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Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave

lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can

affect an intended treatment, it is important to understand the dynamics of bubbles in this context.

The relevant context includes very high acoustic pressures and frequencies as well as elevated

temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such

conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical

bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and

mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of

a millimeter-sized bubble, experimental observations were used to tune and test model predictions.

In addition, benchmarks from the published literature were used to assess various aspects of model

performance. Benchmark comparisons demonstrate that the model captures the basic physics

of phase change and diffusive transport, while it is quantitatively sensitive to specific model

assumptions and implementation details. Given its performance and numerical stability, the model

can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic

ultrasound. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3626158]

PACS number: 43.35.Ei [CCC] Pages: 3511–3530

I. INTRODUCTION

In medical ultrasound, cavitation and bubble dynamics

are often important. In diagnostic applications, micron-sized

bubbles can be injected into the bloodstream to reflect inci-

dent acoustic waves and enhance imaging contrast. To better

understand how these bubbles interact with diagnostic ultra-

sound, the dynamics of shelled contrast-agent microbubbles

have received much attention in the recent literature.1 In

addition, various therapeutic ultrasound applications that

involve bubbles are being used and/or developed. While

shock-wave lithotripsy (SWL) for renal stone comminution

and high-intensity focused ultrasound (HIFU) for thermal

tissue ablation are well known and are used clinically, other

therapeutic applications include ultrasound-assisted drug

delivery2 and mechanical tissue fractionation.3 Given the

unique conditions that can be associated with therapeutic

ultrasound (high acoustic pressures, megahertz frequencies,

elevated temperatures), understanding the mechanics under-

lying the corresponding cavitation behaviors remains an

active area of research.

For medical ultrasound, the relevant initial bubble sizes

are on the order of microns or smaller. At medical frequen-

cies and therapeutic excitation amplitudes on the order of

megapascals or tens of megapascals, such bubbles are

expected to undergo large changes in size that involve inertial

collapses and rebounds in addition to rapid condensation/

evaporation at the bubble wall (i.e., the liquid-gas interface).

Moreover, contrast-agent microbubbles will likely rupture

their shells and become free gas bubbles at pressures above

about 1 MPa.4 Given that contrast-agent microbubbles are

administered by injection into the bloodstream while endoge-

nous cavitation nuclei typically exist in blood or other fluid

spaces,5,6 the fundamental physics of bubbles subjected to

therapeutic ultrasound can be explored by considering the

case of a single, free bubble in a liquid. Although a bubble

within a blood vessel may not be “free” due to the visco-

elastic stiffness of the vessel and surrounding tissue struc-

tures, investigation of such bubble-vessel interactions is a

separate area of research7–9 and is beyond the scope of the

present work. Here we focus on understanding how heat and

mass transport affect bubble motions in the context of high

excitation pressures and/or elevated temperatures.

In surveying previous models used to simulate bubbles

exposed to therapeutic ultrasound, we note that the dynamics

of a single, spherical bubble were typically considered. For

bubbles excited by a lithotripter shock wave, Church10 and

later Sapozhnikov et al.11 modeled the diffusive transport of

non-condensable gases, but neglected phase change at the

bubble wall. Also for lithotripsy bubbles, Matula et al.12

accounted for phase change and implemented a reduced-

order model based on scaling principles to estimate heat and

mass transport; however, the model was found to be quite

sensitive to indeterminate “free” parameters that emerged

a)Author to whom correspondence should be addressed. Electronic mail:

wkreider@uw.edu.
b)Also at: Center for Industrial and Medical Ultrasound, Applied Physics

Laboratory, University of Washington, 1013 Northeast 40th Street, Seattle

WA 98105.

J. Acoust. Soc. Am. 130 (5), Pt. 2, November 2011 VC 2011 Acoustical Society of America 35110001-4966/2011/130(5)/3511/20/$30.00

Downloaded 23 Nov 2011 to 83.237.6.114. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



from the scaling. For HIFU bubbles, models have either

neglected phase change at the bubble wall13,14 or considered

very low acoustic forcing amplitudes (� 1 bar) in conjunc-

tion with phase change and associated transport behaviors.15

The limitation of this latter model in addressing only low ex-

citation amplitudes highlights an important challenge: main-

taining numerical stability through violent inertial collapses.

Although not explicitly applied to bubbles excited by

therapeutic ultrasound, models that include the relevant

transport behaviors have been developed to simulate the vio-

lent collapses of sonoluminescence bubbles.16,17 As noted by

Vuong and Szeri16 and Preston,18 numerical implementation

of this type of direct model poses difficulties due to the very

sharp spatial gradients that can occur. Overall, sonolumines-

cence models possess a high degree of complexity, which is

needed to represent details of the gas dynamics that lead to

light production in the end stages of a violent collapse. How-

ever, it is not clear that such small-scale complexity and the

associated computational expense is warranted for the large-

scale behaviors of interest here.

