition to optical

transparency, is known to exhibit noticeable birefringence

under stress. Velocities of elastic waves in the epoxy are

10%–15% below the lower end of the range for human uri-

nary stones, and the epoxy density is also somewhat lower

than that of the stones; these differences are not very large,

and, therefore, epoxy samples are convenient models for the

stones.8,9

Since water has an optical refractive index essentially

different from epoxy (1.33 vs 1.58; see Table I), significant

refraction would occur on the curved (cylindrical) surface if

it is placed in water because of the refraction associated

with oblique incidence, and the optical rays would cease to

be collimated. To avoid refraction effects, the specimen was

immersed in a chamber filled with benzyl benzoate (Sigma-

Aldrich Corp., St. Louis, MO)—a liquid having the same

refractive index, n¼ 1.58, as that of the specimen and simi-

lar acoustic impedance to water (see Table I). The chamber

had plane optically transparent glass windows at its side

walls, which also prevented refraction for the normally inci-

dent light beam. The proximal side of the chamber facing

the ultrasound source, as well as the distal side, were made

from a thin plastic film which was acoustically transparent.

The specimen was fixed in the middle of the chamber with

the use of three thin spring-loaded pins. The chamber was

suspended in a degassed water bath using a 3D positioning

system, which allowed proper alignment of the specimen, so

that its center coincided with the transducer focus.

The light source was a 450-nm, pulsed light-emitting

diode (LED). A field-programmable gate array (FPGA)

timing board was used to provide timed, staggered flashes of

�200-ns duration. The LED was strobed once per ultrasound

pulse with the delay between the transducer output and the

LED flash incremented 100 ns for each ultrasound pulse to

capture a different time point in the wave progression in a

stroboscopic fashion. Two condenser lenses were used to pro-

duce a nearly collimated light beam. This beam was used as a

source in the circular polariscope in the brightfield configura-

tion, whose arrangement was described earlier in Sec. II A. A

high-speed camera (APX RS; Photron, Tokyo, Japan) was

positioned facing the light source and focused on the stone.

The camera was triggered to capture one frame for each ultra-

sound pulse, synchronized so that the exposure of the 200 ns

LED flash determined the effective exposure time of each

camera frame. More details on the experimental arrangement

can be found in our previous publication.9

III. RESULTS

A. Combined modeling of mechanical stresses and
photoelastic images

Finite-difference modeling of the elasticity equations,

Eqs. (23)–(28), provided instantaneous spatial distributions

of the particle velocity and stress tensor components in the

specimen and surrounding liquid. To characterize the

stresses, it is informative to use the maximum principal

tensile stress, rmax,12 because brittle materials, such as kid-

ney stones, are typically weakest in tension. In the consid-

ered axisymmetric case, the three principal stresses

are rI;II ¼ ðrzz þ rrrÞ=26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðrzz � rrrÞ=2�2 þ r2

rz

q
and rIII

¼ ruu. The maximum principal tensile stress is, then,

rmax ¼ maxðrI; rIIIÞ. In the immersion fluid, shear stresses

are absent, and the maximum principal tensile stress is the

opposite of acoustic pressure, where compression not rare-

faction is positive. For each calculation time step, light

propagation equations (29) and (30) were numerically inte-

grated, which provided a two-dimensional (2D) distribu-

tion of the polariscope light intensity. The calculated 2D

intensity distributions were collected for the duration of

0.2 ls (to match the experiment) and then averaged. As a

result, the numerical algorithm provided a predicted polari-

scope image to compare with the experimentally measured

polariscope image.

A typical result is shown in Fig. 5. Here, the upper

image shows an instantaneous pattern of the maximum prin-

cipal stress distribution in the absence of the specimen (its

border is shown by a rectangle). It is seen that the acoustic

wave has a desired form of a focused tone burst with the

focal width close to the diameter of the specimen. The

FIG. 4. Pressure waveform at the focus measured by the fiber-optic hydro-

phone in water (upper) and obtained using finite-difference modeling

(lower).
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center image shows the maximum principal stress in the

presence of the specimen. The stress distribution is now dif-

ferent because of reflections from the interface and the gen-

eration of longitudinal and shear waves inside the specimen.

The lower picture depicts the predicted photoelastic image

showing a 2D distribution of the light intensity at the output

of the polariscope, I, averaged within a 0.2 ls interval and

normalized by the light intensity outside the specimen, I0

(i.e., the background intensity). It is seen that, although the

photoelastic image corresponds to the principal stress distri-

bution in the central plane of the specimen, the details of the

distributions are somewhat different. However, the photoelas-

tic image clearly reveals the elastic waves inside the speci-

men and shows the regions of different magnitudes of stress.

