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A theoretical approach is developed to calculate the radiation force of an arbitrary acoustic beam

on an elastic sphere in a liquid or gas medium. First, the incident beam is described as a sum of

plane waves by employing conventional angular spectrum decomposition. Then, the classical solu-

tion for the scattering of a plane wave from an elastic sphere is applied for each plane-wave compo-

nent of the incident field. The net scattered field is expressed as a superposition of the scattered

fields from all angular spectrum components of the incident beam. With this formulation, the inci-

dent and scattered waves are superposed in the far field to derive expressions for components of the

radiation stress tensor. These expressions are then integrated over a spherical surface to analytically

describe the radiation force on an elastic sphere. Limiting cases for particular types of incident

beams are presented and are shown to agree with known results. Finally, the analytical expressions

are used to calculate radiation forces associated with two specific focusing transducers.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4773924]
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I. INTRODUCTION

The acoustic radiation force on a spherical scatterer has

been investigated for many decades. The first series of

papers was devoted to the case of plane1–4 or spherical5–8

incident waves. In practice, the incident acoustic field fre-

quently has the form of a beam that cannot be considered as

a plane or spherical wave. If the size of the spherical scat-

terer is much smaller than the beam width, plane-wave

theory can still be used if a beam-pattern correction is

included. However, for high-frequency focused transducers,

the incident field is not necessarily uniform on the scale of

the scatterer diameter, which makes such a quasi-plane wave

approach incorrect. The case of narrow beams is more diffi-

cult to analyze theoretically, which may explain why most

later publications were limited to analyzing the radiation

force on a sphere positioned on the axis of axisymmetric

beams.9–11 The latest series of publications on this subject

has dealt with radiation force on the axis of Bessel beams

that are either axisymmetric (zero-order beam)12 or angu-

larly dependent (high-order beams).13,14

In one important special situation, the radiation force on

a sphere can be analytically expressed for an acoustic field

of an arbitrary structure. This is the case of a sphere with a

diameter much smaller than the wavelength. For such a

small scatterer, it is sufficient to consider only the monopole

and dipole terms in the diffracted field. Under this approxi-

mation, the radiation force F on a small sphere can be

expressed as F ¼ �rU, where the potential U is a known

function of mean square fluctuations of the acoustic pressure

and particle velocity at the point where the scatterer is

located.15

For many applications, it is desirable to have a formula-

tion for the radiation force produced by arbitrary incident

waves, regardless of the acoustic beam structure or the size

and position of the scatterer. When an incident wave acts on

a scatterer, radiation force appears as a result of both the

incident and scattered waves. Therefore, the force calcula-

tion is based on the solution of the scattering problem. There

are several approaches for calculating the scattered field.

The most direct way is to numerically compute the acoustic

field using a straightforward technique such as finite differ-

ences. The calculated acoustic field can then be used to cal-

culate the radiation force on a given scatterer.16,17 Such an

approach is very powerful because it can be implemented

for any acoustic field and a scatterer of any shape or size.

However, at present this approach remains computationally

challenging and is practical only for axisymmetric or two-

dimensional (2D) geometries. Accordingly, analytical calcu-

lations are still of interest because they can help to provide

fast, precise, and easy-to-implement algorithms for calculat-

ing radiation forces. In particular, analytic methods are espe-

cially effective for cases of spherical objects in fluids, for

which scattering theory is well-developed. For instance, a

multipole expansion can be used to represent the acoustic

field,18,19 which makes it possible to express the radiation

force for an arbitrary beam. In Ref. 20 such an approach was

used to calculate the radiation force on a rigid sphere from a

plane wave propagating in an arbitrary direction.

The current paper describes an approach that allows

derivation of analytical expressions for the radiation force
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components due to the incidence of an arbitrary acoustic

beam on any spherical scatterer. First, the incident wave is

decomposed into a sum of plane waves by the conventional

angular spectrum formulation. Then, the known expression

for scattering of a plane wave from an elastic sphere (i.e., the

spherical harmonics series) is applied for each plane-wave

component of the incident field. The net scattered field is

expressed as a superposition of the scattered fields from all

angular spectrum components of the incident beam. Next,

the full acoustic field described by the superposition of inci-

dent and scattered waves is considered at an infinitely large

distance from the scatterer (in the far field), where corre-

sponding expressions are derived for the components of the

radiation stress tensor. Finally, these expressions are inte-

grated over a far field spherical surface to provide analytic

formulas for the radiation force components on the sphere.

Various limiting cases for several types of incident waves

are presented and are shown to agree with results known

from the literature. In addition, the obtained expressions are

used to calculate radiation forces for ultrasound beams of

two specific focusing transducers.

II. BASIC EQUATIONS

A. On the radiation force calculation

If the acoustic field is known, the radiation force can be

calculated for a given scatterer. In calculating acoustic fields

and radiation force in this paper, we assume that the medium

is an ideal fluid where the effects of viscosity and thermal

conductivity are neglected. Within the second-order approxi-

mation, radiation force is known to be expressed in terms of

quantities of first order only21

F ¼ �
ðð
R

dF

dR
dR; (1)

dF

dR
¼ q~v2

2
� ~p2

2qc2

� �
n� q~v ð~v � nÞ

� �
; (2)

where R is any fixed surface enclosing the scatterer, q and c
are the fluid density and sound velocity, ~p and ~v are the

acoustic pressure and particle velocity, ~v2 ¼ ~v � ~v, and n is

the external unit normal vector for the surface element d R.

The angular brackets h�i denote averaging over the sound

wave period. The expressions for radiation force F in Eqs.

(1) and (2) come from linear acoustic theory and consider-

ably facilitate radiation force calculations. If the incident

beam is known, the problem is reduced to modeling the lin-

ear scattering.

Throughout this paper the acoustic field is considered to

be a harmonic wave

~p ¼ p

2
e�ixt þ p�

2
eixt; ~v ¼ v

2
e�ixt þ v�

2
eixt; (3)

where p and v are the pressure and velocity complex ampli-

tudes, the asterisks denote complex conjugates, and x=ð2pÞ
is the frequency. Substituting expressions (3) into Eq. (2), it

follows that

dF

dR
¼ qjvj2

4
� jpj

2

4qc2

 !
n� q

2
Re½v�ðv � nÞ�: (4)

Here Re½ � � indicates the real part of the term in brackets,

jvj2 ¼ v � v�, and jpj2 ¼ pp�. Note also that the linearized

momentum equation q @~v=@ t ¼ �r~p can be used to express

the velocity amplitude as

v ¼ rp=ðiqxÞ; (5)

which implies that the spatial dependence of the pressure

amplitude p ¼ pðrÞ contains all necessary information about

the acoustic field.

Radiation force is a result of a change in wave momen-

tum due to scattering at an obstacle. The rate of momentum

change, averaged over the wave period, equals the radiation

force. Because wave momentum is conserved while the

wave propagates in an inviscid fluid, the surface R in Eq. (1)

can be arbitrary.15 In several papers on radiation force, the

integration surface used was the surface of the scatterer (e.g.,

see Refs. 1 and 2). Another convenient possibility is to place

the integration surface in the far field, where the expressions

for ~p and ~v are simplified.11,12,15 In the current paper, the lat-

ter approach is employed: As in the mentioned publications,

the surface R is taken to be a spherical surface of infinitely

large radius. The vector quantity dF=dR, which is used in

Eq. (1) for calculating radiation force, is defined from the

acoustic field parameters as expressed in Eq. (2). The chal-

lenge is therefore determining the scattered field. Next, we

describe the calculation of the scattered field and conversion

of that field to radiation force.

B. Scattering and radiation force due to an
axisymmetric field—case of a plane wave

The theoretical solution for the scattering of a plane

wave from an elastic sphere is a foundation for the approach

considered in the current paper. However, the description

here will be brief as it summarizes derivations presented

elsewhere.11,22–24

In the scattering problem, the pressure outside the scat-

terer can be considered as a superposition of incident and

scattered waves

p ¼ pi þ ps: (6)

If the problem is axisymmetric, it is convenient to represent

the incident wave as a series of spherical harmonics:

pi ¼
X1
n¼0

QnPnðcos hÞjnðkrÞ; (7)

where Pnð�Þ and jnð�Þ are Legendre polynomials and spheri-

cal Bessel functions, respectively, k ¼ x=c is the wavenum-

ber, r and h are spherical coordinates, and the coefficients

Qn depend on the specific structure of the incident wave.

Consider, for instance, plane-wave scattering. A plane wave

is axially symmetric relative to the axis oriented along the
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propagation direction. In this case, the incident pressure field

can be expressed as

p
ðplane waveÞ
i ¼ p0eikz ¼ p0eikr cosh: (8)

Here p0 is the wave amplitude and z is the distance along the

propagation direction (z ¼ r cos h). The theory of a plane

wave scattering from a sphere is presented in many publica-

tions—e.g., see Refs. 22 and 23. The series coefficients Qn

can be defined as follows:

Qðplane waveÞ
n ¼ p0inð2nþ 1Þ: (9)

A plane wave is a particular case of an axisymmetric

wave. For other cases of axially symmetric fields, Eq. (7)

remains valid but the coefficients Qn are defined differently.