The goal of this effort is to develop a numerically stable,

reduced-order model that accounts for phase change and dif-

fusive transport in order to estimate the bubble’s total

energy. Because energy dissipation occurs primarily during

violent inertial collapses, we focus on the model’s ability to

simulate a single collapse and rebound, which can be taken

as a fundamental component of the bubble motion. The

ensuing sections present the model as follows: first, the

model and its numerical implementation are described in

detail; then, experimental observations of the collapses and

rebounds of lithotripsy bubbles19 are used to tune two model

parameters and assess model performance; next, the tuned

model is benchmarked against results published in the litera-

ture; last, the model is used to explore how ambient tempera-

ture and vapor affect the collapses of bubbles excited by

HIFU.

II. MODEL

To begin description of the model, it is instructive to

provide a brief overview. The model is formulated by first

assuming spherical symmetry and enforcing the conservation

of mass and momentum in the liquid. This Rayleigh-Plesset

style approach yields an ordinary differential equation

(ODE) for the bubble radius. The formulation is completed

by calculating pressure in the gas phase as a time-dependent

boundary condition for the aforementioned ODE. In this

approach, pressure inside the bubble is calculated by enforcing

an energy balance on the contents of the bubble and consider-

ing heat and mass transport at the liquid-gas interface (i.e., at

the bubble “wall”). The energy associated with chemical reac-

tions during a violent bubble collapse is relatively small20 and

is neglected here. In addition, mass diffusion associated with

species created by chemical reactions is neglected.

Here, mass transport includes both the evaporation/con-

densation of vapor and the diffusion of non-condensable

gases dissolved in the liquid. Inside the bubble, both mass

and heat diffusion are modeled by assuming a uniform spa-

tial distribution of thermodynamic variables everywhere

except within a boundary layer at the bubble wall. Assuming

constant gradients in these boundary layers, transport is

approximated using Fickian equations along with estimates

of boundary-layer thicknesses based on scaling considera-

tions. In the liquid, the spatial variation of temperature is

addressed differently in two separate model variations. In

the “scaling” model variation (SCL model), uniform liquid

temperature is assumed everywhere outside of a boundary

layer near the bubble wall and the aforementioned Fickian

approach is utilized for calculating thermal conduction. In

the other model variation (termed the “PZ model” here, after

Plesset and Zwick’s approach21), no such assumption is

made. Rather, an approximate solution is utilized to account

for thermal conduction in the presence of convective flow.

For mass transport in the liquid, an approach fully analogous

to that used in the PZ model is implemented for diffusion of

dissolved gases.22 The full model formulation is described in

detail below.

A. Radial dynamics

For spherically symmetric bubbles, modeling typically

begins with the conservation equations for mass and momen-

tum in the liquid. Combining these equations and spatially

integrating over the radial coordinate r from the bubble ra-

dius R to infinity produces a single, second-order ODE for

the bubble radius. This formulation is then completed by cal-

culating a uniform gas pressure inside the bubble pi as a

function of the thermodynamic state of the bubble. Models

formulated in this fashion are commonly termed Rayleigh-

Plesset (RP) models. As discussed in detail by Lin et al.,23

the assumption of uniform pressure inside the bubble pro-

duces accurate solutions even for violent bubble collapses.

Simple RP models that assume liquid incompressibility and/

or polytropic gas behavior are often used; however, to better

capture the physics of inertial collapses, both liquid com-

pressibility and a full energy balance of the gas phase are

considered in this effort. Both the ODE for bubble motion

and the method of calculating the gas pressure are described

in the remainder of this section.

To account for liquid compressibility, various equations

have been developed and used for studying bubble dynam-

ics.24–29 As shown by Prosperetti and Lezzi,30 these equa-

tions all belong to a family of RP models that can be

understood in the context of an asymptotic expansion in

which the acoustic Mach number _R=c0 is the “small” param-

eter. Here, c0 is the speed of sound in the liquid at reference

conditions far from the bubble, and the overdot indicates a

time derivative. In this context, the Keller-Miksis29 and Her-

ring-Trilling27,28 equations are first-order formulations,

while the Gilmore equation contains additional second-order

terms. Due in part to its explicit formulation in terms of liq-

uid enthalpy at the bubble wall, the Gilmore equation has

been found to perform remarkably well during inertial col-

lapses.30 Accordingly, the Gilmore equation is used here and

is described in detail below. The formulation presented

below follows that described by Sapozhnikov et al.11

In terms of enthalpy, the Gilmore equation26 can be

written as
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where capital letters C and H denote the liquid sound speed

and enthalpy evaluated at the bubble wall. Before defining

these quantities explicitly, it is helpful to first specify an

equation of state for the liquid. To this end, we define a

modified form of the Tait equation to relate pressure p and

density q in the liquid as follows:31

p ¼ p0 þ
1

bC
q
q0

� �C

�1

" #
where b ¼ 1

q0c2
0

: (2)

In general, C and b are empirical constants, and the “0” sub-

scripts denote liquid properties at a reference state that corre-

sponds to static conditions in the ambient liquid. As noted

above, b is defined in terms of the reference sound speed c0

in order to maintain consistency with the typical definition

of sound speed. From data for water over a range of tempera-

tures, C ¼ 6:5 is selected here.31

Now, enthalpy h and sound speed c can be defined

throughout the liquid as

h ¼
ðp

p1

dp

q
¼ c2 � c2

1
C� 1

; (3)

c2 ¼ dp

dq
¼ C pþ Bð Þ

q
; (4)

where the “1” subscripts denote values far from the bubble

and B � 1=ðbCÞ � p0.