To facilitate the interpretation of the polariscope

images, it is useful to consider other elastic wave quantities

in addition to the maximum principal stress. Curl and

divergence of the displacement vector U may be of interest,

X ¼ r� U and D ¼ r � U, since these quantities represent

purely shear and purely longitudinal bulk waves, respec-

tively. In this sense, X and D are convenient markers for the

location of a particular wave. Both of them are associated

with mechanical stress; that is, they play a role in stone

comminution. However, the primary cause of stone frag-

mentation is stress (i.e., not divergence and curl per se), but

detailed analysis of the mechanisms is beyond the scope of

this paper. With the wave (i.e., nonstatic) method of creating

stresses used in lithotripsy, it is important to know which

waves create stresses most effectively. As shown in the pre-

vious studies on the mechanisms of stone comminution,12,14

shear waves are often the main cause of zones of increased

tensile stress. At the same time, other effects, such as spal-

ling, can be caused by longitudinal waves. Thus, the obser-

vation of divergence and curl during numerical modeling

helps to better understand the generation and dynamics of

various types of waves that may cause stone fragmentation.

Note that in the axisymmetric case under consideration,

there are only radial and axial components of U; therefore,

the curl and divergence have only an azimuthal angular

component, Xu. In addition to Xu, D, and the aforemen-

tioned maximum principal stress rmax, it is useful to con-

sider the maximum shear stress, smax ¼ ðrI � rIIÞ=2.

Figure 6 shows the simulation results for Xu, D, rmax, and

smax, along with the corresponding polariscope images of

the normalized light intensity distribution, I=I0, for several

consecutive times. Only the region of the stone is shown

since the surrounding liquid does not cause changes in the

light polarization, i.e., the measured polariscope image is

uniformly bright in the region of the fluid (see Fig. 5). It is

seen from Fig. 6 that the image of the maximum shear stress

best matches the measured photoelastic image. This can be

explained by the fact that smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðrzz � rrrÞ=2�2 þ r2

rz

q
,

which means that smax is expressed through the same combi-

nation of ðrzz � rrrÞ=2 and shear stress rrz that forms the

right-hand side of the electromagnetic wave propagation

equation [Eq. (19)]. The fact photoelastic visualization best

represents the maximum shear stress is an important point to

take into account when interpreting the polariscope images

because brittle objects often break in shear.

B. Refinement of the photoelastic constant
and dynamic polariscope imaging

The photoelastic constant C0 that enters in the equation

of electromagnetic wave propagation, Eq. (19), depends on

the material and is not always exactly known. In addition,

polymeric materials, such as epoxy or acrylic, are highly

dispersive in their mechanical and electrical properties due

to the relaxation phenomena associated with the delayed

response of long polymer chains to a sudden external action.

One of the known effects is stiffening of such materials

under the dynamic load. The photoelastic constant also

depends on the elastic wave frequency. For example, Clark

and Sanford20 measured several types of epoxy polymers

where it was shown that for a 200-ls pulse propagating in a

test beam (which corresponds to a cyclic load of approxi-

mately 5 kHz), the photoelastic constant decreased by up to

20% compared to its static value. In another study21 using

acrylic, it was experimentally shown that for a pulse of 50

ls duration (equivalent frequency of 20 kHz), the dynamic

photoelastic constant was half of that found under static con-

ditions. These studies show that the photoelastic constant

measured under the static load can be significantly larger

than the constant in the dynamic process, especially when

FIG. 5. (Color online) Typical patterns for the finite-difference modeling of

the maximum principal mechanical stress, rmax (upper without the speci-

men, center with the elastic specimen), and the polariscope light intensity

normalized by its background value, I/I0 (lower). The acoustic source is

positioned at the left-hand side, outside of the presented region. The upper

image shows rmax in the liquid in the absence of the stone, and the center

image shows the case when the specimen is present. The acoustic pressure

in liquid is equal to the inverted rmax.
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the frequency of elastic waves far exceeds the kilohertz

range.

According to Ramesh1 (p. 42), the static stress fringe value

of epoxy is approximately equal to Fr � 12 N/mm/fringe,

which corresponds to C0 ¼ 2p=Fr � 5� 10�4Pa�1 m�1.

Based on the known material properties of the media and

the measured focal pressure waveform in water, it is possi-

ble to account for the dispersion and refine the photoelastic

constant to the used tone burst frequency (340 kHz) by com-

parison of the experimental and numerical polariscope

images. Representative images are shown in Fig. 7. The

upper image shows an experimental polariscope pattern

14 ls after the acoustic pulse front impacts the front side of

the stone. The center image represents the modeling result

with the use of C0 ¼ 5.3� 10�4 Pa�1 m�1. It is seen that the

number of fringes in the stressed spots does not agree with the

observation. To refine the photoelastic constant, modeling

was performed for a set of different values of C0, and the

most appropriate constant was found. The bottom image

corresponds to the modeling with the use of the constant

C0 ¼ 2.4� 10�4Pa�1 m�1, which provided much better cor-

respondence to the experiment. Note that this procedure of

finding the photoelastic constant by matching the predicted

and observed polariscope images under a known transient

load has been employed as a method of measuring a dynamic

photoelastic constant accepted in dynamic photoelasticity.20,21

Figure 8 illustrates the ability of the polariscope to fol-

low the propagation of elastic waves in the specimen.