For instance, if the incident wave is a spherical wave,

pi ¼ AeikR=R, originating from a point source located on the

z axis at z ¼ �r0, then

Qðspherical waveÞ
n ¼ A � ikð�1Þnð2nþ 1Þhð1Þn ðkr0Þ; (10)

where hð1Þn ð�Þ are spherical Hankel functions of the first kind.

For the incident wave described by Eq. (7), the scattered

wave can be expressed as a superposition of outgoing waves

described by the following series:

ps ¼
X1
n¼0

Qncnhð1Þn ðkrÞPnðcos hÞ: (11)

Here the coefficients cn depend on the boundary conditions

on the sphere’s surface at r ¼ a. These conditions are a con-

tinuity of normal velocity and normal stress, and the absence

of tangential stress (because the fluid is assumed to be invis-

cid). For an isotropic elastic sphere22,23

cn ¼ �
CnjnðkaÞ � ka jn

0ðkaÞ
Cnh

ð1Þ
n ðkaÞ � ka h

ð1Þ
n
0ðkaÞ

; (12)

where Cn are real numbers that depend on the sphere’s mate-

rial properties and the primes indicate differentiation with

respect to the argument. The Cn’s are defined as

Cn ¼
q kt

2a2

2q�

andn þ bnvn

angn þ bnen
; (13)

where the following notations are used: an ¼ jnðklaÞ
�kla jn

0ðklaÞ, bn ¼ ðn2 þ n � 2Þ � jnðktaÞ þ kt
2a2 jn

00ðktaÞ,
vn¼klajn

0ðklaÞ, dn ¼ 2nðn þ 1ÞjnðktaÞ, en¼k2
l a2½jnðklaÞr=

ð1�2rÞ�jn
00ðklaÞ�, gn¼2nðnþ1Þ½jnðktaÞ�ktajn

0ðktaÞ�. Also,

a is the radius of the sphere, q� is its density, r¼ðc2
l =2�c2

t Þ=
ðc2

l �c2
t Þ is Poisson’s ratio, cl and ct are longitudinal and

shear wave velocities of the sphere material, and kl¼x=cl

and kt¼x=ct are the corresponding wavenumbers.

Note that in the absence of absorption and for each

index n, the complex coefficient cn from Eq. (12) can be

expressed through a coefficient sn ¼ 1þ 2cn, which is uni-

modular: jsnj ¼ 1. The property jsnj ¼ 1 directly follows

from Eq. (12), which gives for real wavenumbers k the

following representation: sn ¼X�n=Xn, where Xn ¼Cnhð1Þn ðkaÞ
�kahð1Þn

0 ðkaÞ. In fact, the coefficient sn is a reflection coeffi-

cient for the incoming wave �hð2Þn ðkrÞPnðcoshÞ described by

the nth spherical harmonic of the full solution described by

Eqs. (6), (7), and (11). The corresponding outgoing wave

�hð1Þn ðkrÞPnðcoshÞ (i.e., the wave reflected from the sphere)

in the absence of dissipation has to have the same energy,

which sets the condition jsnj ¼ 1. Therefore, the complex

coefficient cn is expressed through a single real coefficient cn,

which is the phase of the unimodular scattering function

sn ¼ eicn .

In the axisymmetric case, the radiation force in aligned

Cartesian coordinates has only an axial component:

F ¼ ð0; 0; FzÞ. It is convenient to calculate the radiation

force by integrating along a sphere of radius r and letting

r !1. Then Eqs. (1) and (4) yield

Fz ¼ �
p

2qc2

ðp

0

jrpj2 þ 1

k2
r
@p

@r

����
����
2

 !�����
r!1

sin h cos h dh:

(14)

Using Eqs. (6), (7), and (11), and the asymptotes of Bessel

and Hankel function as kr !1, Eq. (14) becomes

Fz ¼�
p

4qc2k2

X1
n¼0

X1
m¼0

QnQ�m

� fim�nð1þ 2cnÞð1þ 2c�mÞ þ i�ðm�nÞg

�
ðp

0

Pnðcos hÞPmðcos hÞsin h cos h dh : (15)

After using recurrence properties and the orthogonality of

Legendre polynomials, the following expression can be

derived:

Fz ¼
2p

qc2k2

X1
n¼0

ðnþ 1Þ
ð2nþ 1Þð2nþ 3Þ

�Im fQnQ�nþ1ðcn þ c�nþ1 þ 2cnc�nþ1Þg: (16)

Here Imf � g means the imaginary part of the quantity in

brackets. This result is in accord with Eqs. (24)–(26) of Ref.

11. As a specific example of an axisymmetric field, consider

a plane wave propagating along the axis. Then Qn is defined

by Eq. (9), and

FðplanewaveÞ
z ¼� 2pp2

0

qc2k2

X1
n¼0

ðnþ1ÞReðcnþc�nþ1þ2cnc�nþ1Þ:

(17)

C. Scattering of an arbitrary beam

In this paper, the goal is to determine the scattered field

and the resulting radiation force for an arbitrary beam inci-

dent on an elastic sphere. Similar to the specific cases al-

ready done in Sec. II B, in this section first we calculate the

scattered field for the arbitrary case. The arbitrary beam is

treated as a sum of plane waves.
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Consider an acoustic source radiating a beam along the z
axis. The source is assumed to be time-harmonic in that the

radiated wave is described by Eq. (3). The acoustic field can

be characterized by a 2D pressure distribution at some x y
plane in front of the source. Let us choose the origin of the

coordinate system at the center of the spherical scatterer. The

incident acoustic field is then presumed to be known at z ¼ 0

so that the complex pressure amplitude is a known function

pi

��
z¼0
¼ piðx; y; 0Þ: (18)

Note that this function can be calculated from the source

vibration pattern using a method such as the Rayleigh

integral.25,26

The scattering problem in the case of an arbitrary inci-

dent field does not have a straightforward solution and gen-

erally requires several steps to implement.27 The linearity of

the problem provides a way around this difficulty as the inci-

dent beam can be represented by a superposition of elemen-

tary waves for which the solution to the scattering problem

is known. There are several alternative descriptions of these

waves. For instance, the incident wave can be represented as

a series of spherical harmonics;18,19 the advantage in such an

approach is that each spherical harmonic of the incident

wave gives rise to the same spherical harmonic of the scat-

tered wave [e.g., compare Eqs. (7) and (11)]. Another possi-

bility is a superposition of elementary spherical waves in the

form of the Rayleigh integral, which is a mathematical for-

mulation of the classical Huygens–Fresnel principle. The

problem of the scattering of a spherical wave from an elastic

sphere has a known solution given by Eqs. (7), (10), and

(11), and thus can be used to calculate the scattered field for

any incident beam. The third alternative is to represent the

incident beam in the form of the superposition of plane

waves of different propagation directions. The corresponding

representation is possible because of the Fourier theorem

and is known as the angular spectrum method. Again, each

elementary wave scatters at the elastic sphere in a known

fashion [see Eqs. (7), (9), and (11)] and a superposition of

such scattered fields provides the solution for any incident

wave. Among the three approaches described above, the last

one benefits computationally from the fact that all elemen-

tary waves are identical (plane waves) and differ only in

their direction. Accordingly, the angular spectrum approach

is adopted in the current paper.

The superposition of plane waves composing the inci-

dent field has the following form:

piðx;y;zÞ¼
1

4p2

�
ðð

k2
xþk2

y	k2

dkxdkySðkx;kyÞeikxxþikyyþi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
z:

(19)

Here, the integration region k2
x þ k2

y 	 k2 is chosen to

neglect the evanescent waves that are exponentially decay-

ing away from the source. The angular spectrum Sðkx; kyÞ
characterizes the plane waves’ amplitudes. It is expressed

from the initial pressure distribution Eq. (18)

Sðkx; kyÞ ¼
ðþ1
�1

ðþ1
�1

dxdy piðx; y; 0Þ e�ikxx�ikyy: (20)

Now consider an elementary plane wave p
ðkÞ
i ðx; y; zÞ

¼Sðkx; kyÞ eikxxþikyyþi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
z¼Sðkx; kyÞ eik�r from Eq. (19).