To implement the model, c and h must be evaluated at

the bubble wall. Such evaluations require determination of

the pressure in the liquid at the wall pw. Assuming that a uni-

form gas pressure inside the bubble pi is known, the pressure

in the liquid can be calculated by accounting for viscosity l
and surface tension r:

pw ¼ pi �
4l _R

R
� 2r

R
: (5)

In this expression, the term with surface tension arises from

Laplace’s relation32 while the viscosity term is derived from

the three-dimensional stress state of an incompressible liquid

at the gas-liquid interface.33 For practical implementation of

the Gilmore model as written in Eq. (1) above, it is conven-

ient to evaluate sound speed, enthalpy, and the time deriva-

tive of enthalpy at the bubble wall as follows:

H¼ bCð Þ�1=C

q0

C
C�1

pwþBð ÞðC�1Þ=C� p0þpacþBð ÞðC�1Þ=C
h i

;

(6)

_H ¼ bCð Þ�1=C

q0

pw þ Bð Þ�1=C _pw � p0 þ pac þ Bð Þ�1=C _pac

h i
;

(7)

C2 ¼ c2
0 þ C� 1ð ÞH: (8)

Note that in this formulation, enthalpy at the bubble wall is

calculated with the understanding that the pressure at infinity

is the sum of the reference pressure and the acoustic forcing

(i.e., p1 ¼ p0 þ pac). However, given the implicit assump-

tion that the acoustic forcing is applied instantaneously

around the bubble without specifying a source location, the

physical sound speed far from the bubble is taken at the

static reference state, i.e., c1 ¼ c0. The above expressions

are suitable for inclusion in a computer program and clearly

illustrate that the acoustic forcing appears through its impact

on the local enthalpy (H, _H). Last, this formulation permits

calculation of the pressure “radiated” from the bubble in the

form of an outward traveling spherical wave. Evaluating this

pressure prad;w at the bubble wall, we have

G � R H þ _R2=2
� �

; (9)

prad;w ¼
1

bC
2

Cþ 1
þ C� 1

Cþ 1
1þ Cþ 1

Rc2
0

G

� �1=2
" #2C=ðC�1Þ

�B:

(10)

This particular formulation for radiated pressure was

described by Akulichev.24

To complement the preceding model for the radial dy-

namics in the liquid and close the formulation of the prob-

lem, it is necessary to determine the pressure inside the

bubble. To this end, pi can be estimated by enforcing conser-

vation of mass, momentum, and energy in the gas phase. As

argued by Prosperetti et al.,34 the momentum equation can

be used to justify an assumption of uniform pressure within

the bubble. In addition, they demonstrated that continuity

and energy relations can be used to derive both an ODE for

the evolution of pressure inside the bubble and a partial dif-

ferential equation (PDE) for temperatures in the gas phase.

Ultimately, Prosperetti et al. concluded that enforcing an

energy balance on the bubble contents is superior to assum-

ing a polytropic relation for calculating gas pressures in bub-

bles undergoing nonlinear oscillations.

In the cited work by Prosperetti et al., no mass transport

was allowed at the liquid-gas interface and the gas velocity

at the interface was simply the bubble-wall velocity _R. How-

ever, if mass transport is not neglected and density in the gas

phase is assumed spatially uniform, the radial gas velocity at

the bubble wall is defined by the continuity equation:

ujr¼R¼ _R� R

3

_n

n
: (11)

Here, n denotes the total number of moles of gas inside the

bubble and the overdots again indicate time derivatives.

Continuing the assumption of spatial uniformity inside the

bubble, conservation of energy can then be expressed as

_pi ¼ cpi
_n

n
� 3 _R

R

� �
þ c� 1ð Þ 3kg

R

@h
@r

����
r¼R

; (12)
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where c ¼ cp=cv is the ratio of specific heats, kg is the ther-

mal conductivity of the gas phase, and h is the average tem-

perature inside the bubble. This equation is identical to that

used by Szeri12 and is equivalent to that used by Toegel et
al.35 Again, note that Eq. (12) relies upon assumptions of

ideal-gas behavior and spatial uniformity of thermodynamic

variables. While the preceding equations in this section com-

plete a formulation for the radial dynamics, implementation

of Eq. (12) requires estimates of heat and mass transport

across the bubble wall.