Consecutive frames are shown for the measured (left) and

modeled (right) polariscope light intensity patterns. It is

seen that the two images agree well.

IV. DISCUSSION AND CONCLUSIONS

Unlike liquids and gases, it is impossible to place and

translate an acoustic sensor in the volume of a solid

medium. Optical imaging techniques can partially circum-

vent this difficulty in optically transparent media, such as

plastic and glass, but techniques for fluids, such as shadow-

graphy (schlieren) and interferometry, which rely on varia-

tion in acoustic density to change the optical refractive

index, are not particularly useful in solids. In elastic media,

there is another mechanism for the optical sensing of acous-

tic waves in addition to a change in density, which is the

optical anisotropy under mechanical stress. This allows

FIG. 6. (Color online) Instantaneous distributions of various parameters of elastic perturbations in the specimen at consecutive time points. Time is counted

from the moment the ultrasound pulse propagating to the right arrives at the proximal left face of the specimen. The value of the corresponding quantity on

the color pictures changes from dark blue to dark red with the green color corresponding to the zero level. The color bar limits are 60.0015 (Xu), 60.0005

(D), and 63.5 MPa (rmax and smax). The normalized light intensity I=I0 changes from 0 (black) to 1 (white). The polariscope images best correlate with the

maximum shear stress distribution.

FIG. 7. Comparison of an experimental photoelastic image (upper) with the

corresponding theoretical images calculated using different photoelastic

constants: C0 ¼ 5.3� 10�4 Pa�1 m�1 (center) and C0 ¼ 2.4� 10�4 Pa�1

m�1 (lower). The ultrasound burst center frequency is 340 kHz, and the

peak negative pressure at the focus in the absence of the stone is 4.5 MPa.

The image represents mechanical stresses in the stone 14 ls after the burst

enters the stone.
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visualization of anisotropy using polarized light, which is

the subject of photoelasticity. Photoelastic imaging is a con-

venient direct method for studying mechanical stresses in

optically transparent elastic bodies. This approach allows

one not only to visualize the stress field, but also to estimate

the absolute stress level by measuring the change in light

intensity or, at higher stress levels, by counting the number

of fringes in the image. Since the stress is a tensor, that is, it

consists of many components, it is important to know what

is represented by the photoelastic image, which is a specific

projection of a complex 3D distribution of stress. As shown

in Fig. 6, the simulation results indicate that circular polari-

scope images are best correlated with the maximum shear

stress distribution. Note that in the case of shadowgraphy,

the corresponding pattern will show the distribution of the

displacement divergence (second column in Fig. 6) because

it describes the density changes.

It is difficult to directly relate the image to the 3D tran-

sient stress distribution that occurs in the sample volume

during the propagation of an ultrasonic pulse. Theoretical

analysis is often based on simplified approaches, such as ray

tracing, the assumption of a plane wave, the approximation

of a thin uniformly stressed plate, and others.8,9 The finite-

difference simulation allows a more accurate and objective

description of the phenomenon of propagation of electro-

magnetic waves in the presence of transient stress created

by longitudinal and shear waves caused by an acoustic pulse

incident on the sample from an immersion liquid. In the pre-

sent work, such an approach was developed and illustrated

in the case of axial symmetry of the acoustic field. However,

the description is more general and can be applied to the

general 3 D case. Applied to the fragmentation of kidney

stones in burst wave lithotripsy, the model captures several

features observed experimentally.9 For instance, the

generation and convergence of shear waves from the proxi-

mal corners of the model can be seen in Figs. 6 and 8. Also

captured is the generation of periodic stresses within the cyl-

inder near the center of the stone. Interestingly, there appear

to be some differences near the distal end of the stone,

where the experiment shows continuous propagation of

the periodic mode, but the model shows an obscuring of the

mode. This may be due to the absence of attenuation in the

finite-difference simulation or non-axisymmetric effects in

the experiment that cannot be captured in the present model

but may be present in a full 3D simulation. Nevertheless, the

model can further aid in interpreting the photoelastic images

and their relationship to the stress fields.

Photoelastic imaging has several limitations. As already

mentioned, it can only be used in homogeneous optically

transparent samples. In addition, it shows only a specific 2D

projection of a 3D stress field and is sensitive to only part of

the stress. However, the importance of such a visualization

is greater than the visualization itself if the polariscope mea-

surements are combined with a finite-difference theoretical

model for elastic waves. As shown in this paper, the theoret-

ical parameters of the model can be checked and tuned

based on the polariscope data, for example, the photoelastic

constant, elastic wave velocities, and absorption coefficients

can be verified. After checking the model, it can be used to

calculate the full stress and strain tensors. Such a polari-

scopic adjustment of the numerical model makes the latter

an accurate tool for studying elastic waves in kidney stones

or other samples. In shock wave or burst wave lithotripsy, it

can be used to interpret the mechanisms of stone fragmenta-

tion and, on the basis of this, to create more advanced devi-

ces for ultrasonic stone comminution.
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