It has the wave vector k ¼ ðkx ; ky ; kzÞ with

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x � k2
y

q
:

Note that jkj ¼ k ¼ x=c. The vector k components can be

characterized by the spherical angle hk and polar angle uk:

kx ¼ k sin hk cos uk;

ky ¼ k sin hk sin uk;

kz ¼ k cos hk: (21)

With consideration of the beam propagation direction, the

following expressions follow from Eq. (21): cos hk

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðk2

x þ k2
yÞ=k2

q
, sinhk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos2 hk

p
, and uk

¼ arctanðky=kxÞ. Similarly, the observation point r¼ðx;y;zÞ
can be described using spherical coordinates

x ¼ r sin h cos u;

y ¼ r sin h sin u;

z ¼ r cos h: (22)

From here, cos h ¼ z=r, sin h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos2 h
p

, and u
¼ arctanðy=xÞ. If we define c to be the angle between the vec-

tors r and k, then k � r ¼ k r cos c. From here and Eqs. (21)

and (22)

cos c ¼ cos hk cos hþ sin hk sin h cos ðuk � uÞ: (23)

With use of the angle c, each elementary plane wave

p
ðkÞ
i ðx; y; zÞ ¼ Sðkx; kyÞ eikr cos c has a form suitable for solving

the scattering problem. According to Eqs. (7) and (9), the

incident plane wave p
ðkÞ
i has the following representation:

p
ðkÞ
i ðx; y; zÞ ¼ Sðkx; kyÞ

X1
n¼0

inð2nþ 1ÞPnðcos cÞjnðkrÞ:

(24)

From Eq. (11), the corresponding scattered wave is

pðkÞs ðx; y; zÞ ¼ Sðkx; kyÞ
X1
n¼0

inð2nþ 1ÞcnPnðcos cÞhð1Þn ðkrÞ;

(25)

where the scattering coefficients cn are expressed by Eqs. (12)

and (13). Note that the superscript ðkÞ in the notation of p
ðkÞ
s

indicates the wave vector of the corresponding incident plane

wave p
ðkÞ
i (the scattered wave itself is not a plane wave).

It is desirable to write Eqs. (24) and (25) not through the

auxiliary angle c but directly through the angles h and u.

This can be accomplished with the Legendre addition theo-

rem.28 The theorem states that for cos c of Eq. (23) the

following equality is valid:
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Pnðcos cÞ ¼ 4p
2nþ 1

Xn

m¼�n

Ynmðh;uÞY�nmðhk;ukÞ: (26)

Here, the spherical harmonics Ynmðh;uÞ are expressed in

terms of associated Legendre polynomials Pm
n ðcos hÞ as

Ynmðh;uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

4p
ðn� mÞ !
ðnþ mÞ !

s
Pm

n ðcos hÞ eimu; (27)

where

Pm
n ðxÞ ¼ ð�1Þmð1� x2Þm=2 dmPnðxÞ

dxm
: (28)

In Eq. (27) it is supposed that m 
 0. For the negative indi-

ces m < 0, the following relation should be used:

Yn;�mðh;uÞ ¼ ð�1ÞmY�n mðh;uÞ: (29)

With Eq. (26), the formulas in Eqs. (24) and (25) become

p
ðkÞ
i ðx; y; zÞ ¼ 4p Sðkx; kyÞ

�
X1
n¼0

injnðkrÞ
Xn

m¼�n

Ynmðh;uÞY�nmðhk;ukÞ;

(30)

pðkÞs ðx;y;zÞ¼ 4p Sðkx;kyÞ

�
X1
n¼0

incnhð1Þn ðkrÞ
Xn

m¼�n

Ynmðh;uÞY�nmðhk;ukÞ:

(31)

In accordance with Eq. (19), the full incident and scattered

pressure fields are obtained from Eqs. (30) and (31) by multi-

plying p
ðkÞ
i and p

ðkÞ
s by the factor dkxdky=ð4p2Þ and integrat-

ing over the region k2
x þ k2

y 	 k2. This gives

pi ¼
1

p

X1
n¼0

injnðkrÞ
Xn

m¼�n

Ynmðh;uÞ

�
ð ð

k2
xþk2

y	k2

dkxdkySðkx;kyÞY�nmðhk;ukÞ;
(32)

ps ¼
1

p

X1
n¼0

incnhð1Þn ðkrÞ
Xn

m¼�n

Ynmðh;uÞ

�
ð ð

k2
xþk2

y	k2

dkxdkySðkx;kyÞY�nmðhk;ukÞ:
(33)

We now introduce the following notation:

Hnm ¼
ð ð

k2
xþk2

y	k2

dkxdkySðkx; kyÞY�nmðhk;ukÞ: (34)

Note that here jmj 	 n, i.e., it is supposed that Hnm ¼ 0 for

jmj > n. The array of constants Hnm fully defines the incident

acoustic beam and does not depend on the scattering sphere’s

radius or material properties. The resulting complex amplitude

of the total pressure p ¼ pi þ ps is therefore

p ¼ 1

p

X1
n¼0

in jnðkrÞ þ cnhð1Þn ðkrÞ
n oXn

m¼�n

HnmYnmðh;uÞ:

(35)

The corresponding expressions for particle velocity com-

ponents can then be derived using Eq. (5). In spherical

coordinates having basis vectors er, eu, and eh, Eq. (5)

becomes

v ¼ vrer þ vueu þ vheh

¼ 1

iqck
er
@p

@r
þ eu

1

r sin h
@p

@u
þ eh

1

r

@p

@h

� �
: (36)

Equation (35) then implies that

vr¼
1

iqcp

X1
n¼0

in jn
0ðkrÞþcnhð1Þn

0ðkrÞ
h iXn

m¼�n

HnmYnmðh;uÞ:

(37)

Expressions for vu and vh are similar but more cumbersome.

They will not be used in the calculation of radiation force

and are not presented here.

Equations (35) and (37) are known representations of

the solution of the Helmholtz equation in spherical coordi-

nates. The new result here is that the weights of the corre-

sponding spherical harmonics Hnm are expressed by

Eq. (34) through the angular spectrum of the incident

beam. Note that the values Hnm are independent of the scat-

terer. The mechanical properties and diameter of the spheri-

cal scatterer enter into the solution through the coefficients

cn, which are defined in the theory of plane-wave scattering

by Eq. (12).

D. Radiation force of an arbitrary beam

Now the newly obtained expressions for the scattered

field for an arbitrary beam can be used to obtain the corre-

sponding radiation force on a sphere. The radiation force cal-

culation is based on Eqs. (1) and (4). Consider a spherical

surface R having radius r. The unit vector outwardly normal

to such a sphere is n ¼ er. The force components acting on a

surface element d R then become

dFx

dR
¼ D sin h cos uþ q

2
Reðvrv

�
uÞ sin u

� q
2

Reðvrv
�
hÞcos h cos u;

dFy

dR
¼ D sin h sin u� q

2
Reðvrv

�
uÞcos u

� q
2

Reðvrv
�
hÞcos h sin u;

dFz

dR
¼ D cos hþ q

2
Reðvrv

�
hÞsin h; (38)

where
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D ¼ q
4
j vuj2 þ j vhj2 � j vrj2
� 	

� jpj
2

4qc2
: (39)

When the radius of the integration surface goes to in-

finity in the far field, these expressions can be simplified.

The corresponding behavior of pressure and velocity fol-

lows from the asymptotes hð1Þn ð1Þj1!1 ! ð�iÞnþ1ei1=1 and

jnð1Þj1!1 ! ½ð�iÞnþ1ei1 þ inþ1e�i1�=ð21Þ. From Eqs. (35)

and (37), it follows that

p
��
r!1!�i

1

2pkr

X1
n¼0

ð1þ2cnÞeikr�ð�1Þne�ikr

 �

�
Xn

m¼�n

HnmYnmðh;uÞ; (40)

vr

��
r!1!

1

i2pqckr

X1
n¼0

ð1þ2cnÞeikrþð�1Þne�ikr

 �

�
Xn

m¼�n

HnmYnmðh;uÞ: (41)

It is seen that p ¼ Oðr�1Þ and vr ¼ Oðr�1Þ, where O ð � Þ
means “on the order of.” Without derivation of the angular

component of the particle velocity, it is seen from Eq. (36)

that vu ¼ Oðr�2Þ and vh ¼ Oðr�2Þ. The surface element

d R ¼ r2 sin h du dh � r2, and therefore as r ! 1 only the

term proportional to
�
jpj2=ðqc2Þ þ q j vrj2



dR does not van-

ish in the expression for dF ¼ ðdF=dRÞdR. As a result, in

the far field the force components reduce to the following:

dFx

dR

���
r!1

¼ �E sin h cos u ;

dFy

dR

���
r!1

¼ �E sin h sin u ;

dFz

dR

���
r!1

¼ �E cos h ; (42)

where E is acoustic energy density

E ¼ jpj
2

4qc2
þ q jvrj2

4
: (43)

From Eqs. (40) and (41) it follows that

E ¼ 1

8p2qc2k2r2

X1
n¼0

X1
n0¼0

½ð1þ 2cnÞð1þ 2c�n0 Þ þ ð�1Þnþn0 �

�
Xn

m¼�n

Xn0

m0¼�n0
HnmH�n0m0Ynmðh;uÞY�n0m0 ðh;uÞ: (44)

Finally, Eq. (1) for the radiation force gives

F ¼ r2

ðp

0

sin h dh
ð2p

0

du
dF

dR

����
r!1

; (45)

where dF=dR jr!1 is expressed by Eqs. (42). Thus, the

derivation of the force is reduced to the integration of the

spherical functions. This can be accomplished based on

the orthogonality and recurrence equalities that exist for the

associated Legendre polynomials.28 The corresponding alge-

bra is omitted here. Integration of Eq. (45) results in the fol-

lowing expressions for the components of radiation force:

Fx ¼
1

8p2qc2k2
Re

X1
n¼0

Wn

Xn

m¼�n

AnmðHnmH�nþ1;mþ1

(

�Hn;�mH�nþ1;�m�1Þ
)
; (46)

Fy¼
1

8p2qc2k2
Im

X1
n¼0

Wn

Xn

m¼�n

AnmðHnmH�nþ1;mþ1

(

þHn;�mH�nþ1;�m�1Þ
)
; (47)

Fz ¼ �
1

4p2qc2k2
Re

X1
n¼0

Wn

Xn

m¼�n

Bnm HnmH�nþ1;m

( )
:

(48)

Here the following notations are introduced:

Wn ¼ ð1þ 2cnÞð1þ 2c�nþ1Þ � 1; (49)

Anm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ mþ 1Þðnþ mþ 2Þ
ð2nþ 1Þð2nþ 3Þ

s
; (50)

Bnm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ mþ 1Þðn� mþ 1Þ
ð2nþ 1Þð2nþ 3Þ

s
: (51)

Earlier, it was mentioned that for the scattering coefficients

cn in the case of a nonabsorbent scatterer (which is supposed in

this paper) the following expression is valid: 1þ 2cn ¼ sn

¼ eicn , where cn is some real number. Therefore, 1þWn

¼ eiðcn�cnþ1Þ has a similar expression in the form of a phase fac-

tor. Note that Wn ¼ 2ðcn þ c�nþ1 þ 2cnc�nþ1Þ as defined in Eq.

(48) is in accord with Eq. (17), which was derived earlier for

axisymmetric beams. Note also that the presented equations for

the force components should be equivalent to Eqs. (11)–(13) in

Ref. 20 but the exact veracity has not yet been checked.

III. SPECIFIC CASES

Equations (46)–(51) are the main result of the current

paper. In this section it will be shown that in simplified situa-

tions, these equations can be reduced to known expressions

from the literature.

A. Radiation force of a plane wave

Consider first the simplest case of a plane wave propagat-

ing along the z-axis: piðx; y; 0Þ ¼ p0. Then Eq. (20) provides

Sðkx; kyÞ ¼ p0ð2pÞ2dðkxÞdðkyÞ. Therefore, the integration in

Eq. (34) becomes trivial: Hnm ¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

p
2p3=2d0m. Here

the relation Pm
n ð1Þ ¼ d0m, where dnm is the Kronecker delta,

was used. The resulting coefficients Hnm lead to Fz ¼ �pp2
0=

ðqc2k2ÞRef
P1

n¼0ðnþ 1Þ½ð1þ 2cnÞð1þ 2c�nþ1Þ � 1�g, which

666 J. Acoust. Soc. Am., Vol. 133, No. 2, February 2013 O. A. Sapozhnikov and M. R. Bailey: Radiation force on an elastic sphere

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



coincides with Eq. (17) as well as results from Refs. 11,

22, and 23.

Consider next a plane wave having the following

wave vector: k ¼ kðsin h0 cos u0 ; sin h0 sin u0 ; cos h0Þ. In

such a situation, Eq. (20) gives Sðkx; kyÞ ¼ p0ð2pÞ2dðkx

�k sin h0 cos u0Þdðky � k sin h0 sin u0Þ, which is an inclined

plane wave. Then Eq. (34) yields Hnm ¼ p0ð2pÞ2Y�nmðh0;
u0Þ and Eqs. (46)–(48) become

Fx ¼
2p2

0p
2

qc2k2
Re

X1
n¼0

Wn

Xn

m¼�n

Anm½ Ynþ1;mþ1ðh0;u0Þ
(

� Y�nm

�
h0;u0Þ þ Ynmðh0;u0ÞY�nþ1;mþ1ðh0;u0Þ �

)
;

(52)

Fy ¼
2p2

0p
2

qc2k2
Im

(X1
n¼0

Wn

Xn

m¼�n

Anm



Ynþ1;mþ1ðh0;u0Þ

� Y�nmðh0;u0Þ�Ynmðh0;u0ÞY�nþ1;mþ1ðh0;u0Þ
�)
;

(53)

Fz ¼
2p2

0p
2

qc2k2
Re

(X1
n¼0

Wn

Xn

m¼�n

Bnm Y�nmðh0;u0Þ

� Ynþ1;mðh0;u0Þ
)
: (54)

Using Eq. (27), these expressions can be rewritten in terms

of the associated Legendre polynomials

Fx¼cosu0

p2
0p

qc2k2

X1
n¼0

Re


ð1þ2c�nÞð1þ2cnþ1Þ�1

�
�Gnðcos h0Þ ; (55)

Fy¼sinu0

p2
0p

qc2k2

X1
n¼0

Re½ð1þ2c�nÞð1þ2cnþ1Þ�1�

�Gnðcos h0Þ; (56)

Fz ¼�
p2

0p
qc2k2

X1
n¼0

ðnþ 1ÞRe½ð1þ 2c�nÞð1þ 2cnþ1Þ � 1�

�Rnðcos h0Þ;
(57)

where the following notations have been introduced:

GnðxÞ ¼P0
nðxÞP1

nþ1ðxÞ þ
Xn

m¼1

ðn� mÞ !
ðnþ mÞ ! Pm

n ðxÞ ½Pmþ1
nþ1 ðxÞ

�ðn� mþ 1Þðn� mþ 2ÞPm�1
nþ1 ðxÞ �;

(58)

RnðxÞ ¼P0
nðxÞP0

nþ1ðxÞ

þ 2
Xn

m¼1

ðn� mþ 1Þ
ðnþ 1Þ

ðn� mÞ !
ðnþ mÞ ! Pm

n ðxÞPm
nþ1ðxÞ:

(59)

The recurrence relations for the associated Legendre

polynomials28 allow Eqs. (58) and (59) to be reduced to the

following simple expressions: GnðxÞ ¼ �ðnþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

and RnðxÞ ¼ x. Then Eqs. (55)–(57) give the expected result

F¼� pp2
0

qc2k2
Re

(X1
n¼0

ðnþ 1Þ½ð1þ 2cnÞð1þ 2c�nþ1Þ � 1�
)

� k

k
;

(60)

in which the force is directed along the wave vector. More-

over, the absolute value of the force is the same for all propa-

gation directions and coincides with the coaxial plane-wave

result [see Eq. (17) and Refs. 11, 22, and 23].

B. Radiation force due to Bessel beams

Bessel beams represent a family of “non-diffracting”

solutions of the Helmholtz equation

piðx; y; zÞ ¼ p0eikz cos bJMðkr? sin bÞ eiMu; (61)

where r? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, u ¼ arctan ðy=xÞ, b is a characteristic

angle, and M is the order of the Bessel beam. Equation (20)

gives the following formula for the angular spectrum of the

beam described by Eq. (61):

Sðkx; kyÞ ¼ 2p p0

dðk? � k sin b Þ
k?

i�MeiMuk : (62)

Here k? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
and uk ¼ arccos ðkx=k?Þ. The delta-

function in Eq. (62) simplifies the integration in Eq. (34)

Hnm ¼ i�MdMm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�MÞ !
ðnþMÞ !

s
�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
p

� 2p3=2p0Pm
n ðcosbÞ:

As earlier, dnm is the Kronecker delta here. Therefore,

HnmH�nþ1;mþ1 � Hn;�mH�nþ1;�ðmþ1Þ ¼ 0 and HnmH�nþ1;mþ1

þHn;�mH�nþ1;�ðmþ1Þ ¼ 0, implying that the lateral force com-

ponents vanish ðFx ¼ Fy ¼ 0Þ : To evaluate Fz, it can be

written that

HnmH�nþ1;m ¼ dMm � 4p3p2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þð2nþ 3Þ

p ðn�MÞ !
ðnþMÞ !

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1�MÞ
ðnþ 1þMÞ

s
PM

n ðcos bÞ � PM
nþ1ðcos bÞ:

Note that HnM ¼ 0 for M > n so that the summation in

Eq. (48) should start from n ¼ M. This gives

Fz ¼�
pp2

0

qc2k2

X1
n¼M

ðn�M þ 1Þ !
ðnþMÞ ! PM

n ðcos bÞ

� PM
nþ1ðcos bÞRe½ ð1þ 2cnÞð1þ 2c�nþ1Þ � 1 �:

(63)

This expression coincides with that obtained in Ref. 12 for

the zeroth-order Bessel beam, as well as with the general
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expression derived in Ref. 14 for any high-order Bessel

beam.

C. Radiation force of an arbitrary beam on a small
spherical scatterer (ka � 1)

To calculate the radiation force for a small scatterer with

ka� 1, it is necessary to first approximate the scattering

coefficients cn given by Eqs. (12) and (13). Let us consider

the leading terms in the approximation for the auxiliary coeffi-

cients Cn. According to Eq. (13), in the limit kta� 1 and

kla� 1 the coefficients Cn can be approximated as follows:

C0 � �q=q� ðklaÞ2=3� 4c2
t =c2

l , C1 � q=q�, Cn>1 � const

�q=q�ðktaÞ2. The case of a fluid sphere should be considered

separately because then kta!1. When kla� 1, for the

fluid scatterer, Eq. (13) gives C0 � �q=q� ðklaÞ2=3 and

Cn>0 � nðq=q�Þ so that C0 and C1 have the same approxima-

tions for both solid and fluid spheres. In contrast, Cn>1 is sen-

sitive to the solid or fluid nature of the sphere.