B. Mass transport

For gas-vapor bubbles, mass transport must account for

both vapor and non-condensable gases. Henceforth, the term

“gas” will be used as a shorthand for non-condensable gases

in the context of specific bubble contents. Accordingly, the

total molar content of the bubble is given by n ¼ ng þ nv,

where the “g” and “v” subscripts respectively denote gas and

vapor. Inherent in this formulation is the assumption that any

mixture of non-condensable gases can be treated effectively

as a single gas with suitable physical properties. To deter-

mine the overall mass transport, rates of change of ng and nv

are calculated separately. A schematic to represent the mod-

eling of mass diffusion is provided in Fig. 1(a). In this sche-

matic, note that the thick line represents the bubble wall and

that the curvature implies a gaseous interior on the left-hand

side. Given a two-part mixture of gas and vapor, the molar

concentration of vapor in the boundary layer is assumed to

vary linearly between the average interior concentration Cv

and a saturation concentration Cv;sat at the bubble wall.

These concentrations at any given time may be calculated in

terms of state variables for moles of vapor inside the bubble

nv, bubble volume V, the saturation vapor pressure of the liq-

uid at the interface psat, the average temperature of the gas

phase h, and the universal gas constant R. The thickness of

the boundary layer for mass diffusion inside the bubble is

defined as dm and is estimated in terms of the time scale for

bubble motion and the diffusivity between two ideal gases.

In the liquid, no explicit boundary layer for the diffusion of

dissolved gases is assumed (as implied by the wavy line).

The convective diffusion problem is instead solved approxi-

mately using boundary conditions representing the constant

gas concentration far from the bubble Cg;1 and the gas con-

centration at the bubble wall Cg;w as determined by Henry’s

law and the instantaneous partial pressure of non-condensa-

ble gases inside the bubble.

1. Non-condensable gases

A classical solution for diffusion of dissolved gases in

the liquid surrounding a spherical bubble was proposed by

Eller and Flynn.22 In this approach, Henry’s law provides an

instantaneous boundary condition at the bubble wall, thereby

coupling the thermodynamic state of non-condensable gases

inside the bubble to the diffusion of these same gases in the

surrounding liquid. Noting that the Eller-Flynn solution is

uniformly valid in time only under equilibrium conditions at

which there is no net mass flux to or from the bubble (i.e.,

the “high-frequency” solution), Fyrillas and Szeri36 devel-

oped a new solution that accounts for non-equilibrium condi-

tions in which a diffusive boundary layer develops.

However, their approach requires a splitting of the problem

into smooth and oscillatory components and involves aver-

aging over an oscillatory period of bubble motion. For

simplicity, we follow Church10 and adopt the zeroth-order

Eller-Flynn solution to capture the basic features of diffusion

for transient bubble motion. This approach has been success-

fully utilized to study mass diffusion in lithotripsy bub-

bles.10,11 As noted previously, implementation of the Eller-

Flynn solution does not require explicit estimation of the

boundary-layer thickness.

To state the zeroth-order Eller-Flynn solution, we first

define a time scale for diffusion in terms of the actual time t
and the bubble radius R as

s ¼
ðt

0

R4dt0: (13)

Next, we define the concentration difference that drives dif-

fusion as F � Cg;w � Cg;1, where Cg;w is defined by

Henry’s law and Cg;1 can now be interpreted as the initial

concentration everywhere in the liquid. Identifying H as the

inverse of Henry’s constant, the saturation concentration at

the bubble wall can then be instantaneously calculated as

Cg;w ¼ Hpi ðng=nÞ. Now, taking ng0 to represent ng at time

FIG. 1. (Color online) Schematic depiction of assumed boundary layers

used in the model. In each diagram, the thick line represents the liquid-gas

interface, whose curvature implies gas on the left and liquid on the right. (a)

For mass transport, C denotes mass concentration, accompanying subscripts

indicate the relevant substance and/or location, and dm denotes the diffusive

boundary-layer thickness inside the bubble. The wavy line in the liquid

implies that no explicit boundary-layer thickness is assumed by the Eller-

Flynn convolution for mass diffusion. (b) For heat transport, h and T denote

temperatures in the gas and liquid, respectively. Thermal boundary-layer

thicknesses are defined as dh and dT , where the explicit thickness dT is

assumed only in the SCL model.
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t¼ 0, we estimate diffusive transport effects through the fol-

lowing convolution calculation:

ng ¼ ng0 � 4
ffiffiffiffiffiffiffi
pD
p ðs

0

Fðs0Þffiffiffiffiffiffiffiffiffiffiffiffi
s� s0
p ds0: (14)

Note that D in this equation is the diffusion constant of the

non-condensable gas in the liquid. From this solution, the

current amount of non-condensable gas inside the bubble

may be calculated at a given time for a given bubble radius.

However, at any specified time, the calculated value for ng

relies upon an estimated value for pi, which is in turn a func-

tion of ng. To address this circular dependence, Church10

suggested that sequentially updating ng and pi three times

provides a reasonably accurate convergence for lithotripsy

bubbles. For computational convenience, an adaptation of

this approach was used here and is described further in the

ensuing section on numerical implementation.