Consider now approximations for cn. From the aforemen-

tioned approximations for Cn, the following leading terms for

the real and imaginary parts of cn can be derived from Eq. (12):

c0 � �
ðkaÞ6

9
f 2
1 � i

ðkaÞ3

3
f1; (64)

c1 � �
ðkaÞ6

36
f 2
2 þ i

ðkaÞ3

6
f2; (65)

cn>1 ¼ O ðkaÞ4nþ2
n o

þ i O ðkaÞ2nþ1
n o

: (66)

Here the following constants f1 and f2 have been introduced

to characterize the relative compressibility and density of the

sphere material as compared to those of the surrounding fluid

(following Ref. 15):

f1 ¼ 1� q c2

q�c
2
l

1

1� 4c2
t

3c2
l

; (67)

f2 ¼ 2
q� � q
2q� þ q

: (68)

Note that the approximations [Eqs. (64)–(66)] are valid for

both solid and fluid sphere materials. With the definition of

Wn from Eq. (49), Eqs. (64)–(66) imply the following:

W0 � �
2ðkaÞ6

9
f 2
1 þ

1

4
f 2
2 þ f1f2

� �
� i
ðkaÞ3

3
ð2f1 þ f2Þ;

(69)

W1 � �
ðkaÞ6

18
f 2
2 þ i

ðkaÞ3

3
f2; (70)

Wn>1 ¼ O ðkaÞ4nþ2
n o

þ i O ðkaÞ2nþ1
n o

: (71)

It follows that only W0 and W1 contribute to the leading

terms in the approximation for radiation force.

It is seen that ReðW0; 1Þ ¼ Oðk6a6Þ is much smaller than

ImðW0; 1Þ ¼ Oðk3a3Þ so that ReðW0; 1Þ can be omitted at first

glance. This is indeed true for most situations. However, there

is an important exception when the incident wave is a traveling

plane wave. If the traveling plane wave propagates along the z
axis, then, as shown earlier, Hnm ¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

p
2p3=2d0m.

Equations (46) and (47) give Fx ¼ Fy ¼ 0, and Eq. (48) pro-

vides Fz ¼ �p p2
0= ðq c2k2ÞReðW0 þ 2W1Þ. As such, only the

real parts of W0 and W1 contribute to the radiation force and

thus even small ReðW0;1Þ cannot be omitted. From Eqs. (69)

and (70)

Fðplane waveÞ
z

���
ka� 1

� pa2jp0j2

qc2

2

9
f 2
1 þ f1f2 þ

3

4
f 2
2

� �
ðkaÞ4:

(72)

This formula coincides with that obtained by Gor’kov15 for

the radiation force on a small compressible sphere due to a

traveling plane wave.

Consider now an acoustic beam of arbitrary structure.

Then Eqs. (46)–(48) along with Eqs. (69)–(71) give

Fx �
1

8p2qc2k2
Re

ffiffiffi
2

3

r
W0 H0;0ðH�1;1 � H�1;�1Þ

(

þ
ffiffiffiffiffi
2

15

r
W1 ½ ðH1;�1 � H1;1ÞH�2;0

þ
ffiffiffi
3
p

H1;0ðH�2;1 � H�2;�1Þ

þ
ffiffiffi
6
p
ðH1;1H�2;2 � H1;�1H�2;�2Þ �

)
; (73)

Fy �
1

8p2qc2k2
Im

ffiffiffi
2

3

r
W0H0;0ðH�1;1 þ H�1;�1Þ

(

þ
ffiffiffiffiffi
2

15

r
W1 ½ ðH1;�1 þ H1;1ÞH�2;0

þ
ffiffiffi
3
p

H1;0ðH�2;1 þ H�2;�1Þ

þ
ffiffiffi
6
p
ðH1;1H�2;2 þ H1;�1H�2;�2Þ

�)
; (74)

Fz � �
1

4p2qc2k2
Re

W0ffiffiffi
3
p H0;0H�1;0

�

þ W1ffiffiffiffiffi
15
p ð

ffiffiffi
3
p

H1;�1H�2;�1 þ 2 H1;0H�2;0

þ
ffiffiffi
3
p

H1;1H�2;1Þ
�
: (75)

These expressions include all terms to Oðk6a6Þ. The reader

is reminded that the coefficients Hnm are defined by Eq. (34)

using spherical harmonics Y�nmðhk;ukÞ, where hk and uk are

expressed through the wave vector components kx , ky , and

kz in accordance with Eq. (21). This gives the following rep-

resentation for the spherical harmonics that are used to

define Hnm in Eqs. (73)–(75):

Y00ðhk;ukÞ ¼ 1=
ffiffiffiffiffiffi
4p
p

;

Y10ðhk;ukÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð4pÞ

p
kz=k;

Y11ðhk;ukÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð8pÞ

p
ðkx þ ikyÞ=k ;
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Y1;�1ðhk;ukÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð8pÞ

p
ðkx � ikyÞ=k;

Y20ðhk;ukÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5=ð16pÞ

p
ð2k2

z � k2
x � k2

yÞ=k2;

Y21ðhk;ukÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15=ð8pÞ

p
ðkx þ ikyÞkz=k2;

Y22ðhk;ukÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15=ð32pÞ

p
ðkx þ ikyÞ2=k2:

The incident wave piðx; y; zÞ is defined by Eq. (19). For brevity,

let us temporarily (in this section only) omit the subscript i in

the incident wave notation, i.e., use p for pi and v for vi. Note

that because of Eq. (19) the following expressions are

valid:
Ð Ð

dkxdkySðkx;kyÞ¼ 4p2pjð0;0;0Þ ;
Ð Ð

dkxdkySðkx;kyÞðikxÞ
¼ 4p2@p=@xjð0;0;0Þ, and so on. As a result, Eqs. (73)–(75) can

be transformed as follows:

Fx � �
p

qc2k5
Re k2i W0p

@p�

@x
þ k2i W1p�

@p

@x

�

þ3i W1

@p

@x

@2p�

@x2
þ @p

@y

@2p�

@x@y
þ @p

@z

@2p�

@x@z

� ��
;

Fy � �
p

qc2k5
Re k2i W0p

@p�

@y
þ k2i W1 p�

@p

@y

�

þ3i W1

@p

@x

@2p�

@x@y
þ @p

@y

@2p�

@y2
þ @p

@z

@2p�

@y@z

� ��
;

Fz � � p
qc2k5

Re k2i W0p
@p�

@z
þ k2i W1 p�

@p

@z

�

þ3i W1

@p

@x

@2p�

@x@z
þ @p

@y

@2p�

@y@z
þ @p

@z

@2p�

@z2

� ��
:

Here the incident wave pressure p and its derivatives are taken

in the center of the scatterer ð0; 0; 0Þ. According to Eq. (5),

rp ¼ iqckv, where v ¼ ðvx ; vy ; vzÞ is the particle velocity of

the incident wave. Therefore, each force component Fn,

where n ¼ x, y, or z, has the following expression:

Fn � �
p

qc2k3
Re i W0p

@p�

@n
þ i W1 p�

@p

@n

�

þ3i W1 q2c2 vx
@v�x
@n
þ vy

@v�y
@n
þ vz

@v�z
@n

� ��
: (76)

From Eqs. (69), (70), and (76), it follows that

Fn � �
p a3

3

@

@n
f1
jp j2

qc2
� 3

2
f2qjvj2

 !

� 2

9

pðkaÞ6

qc2k3
Im ðf 2

1 þ f1f2Þp
@p�

@n

�

þ 3

4
f 2
2 q2c2 vx

@v�x
@n
þ vy

@v�y
@n
þ vz

@v�z
@n

� ��
: (77)

The second term �ðkaÞ6 can be neglected compared to the

first term �ðkaÞ3 in most of the cases, except when the factor

@ð�Þ=@n in the first term vanishes (e.g., when jpj2 and jvj2
are uniform in space). Therefore, with accuracy �ðkaÞ3, the

radiation force can be written as a gradient from some func-

tion (a potential) taken at the point of the scatterer center

F ¼ �rU jð0;0;0Þ: (78)

According to Eq. (77), the potential U has the following

representation:

U ¼ p a3

3
f1
jpj2

qc2
� 3

2
f2qjvj2

( )
: (79)

This formula is identical to that obtained by Gor’kov.15

Consider now a plane wave p ¼ p0eik�r. Then v

¼ ðk=kÞðp0=qcÞeik�r so that both jpj2 and jvj2 are uniform

in space. Then the first term in Eq. (77) disappears and the

second term �ðkaÞ6 is non-negligible. The radiation force in

this case is expressed as

F ¼ k

k

p a2jp0j2

qc2

2

9
f 2
1 þ f1f2 þ

3

4
f 2
2

� �
ðkaÞ4; (80)

which coincides with Eq. (72).

IV. RADIATION FORCE CREATED BY FOCUSED
BEAMS OF TYPICAL ULTRASOUND SOURCES

In this section, the proposed approach is used to calcu-

late the radiation force exerted on a spherical scatterer by

representative focused ultrasound beams. Beam focusing is

usually realized by means of either a curved transducer, a

planar transducer coupled to a lens, or a multi-element array

with an appropriate phasing of the elements. To illustrate the

approach for these types of focused sources, we will consider

two transducers: An axisymmetric concave spherical trans-

ducer with a hole in the center (Fig. 1) and a rectangular

multi-element linear array (Fig. 5).

In Secs. I–III, the origin of the coordinate system was

placed at the center of the spherical scatterer. However, the

choice of coordinate system should not influence the pre-

dicted radiation force. To calculate radiation forces for dif-

ferent scatterer positions relative to a focused source, it is

convenient to adopt a coordinate system with the origin tied

to the source. In this section we define the origin as the cen-

tral point of the aperture region (see Figs. 1 and 5).

The change of location of the origin modifies only the

coefficients Hnm in Eqs. (46)–(48) through the angular spec-

trum Sðkx; kyÞ in Eq. (34). Let the scatterer’s coordinates be

ðxs; ys; zsÞ. If p̂iðx; y; zÞ is the pressure amplitude of the inci-

dent wave written as a function of the new coordinates, then

FIG. 1. Geometry of the problem when the acoustic source has the form of a

spherical cap with a circular central opening.
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piðx; y; zÞ ¼ p̂iðxþ xs; yþ ys; zþ zsÞ. From Eqs. (19) and

(20) it follows that the new angular spectrum

Ŝðkx; kyÞ ¼
ðþ1
�1

ðþ1
�1

dxdy p̂iðx; y; 0Þ e�ikxx�ikyy; (81)

is related to the original angular spectrum Sðkx; kyÞ simply

through a phase factor

Sðkx; kyÞ ¼ Ŝðkx; kyÞ eikxxsþikyysþi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
zs : (82)

The radiation force is a second-order quantity and thus is

proportional to the square of the wave amplitude. Consequently,

in the case of a plane wave, the radiation force is usually nor-

malized by the wave intensity. More precisely, the force is rep-

resented in the form F ¼ Yp pa2I=c, where the radiation force

factor Yp (with the subscript “p” indicating the plane character

of the incident wave) depends only on the scatterer material

properties and not on the wave intensity.4 In the case of a large

target, the force is proportional to the total power of the beam,

W, and therefore it is more reasonable to normalize the force by

W=c by considering another dimensionless factor Yb, so that

F ¼ YbW=c. For instance, Yb ¼ 1 when a quasi-plane wave is

incident on a perfectly absorbing target.29 Note that if the angu-

lar spectrum is known, the total power W that is needed for the

force normalization can be calculated as follows:

W ¼ 1

8p2qc

ð ð
k2

xþk2
y	k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

k2
x þ k2

y

k2

s
jSðkx; kyÞj2dkxdky:

(83)

A. Focused transducer in the form of a spherical cap
with a circular central opening

Consider first an axisymmetric source. The radiation

force then has only two components: Axial and lateral. The

geometry of the problem is shown in Fig. 1. The transducer

creates a focused beam because of its concave spherical

shape. Such a source represents a typical piezoelectric trans-

ducer used in therapeutic applications of ultrasound.30

The angular spectrum of a curved source can be calcu-

lated based on the Rayleigh integral representation of the

source field. Two possible approaches are described in Ap-

pendix A. Once Ŝðkx; kyÞ is calculated, it can be used to find

Sðkx; kyÞ from Eq. (82), and finally calculate the coefficients

Hnm that are necessary to find the radiation force.

We will suppose that the transducer surface vibrates uni-

formly with the normal velocity amplitude V0. In such a

case, the accuracy of the incident field representation by the

calculated angular spectrum can be checked by comparison

to an analytical solution. It is known that on the z-axis the

Rayleigh integral provides31

Paxis ¼ p̂ið0; 0; zÞ ¼ psource

R

zF � z

�
eikDmax � eikDmin

	
:

(84)

Here psource ¼ qc V0 is a characteristic pressure amplitude

at the radiating surface and Dmax, Dmin are distances from

a given point on the axis to the transducer outer and

inner edges, respectively: Dmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2

max

p
, Dmin

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� zFÞ2 þ R2 þ 2ðz� zFÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

min

pq
. Equation (84)

can be used as a benchmark solution to check the accuracy

of the numerical implementation of angular spectrum

approach of Eqs. (A6) and (A7).

To be specific, the results below are presented for a source

used in experiments.30,32,33 The transducer operates at frequency

x=ð2pÞ ¼ 2 MHz in water (c ¼1500 m/s, q ¼ 1000 kg/m3).

The source aperture diameter is 2rmax ¼ 63 mm, the central

opening diameter is 2rmin ¼ 10 mm, and the focal length is

R ¼ 62 mm. The spherical scatterer mimics a kidney stone with

the following parameters: a ¼ 1 mm, q� ¼ 2040 kg/m3,

cl ¼ 4540 m/s, and ct ¼2130 m/s, which corresponds to COM

stones.34 Figure 2 shows the distribution of acoustic pressure

amplitude for the incident focused beam and corresponding

components of radiation pressure normalized by W=c. For

these plots, the stone is presumed to be positioned within the

xz plane that intersects the focal point; then the lateral com-

ponent of the force equals Fx and Fy ¼ 0. It is seen that the

axial component Fz is positive and exceeds the value of the

lateral component Fx almost everywhere (i.e., the radiation

force is mostly directed along the wave propagation direc-

tion). From Fig. 2 it is also clear that the distribution of the

lateral component Fx is less uniform than the axial one. As

expected, Fx disappears on the beam axis. Close to the axis

Fx is directed away from the axis but at larger distances off-

axis there is a region where it changes direction and pushes

the sphere toward the axis. This effect is additionally illus-

trated in Fig. 3, where the full acoustic pressure ~p distribu-

tion at t ¼ 0, given by Re ðpÞ, and the direction and value of

FIG. 2. (Color online) Spatial distributions in the xz plane of the amplitude

of the incident pressure wave (top), the radiation force axial component Fz

(middle), and the lateral component Fx (bottom) when the sphere is posi-

tioned on the x axis for the source shown in Fig. 1. The image box size is

20� 10 mm. Note the sphere is included for scale and is not in fact fixed in

only the shown position.
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the radiation force are shown by an arrow for different posi-

tions of the scatterer in the focal plane. When the stone is on

the axis, the force is maximal and oriented co-axially. Dis-

placement of the stone by x ¼ 0.4 mm results in some

decrease of the force amplitude and a significant change

(approximately by 30
) of the force direction: The stone is

pushed further off-axis. Positioning the stone further from

the axis (x ¼ 0.8 mm) makes the force co-axial again but

with much smaller amplitude than when the stone is on axis.

When x ¼ 1.2 mm, the force is about the same amplitude as

at x ¼ 0.8 mm but its direction is almost perpendicular to the

axis. With further increases in x, the force remains directed

toward the axis but decreases in magnitude.

It may be also useful to analyze the radiation force for a

small scatterer (ka� 1 ) on the acoustic beam axis, where

the lateral component of the force disappears due to symme-

try. According to Eqs. (78)–(80), the axial component of the

force on the axis can be approximated as follows:

Fz � �
pa3

3qc2

d

dz
f1jPaxisj2 �

3f2
2k2

���� dPaxis

dz

����
2

 !

þ pa2jPaxisj2

qc2

2

9
f 2
1 þ f1f2 þ

3

4
f 2
2

� �
ðkaÞ4 : (85)

Here the relation rp ¼ iqckv was used. Along with Eq. (84),

this expression represents the force analytically. The second

term is of higher order (in terms of the small parameter ka)

relative to the first term but it may become important in

regions where spatial variations of velocity and pressure

amplitudes are small. For calculations, the derivatives in

Eq. (85) have to be evaluated. The expression for Fz becomes

unwieldy and is omitted here for brevity.

Figure 4 compares the axial distribution of the radiation

force Fz for different stone radii a¼ 0.02, 0.05, and 0.1 mm,

calculated using either Eq. (48) (with no limitation to the

value of ka) or the asymptotic result of Eq. (85). Note that

the wavelength that corresponds to 2 MHz in water is

k¼ 0.75 mm so that k� a in all calculated cases. For refer-

ence, the axial distribution of pressure amplitude is shown at

the top. For the smallest scatterer a¼ 0.02 (ka � 0.17), the

asymptote Eq. (85) agrees well with the result obtained from

the full model. It is worth noting that the force is negative in

the prefocal region and in some other locations. This result

is in accordance with the first term of Gor’kov’s asymptote

Eq. (85), which is expressed as a derivative of an oscillating

FIG. 3. (Color online) Spatial distributions in the xz plane of the full acous-

tic pressure at time t ¼ 0 for different positions of the 2-mm spherical stone.