2. Vapor

The model for evaporation and condensation at the bub-

ble wall is based on the kinetic theory of ideal gases and has

been used in various other bubble models. Neglecting effects

associated with the curvature of the liquid-gas interface and

any bulk motion of vapor relative to the interface, the net

flux of vapor into the bubble may be estimated by summing

both evaporative and condensative fluxes as follows37:

_nv ¼ 4pR2 r̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pMRTw

p psat � fpið Þ: (15)

Here, _nv is again the time rate of change of the number of

moles of vapor inside the bubble, Tw is the liquid tempera-

ture at the bubble wall, psat is the saturated vapor pressure

evaluated at Tw, r̂ is an accommodation coefficient, and M is

the vapor’s molecular weight. In addition, f ¼ nv=n is the

vapor fraction such that fpi represents the partial pressure of

vapor inside the bubble. Note that Eq. (15) assumes that the

vapor temperature at the interface is effectively equal to the

liquid temperature Tw for estimating the evaporative flux.

Based on molecular dynamics simulations,17 we select a

value r̂ ¼ 0:4 for the accommodation coefficient.

Strictly speaking, the above kinetic equation for phase

change only applies for a pure vapor bubble below the criti-

cal temperature of the liquid. Above the critical temperature,

no transport occurs since the phases are ill-defined. Follow-

ing Akhatov et al.,38 _nv is identically set to zero when either

the vapor temperature h or the liquid temperature Tw exceeds

the critical temperature Tc of the liquid. In addition, if non-

condensable gases are present, diffusion in the bubble inte-

rior among vapor and non-condensable gas molecules must

also be considered. In particular, such diffusion is important

when the time scale for diffusion is much slower than the

time scale for bubble motion. Following other reduced-order

models,12,35 we associate evaporation with bubble growth

and conditions in which the expanded volume allows the

incoming vapor flux to occur without being limited by the

presence of non-condensable gases inside the bubble. Con-

versely, we expect that condensation during a bubble’s col-

lapse leads to the evolution of a dense layer of non-

condensable gas molecules near the bubble wall. Accord-

ingly, the condensation rate is limited by the need for vapor

molecules to diffuse past non-condensable gas molecules in

order to reach the liquid-gas interface. This phenomenon has

been described as “vapor trapping.”17

Again following the aforementioned reduced-order

models, we assume that gas-vapor diffusion can be approxi-

mated with a linear concentration gradient near the bound-

ary, as depicted in Fig. 1(a). Then, the diffusive flux can be

estimated with the Fickian relation

_nvð Þmax;cond¼ 4pR2D12

Cv � Cv;sat

dm
; (16)

where D12 is the diffusion coefficient between vapor and

non-condensable gas molecules, Cv ¼ nv=V is the molar

concentration of vapor inside the bubble, Cv;sat is the equilib-

rium concentration at the surface temperature Tw, and dm is

the boundary layer thickness for mass diffusion. Considering

the time scale for bubble motion as the volumetric ratio

V= _V
�� �� and introducing Am as an arbitrary scale factor, the

thickness dm can be estimated as a characteristic diffusive

penetration distance:

dm ¼ Am

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D12

R

3 _R
�� ��

 !vuut : (17)

The diffusive flux implied by Eqs. (16) and (17) sets a maxi-

mum condensation rate. When the kinetic Eq. (15) implies

condensation in excess of the diffusive flux, the diffusive

flux defines the rate of condensation.

To complete the model description with regard to vapor

trapping behavior, several additional details need to be

specified. First, note that dm is constrained to remain less

than or equal to the bubble radius. In addition, the singularity

at _R
�� �� � 0 is handled by setting a minimum value for _R

�� ��.
Model results were found to converge when minimum values

on the order of 1 m/s or smaller were used. Accordingly, a min-

imum value of 10�3 m/s was adopted as a relatively small ra-

dial velocity that does not introduce numerical artifacts. Last,

we must specify the arbitrary scaling factor Am and the condi-

tions that distinguish behaviors of a “pure” vapor bubble from

those of a gas-vapor bubble that can exhibit vapor-trapping

behavior. As discussed further in Sec. IV A, experimental data

for the collapses of millimeter-sized lithotripsy bubbles19 sug-

gest that vapor trapping can be modeled via Eq. (16) when the

vapor fraction f is less than some critical value fm. Using model

parameters fm ¼ 0:998 and Am ¼ 0:8 produces model predic-

tions that agree well with these experimental data.

C. Heat transport

In Fig. 1(b), boundary-layer assumptions for heat trans-

port are shown. Considering the total energy of the bubble’s

contents and an ideal-gas equation of state, the homogeneous

interior temperature h is first calculated. Because the gas
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temperature at the bubble wall hw depends on both the inte-

rior gas temperature and the liquid temperature at the inter-

face Tw, a thermal boundary layer with thickness dh exists.