The lateral coordinate x of the stone center is marked in the left-upper corner

of each image, and the colors denote pressure magnitudes. An arrow shows

the radiation force direction and relative magnitude. The image box size is

20� 10 mm. The incident beam axis is directed to the right.

FIG. 4. Axial distribution of pressure amplitude jPaxisj=Pmax
axis (top) and nor-

malized radiation force cFz=W for different radii a of the scatterer. Solid

lines represent calculations based on the full model, while dotted lines corre-

spond to the low-frequency approximation, Eq. (85).
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potential function. The appearance of negative radiation

force is not uncommon for acoustic beams.12,14 As is seen

from Eq. (85), any beam with an oscillating spatial structure

of the near field will create a negative force if the scatterer is

sufficiently small. With the increase of ka, the second term

in Eq. (85) starts to dominate the first one, and the negative

force regions become smaller or disappear. Then, the radia-

tion force behavior resembles that of the square of the pres-

sure amplitude jPaxisj2. Also, the asymptote Eq. (85)

overestimates the true force [e.g., by 30% for a¼ 0.05 mm

(ka � 0.42) and 120% for a¼ 0.1 mm (ka � 0.84)—see

Fig. 4]. Modeling results indicate that for the considered

cases, Eq. (85) is only valid when ka 	0.2.

B. Multi-element linear array

Consider next a linear array (Fig. 5), which represents a

typical transducer used either for medical ultrasound imag-

ing or nondestructive testing. Although imaging utilizes

short pulses, such transducers also can be excited continu-

ously.35 Focusing is created differently in the xz and yz
planes. In the yz plane (elevation plane), focusing is achieved

by a cylindrical lens attached to the transducer face. In the xz
plane (imaging plane), focusing is obtained by introducing

appropriate time delays to the signals emitted by the array

elements.

The array consists of M identical rectangular elements.

Let h and w be the elements’ height and width, and g be the

gap between the neighboring elements. All the elements are

excited at frequency x=ð2pÞ. The angular spectrum of the

array is a superposition of angular spectra of the individual

elements. It is convenient to consider first one of the ele-

ments, say the mth, which is a rectangular source of dimen-

sions w� h with its center being at ðxm; 0; 0Þ, where

xm ¼ m�M þ 1

2

� �
ðwþ gÞ; (86)

and m ¼ 1; 2; ::: ;M. The source occupies the region

xm � w=2 	 x 	 xm þ w=2, �h=2 	 y 	 h=2. As mentioned

earlier, the array focuses in the yz plane because of the presence

of a cylindrical lens. To account for this feature, let us intro-

duce the following phase distribution for the normal velocity

on the mth element surface: vmðyÞ ¼ V0 eiUn e�i ðk y2=2RÞ, where

R is the wavefront curvature radius after the wave passes the

cylindrical lens, V0 is the velocity amplitude, and Um is a phase

shift added to the mth element signal to provide beamforming

in the xz plane. Focusing at a point ðxF; 0; zFÞ can be achieved

by choosing Um ¼ kðzF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxF � xmÞ2 þ z2

F

q
Þ. The angular

spectrum of the acoustic pressure of the mth element can then

be written as follows [see Eqs. (5), (19), (20)]:

Ŝmðkx; kyÞ ¼
psource e

ik

�
zF�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxF�xmÞ2þz2

F

p 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðk2

x þ k2
yÞ=k2

q ðxmþw=2

xm�w=2

dx e�ikxx

�
ðh=2

�h=2

dy e
�i

�
kyyþðky2=2RÞ

	
:

(87)

Here psource ¼ qcV0 is the characteristic pressure amplitude

at the element surfaces. The integrals in Eq. (87) can be cal-

culated analytically; the resulting expressions are presented

in Appendix B. Equation (B5) gives the angular spectrum

Ŝðkx; kyÞ for the particular case xF ¼ 0, zF ¼ R that will be

considered below. According to the algorithm discussed ear-

lier, from Ŝðkx; kyÞ we find Sðkx; kyÞ with the use of Eq. (82),

then calculate the coefficients Hnm, and finally compute the

radiation force components.

Consider an array with the following parameters:

M¼ 128, h¼ 15 mm, w¼ 0.25 mm, g ¼0.05 mm, R¼ 40 mm,

and x=ð2pÞ¼ 5 MHz. Such an array has parameters similar

to those of the Philips/ATL HDI L7-4 ultrasound probe. The

spherical scatterer is the same as in the case of Sec. IV A: A

2-mm diameter sphere with the elastic parameters similar to

those of a COM kidney stone. Modeling results are shown in

Fig. 6 for the particular case xF ¼ 0, zF ¼ R. Because the

problem in such a case is not axisymmetric, the results are

presented for the xz and yz planes that include the focal

point. The incident acoustic pressure amplitude distribution

FIG. 5. Geometry of the problem in the case of a linear array source. The

focal point can be steered within the imaging plane y¼ 0.

FIG. 6. (Color online) Spatial distributions in the xz plane (left column) and

yz plane (right column) of the amplitude of the incident pressure wave

(upper), the radiation force axial component Fz (center), and lateral compo-

nent Fx (lower left) and Fy (lower right) for the 5-MHz source shown in Fig.

5. The target diameter 2a¼ 2 mm is shown by the dotted white circles in the

top plots. The image box size is 6� 4 mm.
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is shown at the top of Fig. 6. It is seen that the focal region is

narrower in the xz plane than in the yz plane, which is a con-

sequence of the larger source aperture in the x direction

(38 mm) relative to the y direction (15 mm). Note that

because of the small wavelength (0.3 mm), the focal width in

each direction is much smaller than the target diameter. As a

result, the radiation force distribution appears to be almost

identical in the x and y directions. Similar to the force behav-

ior shown in Fig. 2, when the stone is positioned a little off

the axis, the force is directed away from the axis.

V. DISCUSSION AND CONCLUSIONS

In this paper we propose a systematic approach for cal-

culation of the radiation force produced by an arbitrary

acoustic beam on an elastic sphere in a fluid. The method is

based on an important fact that for the calculation of radia-

tion force, which is a second order quantity in terms of

acoustic perturbations, it is necessary to know the acoustic

field only to the first-order linear approximation. Accord-

ingly, determining the scattering field of any arbitrary inci-

dent beam can be reduced to the simpler problem of the

scattering of a plane wave because any propagating beam

can be represented as a superposition of plane waves through

an angular spectrum decomposition. Instead of using such

plane-wave decomposition, one could represent the acoustic

beam as a sum of elementary fields of other types—e.g.,

point-source fields or spherical harmonics. However, the

angular spectrum approach is more attractive computationally.

The form of the scattering solution based on plane-wave

decomposition looks natural and even trivial. However, a

direct technical realization of such an approach is greatly

aided by analytical simplifications. In the current paper it has

been shown that the Legendre addition theorem, Eq. (26),

makes it possible to express the incident beam as an expan-

sion of spherical harmonics with a fairly simple expression

for the series coefficients—see Eq. (35). The auxiliary coeffi-

cients Hmn, defined by Eq. (34), allow one to go from the

angular spectrum to the amplitudes of the spherical harmonics

in a series representing the corresponding solution of the

Helmholtz equation. Note that radiation force is a second

order quantity and thus a nonlinear function of acoustic pres-

sure and particle velocity. Therefore, the principle of superpo-

sition is not applicable to force calculations, which means that

calculation of radiation force requires all angular spectrum

components to be used together, as a complete acoustic field.

The problem can be simplified by considering the acoustic

wave at infinitely large distances from the scatterer. Using

such an approach, we have obtained fairly compact expres-

sions for the Cartesian components of radiation force—see

Eqs. (46)–(51). These equations make it possible to numeri-

cally calculate radiation force easily and quickly, with the

need of only a personal computer.

In practical computations, it is important to know the

angular spectrum of the incident beam. For known sources,

the spectrum can be found analytically from the geometrical

characteristics of the source. Two examples of such an

approach have been presented in Sec. IV. However, the source

geometry and behavior are not always known accurately. In

practice, a more reliable and attractive approach can be real-

ized using the method of acoustic holography.36–38 In this

method, acoustic pressures are measured along some plane

surface in front of the source by scanning a hydrophone over

the plane. Then the amplitude and phase of the wave (or the

entire waveform, in the transient regime) are recorded for a

2D rectangular grid in the plane. These measurements can be

used to calculate the angular spectrum and thus obtain the

coefficients Hmn that are present in the radiation force expres-

sions, Eqs. (46)–(48). If the hydrophone sensitivity is not

known, such a scanning technique would provide the angular

spectrum with an indeterminate source power. Then, direct

measurements of radiation force on a spherical target of

known size and elastic properties could be used to calibrate

the source power along with the hydrophone sensitivity. The

idea of using the radiation force acting on a spherical scatterer

as a calibration method was proposed previously by others;11

however, their approach had limited applicability because it

was only strictly valid for plane waves or similarly idealized

beam structures. In using radiation force measurements to

determine beam power, it is worth noting that the scatterer

can be dragged by acoustic streaming in addition to being

pushed directly by the scattered beam. This additional force is

difficult to predict because it depends not only on the acoustic

attenuation and viscosity but also on the geometry of the tank

containing the liquid. An acoustically thin membrane may be

placed in front of the scatterer to eliminate streaming effects

on power measurements, similar to what is done in an absorp-

tive radiation force balance.39

Contrary to the plane-wave scattering case, when the

incident wave has the form of a beam with a beam width

smaller than or of similar size to the diameter of the scat-

terer, the radiation force direction can significantly differ

from that of the beam axis. This peculiarity is shown in Fig. 3,

and an additional illustration is provided in Fig. 7. In

Fig. 7, white arrows indicate the direction of the force that

would be created on a scatterer at different locations

within the field while colors denote magnitudes of the

radiation force F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

x þ F2
y þ F2

z

q
. This plot corresponds

to the force distribution in the xz plane presented at the left-

hand side of Fig. 6. It is seen that near the beam axis there is

a trend of pushing the scatterer off-axis. On the other hand,

in some regions not as close to the axis, the force is directed

toward the axis. Such an irregular distribution of the force

direction can be important to know in practical applications.

FIG. 7. (Color online) Spatial distribution in the xz plane of the radiation

force F for the same parameters used in Fig. 6. The force magnitude F ¼ jFj
is plotted by color. The force direction is shown by the white arrows.
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Note also that if the scatterer is sufficiently small, the radiation

force can be directed even opposite to the beam propagation

direction (i.e., the axial force can be negative—see Fig. 4).

Acoustic radiation force by real sources has many appli-

cations. In medical ultrasound, radiation force on solid targets

has the potential for developing new imaging modalities.40

Another promising application is the ability to non-invasively

expel stones from the kidney.30,32 The theory presented here

for determining acoustic radiation forces of arbitrary beams

on elastic spheres may be used as a basis for these and possi-

bly other applications.
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APPENDIX A: ANGULAR SPECTRUM CALCULATION
FOR A CURVED SOURCE

The complex amplitude p̂i of the incident pressure wave

for commonly shaped ultrasound sources can be accurately

calculated using the Rayleigh integral25,26,41

p̂iðrÞ ¼ � iq c
k

2p

ð
R

uðr0Þ eikjr�r0 j

j r�r0j dR0 : (A1)

Here the integration is taken over the source surface R. The

surface element dR0 has coordinates r0, and uðr0Þ is the corre-

sponding complex amplitude of the normal surface velocity.

The Rayleigh integral represents the acoustic field in the form

of the superposition of monopole sources distributed over the

surface R. A point source positioned at r0 ¼ ðx0; y0; z0Þ, in

turn, can be represented as the following angular spectrum

superposition at half space z 
 z0:42

eikjr�r0 j

j r�r0j ¼
i

2p

ð1
�1

ð1
�1

dkxdky

� ei ½kxðx�x0Þþkyðy�y0Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
ðz�z0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2
x � k2

y

q : (A2)

With the use of Eq. (A2), the Rayleigh integral [Eq. (A1)]

transforms to the angular spectrum representation for the

pressure amplitude

p̂iðrÞ¼
1

4p2

ð1
�1

ð1
�1

dkxdkyŜðkx;kyÞei ½kxxþkyyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
z�;

(A3)

with the following expression for the angular spectrum:43

Ŝðkx;kyÞ¼
qcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
xþk2

y

k2

q ð
R

uðr0Þe�i ½kxx0þkyy0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
z0�dR0:

(A4)

The angular spectrum can therefore be calculated by inte-

gration along the radiator surface R. In practice it is convenient

to perform the integration over a lateral plane ðx0; y0Þ. Then the

elementary surface dR0 can be expressed as dR0 ¼ dx0dy0=nz,

where nz is the z-component of the unit normal vector to dR0.
If the surface R is represented by a function z0 ¼ Zðx0; y0Þ, then

the z-component of the normal vector has the following expres-

sion: nz ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@Z=@x0Þ2 þ ð@Z=@y0Þ2

q
. Consider a trans-

ducer in the form of a spherical cap with a circular central

opening (Fig. 1). Let rmax be the radius of the source aperture,

rmin be the radius of the central opening, and R be the radius of

curvature of the radiating surface. Then the focal point coordi-

nate is zF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

max

p
. The surface R of the transducer

under consideration is a spherical one

Zðx0; y0Þ ¼ zF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x02 � y02

p
: (A5)

Equation (A4) becomes

Ŝðkx; kyÞ ¼
q cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
k2

x þ k2
y

k2

s ð ð
uðx0; y0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x02 þ y02

R2

r

� e�i ½kxx0þkyy0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
Zðx0;y0Þ�dx0dy0 : (A6)

The integration here is made on the ðx0; y0Þ-plane over the

ring r2
min 	 x02 þ y02 	 r2

max.

Another possible approach for calculating the angular

spectrum Ŝðkx; kyÞ is first to use the Rayleigh integral to

compute the incident pressure distribution p̂iðx; y; z0Þ at

some plane z ¼ z0 > 0 in front of the transducer. The plane

coordinate z0 can be arbitrary. It is natural to place the plane

at the source aperture (z0 ! 0) but as in the case in Eq. (A1),

j r�r0j ! 0 at the source edge, which would create numeri-

cal difficulties. To avoid this problem, finite z0 can be used,

say z0 ¼ 10k, where k is the wavelength. Once p̂iðx; y; z0Þ is

calculated, the corresponding angular spectrum Ŝðkx; kyÞ can

be computed using the following expression that results

from Eq. (81):

Ŝðkx;kyÞ¼ e�iz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p

�
ðþ1
�1

ðþ1
�1

dxdyp̂iðx;y;z0Þe�ikxx�ikyy: (A7)

Both mentioned approaches for calculating the angular

spectrum Ŝðkx; kyÞ are approximate. Also, they describe the

radiated field somewhat differently. Equation (A2) repre-

sents radiation of a transducer surface element having a

coordinate r0 under the assumption that the corresponding

wave is a uniform hemi-spherical wave that freely propa-

gates into the medium. In reality, part of this wave is

reflected by the curved transducer surface and thus contrib-

utes to the radiated acoustic beam different in a way from
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that of a hemi-spherical wave. When employing the Ray-

leigh integral Eq. (84) directly, this self-shadowing by the

curved radiator is partly taken into account because the

zone where the secondary diffraction waves are directed is

usually far from the region of interest (e.g., the focal

zone).44,45 Therefore, calculation of the angular spectrum

using Eq. (A7) is more precise than that using Eq. (A6).

However, the difference between the acoustic fields calcu-

lated by these two approaches should not be significantly

far from the source, and so either of the two approaches can

be used. For the results presented in this paper, the angular

spectrum was calculated from Eq. (A6). Calculations pre-

sented in this paper show no difference between the two

approaches.

APPENDIX B: ANGULAR SPECTRUM CALCULATION
FOR A MULTI-ELEMENT LINEAR ARRAY

Consider the multi-element array shown in Fig. 5. The

angular spectrum Ŝmðkx; kyÞ for such a source is expressed

by Eq. (87). After integrating we obtain

Ŝmðkx; kyÞ ¼
psource e

ik

�
zF�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxF�xmÞ2þz2

F

p 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pw2R=k

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðk2

x þ k2
yÞ=k2

q

� sinðkxw=2Þ
ðkxw=2Þ exp �ikxxm þ i

k2
y R

2k

 !

� ½EðgþÞ � Eðg�Þ �; (B1)

where the function EðgÞ is expressed through Fresnel inte-

grals CðgÞ and SðgÞ;

EðgÞ ¼
ðg

0

exp �i
p
2

n2
� 	

dn ¼ CðgÞ � iSðgÞ; (B2)

and has the following arguments:

g6 ¼
ffiffiffiffiffiffiffi
k

p R

r
kyR

k
6

h

2

� �
: (B3)

The angular spectrum of the entire linear array is a superpo-

sition of the elements’ spectra

Ŝðkx;kyÞ¼ psource

ffiffiffiffiffiffiffiffiffiffiffi
pw2R

k

s
sinðkxw=2Þ
ðkxw=2Þ

EðgþÞ�Eðg�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðk2

x þk2
yÞ=k2

q

�exp i kzFþ
k2

y R

2k

 !" #

�
XM

m¼1

exp

�
�i
�

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxF� xmÞ2þ z2

F

q
þkxxm

	�
: (B4)

Here xm and g6 are defined by Eqs. (86) and (B3), respec-

tively. Let us consider a particular case when the electronic

focus coincides with the cylindrical lens focus—i.e., when

xF ¼ 0, zF ¼ R. Then Eq. (B4) takes the following form:

Ŝðkx; kyÞ ¼ psource

ffiffiffiffiffiffiffiffiffiffiffi
pw2R

k

s
sinðkxw=2Þ
ðkxw=2Þ

EðgþÞ � Eðg�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðk2

x þ k2
yÞ=k2

q

� exp ikR 1þ
k2

y

2k2

 !" #

�
XM

m¼1

exp

�
�ið k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

m þ R2

q
þ kxxmÞ

�
: (B5)
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