As before, the boundary layer thickness is estimated from

the time scale of bubble motion and the thermal diffusivity

of the gas phase. In the presence of thermal conduction at

the liquid-gas interface, gas dynamics simulations suggest

that a finite temperature difference Tw � hw can be estimated

between phases.39,40 As the final piece of the heat transport

model, the liquid temperature Tw is determined from the heat

flux at the bubble wall and the temperature far from the bub-

ble T1 using either the approximate solution of the PZ

model or the Fickian approach of the SCL model. Although

not depicted in the figure, no explicit boundary layer thick-

ness is assumed in the PZ model. In the SCL model, a linear

boundary layer between the temperatures Tw and T1 is

assumed and the boundary-layer thickness is defined as dT .

Because heat transport in the gas and liquid phases are obvi-

ously coupled, hw, Tw, and the implied temperature gradients

must be solved conjunctively. Moreover, it is noteworthy

that phase change at the bubble wall affects both heat- and

mass-transport calculations. Hence, both heat and mass

transport must be solved simultaneously.

Calculating heat transport behavior requires the balanc-

ing of three thermal processes at the bubble wall: thermal

conduction in the gas, thermal conduction in the liquid, and

the heat of vaporization associated with phase change. Given

Eq. (15), heat and mass transport are directly coupled

through Tw and _nv. Both the PZ and SCL models use the

same approach for estimating the temperature gradient in the

gas phase, the total energy balance at the liquid-gas inter-

face, and the temperature jump between liquid and gas

phases. The temperature gradient in the gas is required by

Eq. (12) for the radial dynamics and is estimated from the

following relations:

@h
@r

����
r¼R

¼ hw � h
dh

(18)

dh ¼ Ah
kg

qmcp

Rffiffiffiffiffiffiffiffiffiffiffi
pi=q0

p
 !1=2

: (19)

Here Ah is an arbitrary constant, qm is the density of gases

inside the bubble, cp is the constant-pressure specific heat of

the gas-vapor mixture, and q0 is again the ambient liquid den-

sity. Note that Rðpi=q0Þ�1=2
is used as a time scale for bubble

motion in this definition of dh, which is required to remain

less than or equal to the bubble radius. Unlike that used above

for dm, this time scale possesses no singularities and is benefi-

cial for estimating thermal behavior during collapse. Inciden-

tally, this time scale is not well suited to estimating the

aforementioned mass diffusion. Upon comparison with a

sample calculation presented by Preston,18 the value Ah

¼ 0:5 was found to provide a good approximation to the ther-

mal boundary-layer thickness for a bubble undergoing an in-

ertial collapse.41 Hence, this value is adopted here.

Both the SCL and PZ models also employ the same rela-

tions for enforcing an energy balance at the bubble wall and

for calculating the temperature difference Tw � hw. Respec-

tively, these relations can be expressed as

4pR2kg
@h
@r

����
r¼R

�4pR2k‘
@T

@r

����
r¼R

þ _nvL þ _ncv hw � Twð Þ ¼ 0

(20)

Tw � hw ¼ f
Vffiffiffi

2
p

pnN AX2

� �
@h
@r

����
r¼R

: (21)

In the first equation, kg and k‘ are the thermal conductivities

in the gas and liquid, L is the heat of vaporization, and cv is

the constant-volume heat capacity of the gas-vapor mixture.

In the second, f is the temperature-jump coefficient deter-

mined from kinetic gas models, N A is Avogadro’s number,

and X is the hard-sphere molecular diameter as calculated

from Lennard-Jones potentials. The parenthesized quantity

in the second equation represents the mean-free path of gas

molecules inside the bubble.40,42 Although it is unclear that

a nonzero temperature difference Tw � hw need be consid-

ered,41 this modeling component is included for generality

and consistency with prior work.43,44 Although it is difficult

to extrapolate the results from kinetic gas simulations to the

conditions present in a collapsing bubble, values of f calcu-

lated by Sharipov and Kalempa40 suggest that likely values

range from about 2 to 2.5. We select a value f ¼ 2 here as a

round number—results suggest that the model is not sensi-

tive to this parameter. In addition to Eqs. (18)–(21), either

the PZ or the SCL model as described below is used to cal-

culate the liquid temperature Tw.

1. Plesset-Zwick (PZ) model

The problem of thermal conduction in the liquid is com-

pletely analogous to the Eller-Flynn solution for the diffu-

sion of dissolved gases as described in Sec. II B 1. Using the

same time scale s from Eq. (13), the convolution integral for

the liquid temperature can be written as

Tw ¼ T1 �
ffiffiffiffiffiffiffiffiffiffiffi

k‘
q0cp‘

s ðs

0

F pzðs0Þffiffiffiffiffiffiffiffiffiffiffiffi
s� s0
p ds0 (22)

F pz ¼
1

R2

@T

@r

����
r¼R

(23)

where cp‘ is the heat capacity of the liquid. To implement

the PZ model, the temperature gradient in Eq. (23) is found

algebraically from Eq. (20) as a function of h, hw, Tw, _nv, and

_n. Further details of the model implementation are deferred

to Sec. III

2. Scaling (SCL) model

Unlike the PZ model, the SCL model utilizes an explicit

assumption of a linear temperature gradient in the liquid, as

depicted in Fig. 1(b). Accordingly, this gradient is approxi-

mated as

@T

@r

����
r¼R

¼ T1 � Tw

dT
: (24)
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To estimate the boundary-layer thickness dT , one approach

is to consider thermal conduction and to adopt the same time

scale for bubble motion that was used for dh. Omitting any

arbitrary scaling constant, this approach yields

dT1 ¼
k‘

q0cp‘

Rffiffiffiffiffiffiffiffiffiffiffi
pi=q0

p
 !1=2

: (25)

However, it is important to recognize that phase change at

the interface introduces another relevant time scale. Consid-

ering a thin shell of liquid whose thickness is dT2, we ap-

proximate the mass of liquid in this shell as q04pR2dT2.

Assuming a uniform temperature within the shell and con-

sidering heat transfer only due to phase-change processes, a

new time scale can be estimated as a function of the bound-

ary-layer thickness dT2 and the rate of evaporation or con-

densation. Introducing this time scale into the same

definition of thermal penetration distance used in Eq. (25),

we can solve for the thickness:

dT2 ¼
4pR2k‘
L _nvj j

: (26)

This boundary-layer approximation effectively assumes that

thermal conduction on the inner and outer surfaces of the liq-

uid shell offset one another, while convection is negligible.

Such conditions are most consistent with slow-moving

phases of bubble motion.

Although various schemes for defining an effective

boundary-layer thickness can be conceived, we define it sim-

ply as the minimum of dT1 and dT2. Introducing the arbitrary

scaling constant AT , we have

dT ¼ AT �min dT1; dT2f g: (27)

For an inertially collapsing bubble, dT2 typically remains

less than dT1 until the late stages of collapse when the critical

temperature of the liquid is exceeded and phase change

ceases. As discussed in Ref. 41 and demonstrated in Fig.

7(c), the scaling implied by AT ¼ 1:3 yields roughly the

same estimate of Tw as the PZ model.

III. MODEL IMPLEMENTATION

The model equations described in the preceding section

were numerically solved under various conditions to eluci-

date the role of vapor. The numerical implementation com-

prises two basic steps. First, the model equations are

formulated in state-space form as _y ¼ f ðy; tÞ, where y is the

state vector, t is time, and the overdot denotes a time deriva-

tive. Second, the state equations are integrated in Fortran9545

using a fifth-order Runge-Kutta routine with explicit time

marching and variable time steps. The Runge-Kutta routine

includes error estimates by also evaluating an embedded

fourth-order solution.46 The variable step size during integra-

tion is chosen so that the relative error for each state variable

remains less than a prescribed nondimensional tolerance.

Further details of the implementation are described below;

additional discussion of the numerical solution is available

in Ref. 41.

A. Function evaluations

Because each successful integration step requires an

evaluation of the time derivative of state variables _y, it is

insightful to consider what each of these function evalua-

tions entails. To this end, we first note that the state variables

are defined as bubble radius and velocity (R, _R), pressure pi,

moles of non-condensable gas ng, and moles of water vapor

nv. While these variables technically define the state of the

bubble for integration, they do not account for any changes

in the gas and liquid temperatures at the bubble wall. Indeed,

Tw, hw, _nv, and _pi are intimately coupled. Hence, performing

a function evaluation requires a substep in which Tw and hw

are determined self-consistently with derivatives of the state

variables. In addition, each function evaluation involves an

interdependence between _pi and the rate of change of ng as

implied by Eq. (14). This interdependence can also be

addressed with substep calculations.

Because the temperatures Tw and hw affect heat and

mass transport, substep calculations are used to “settle” their

values in conjunction with the estimated derivative _nv. To

this end, we adopt an iterative approach similar to that used

by Church for a gas bubble.10 Each iteration comprises the

following steps: (1) evaluation of _nv based on present values

of the state variables and the average temperature h implied

by the ideal gas equation, (2) calculation of Tw and hw using

either the PZ or the SCL model, and (3) evaluation of the

change in Tw relative to the value computed after the last

completed time step. These steps are repeated in successive

iterations until either the relative change in Tw is less than

1% or more than 10 iterations have been executed. After

exiting the iteration loop, the values of Tw, hw, and _nv are

considered “settled” for a given function evaluation such

that _pi and other state derivatives can be calculated. With

this approach, a few iterations are often sufficient to achieve

convergence of the thermal variables. However, during very

violent collapses, convergence to within 1% relative error

may not be reached even after tens or hundreds of iterations.

Accordingly, the maximum number of iterations was

selected as 10 for computational efficiency.

Having defined the thermal substep, we now describe

the estimation of _ng. Church used substep calculations

whereby the gas partial pressure ðng=nÞpi and the updated

gas content ng were iteratively calculated using the ideal gas

equation and Eq. (14). He found that reasonable convergence

was achieved in three iterations.10 Here, an alternate

approach is implemented based upon the recognition that the

diffusive time scale is considerably longer than typical inte-

gration time steps. To take advantage of the relative slow-

ness of diffusion, the time derivative during the kth time step

is estimated from the previous time step as

_ng ¼
n
ðkÞ
g � n

ðk�1Þ
g

tðkÞ � tðk�1Þ ; (28)

where the parenthesized superscripts denote the relevant

integration steps. Using this estimate of the derivative, n
ðkþ1Þ
g

is initially estimated from the Runge-Kutta integration and is

then updated by performing the convolution of Eq. (14) with
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the current state variables yðkþ1Þ. This approach was found to

yield results very similar to Church’s while being more com-

putationally efficient.

B. Convergence behavior

For a numerically convergent model, the smaller time

steps required by smaller error tolerances produce more

accurate results. However, as discussed above, the present

model includes substep operations for thermal variables as

well as for mass diffusion of dissolved gases. In addition,

smaller time steps become increasingly troublesome for

evaluating the convolution integrals used to determine either

Tw (in the PZ model) or ng. Overall, the SCL and PZ models

were typically found to converge for error tolerances on the

order of 10�6 or smaller when considering a single Rayleigh

collapse.41 However, very small time steps associated with

smaller tolerances for the PZ model tend to produce noisy

results from the convolution calculation for Tw, possibly

leading to numerical instabilities during violent collapses.

As a result, for any attempted time step in which the PZ

model yields an unrealistic estimate of Tw (e.g., below the

melting point of the liquid or “NaN”), the SCL model is uti-

lized to provide the estimate. This strategy enables the PZ

model to be successfully extended to collapses that are other-

wise numerically intractable.

Aside from numerical convergence characteristics per se,

another observation of model stability and performance was

noted. Numerical performance is much better when heat con-

duction in both the liquid and the gas are considered. More

specifically, if Tw is assumed to remain constant, the model

requires extremely small step sizes and often does not effec-

tively integrate through a collapse. This behavior can be

explained by recognizing that a fixed liquid temperature leads

to an overprediction of the temperature gradient in the gas

during collapse. Through Eq. (12), the overestimated tempera-

ture gradient enhances the coupling of radial dynamics with

heat transport. Because the thermal variables are addressed in

a substep rather than by direct integration as state variables,

very small steps are required to “settle” the thermal variables.

We conclude that even though the iteration limit of 10 may be

exceeded during collapses, the allowance of liquid heating

nonetheless facilitates a more consistent estimation of temper-

ature gradients and improves numerical performance.

C. Fluid properties

A final aspect of the model implementation involves the

fluid properties used for liquid and gas phases. The model

was implemented to represent an air bubble in water. Table I

displays the relevant properties, functional dependencies,

and references from which associated formulations were

adopted. Many of the same or similar formulations have

been used in previous bubble models.35,43,47 In the table,

note that the properties are divided into three groups: in the

top group, properties are initialized and not updated during

integration; in the middle group, properties are updated after

each integration time step; in the bottom group, properties

are updated during each time step as an inherent part of the

integration. To evaluate any fluid property under conditions

beyond the range specified for the referenced correlation, the

closest conditions within the specified range were used.

The model is quantitatively sensitive to fluid properties

and their implementation (see Sec. IV B 1. below). More-

over, for applications involving therapeutic ultrasound, the

relevant physical properties of biological fluids remain diffi-

cult to define. However, simulating an air bubble in water

provides insight into both the relative importance of specific

properties and qualitative trends in the bubble dynamics for

a given application. In addition, even though the model is

not currently formulated to treat viscoelastic fluid properties,

such an adaptation could be made.48

IV. VALIDATION

To validate model performance, numerical results are

presented in two subsections below. First, model predictions

are compared with experimental data to identify suitable val-

ues for the parameters Am and fm that describe the diffusive

behavior of vapor inside the bubble. Next, benchmark simu-

lations are compared against the predictions of several mod-

els from the literature in order to quantify the relative

performance of the present reduced-order model.

A. Model tuning

From the model presented above, two parameters

associated with vapor transport were not determined. These

parameters are associated with diffusion among vapor and

non-condensable gas molecules inside the bubble and thus

affect how vapor is trapped when diffusion limits the conden-

sation rate implied by gas kinetics. More specifically, the pa-

rameter Am scales the thickness of the diffusive boundary

layer, while fm indicates the critical molar fraction of vapor

inside the bubble below which vapor trapping is controlled

by diffusion per Eq. (16). To complete the model description,

it is necessary to identify values for these parameters. The

approach taken here is to use experimental observations of

individual bubble collapses to guide parameter identification.

To investigate vapor transport during a single inertial

collapse, bubbles excited by lithotripter shock waves provide

TABLE I. Fluid properties for water and air.

Property Dependency Reference #

liquid saturation density q0ðT1Þ 62

liquid sound speed c0ðT1Þ 63, 64

liquid heat capacity cp‘ðT1Þ 65

liquid-gas diffusivity DðT1; p0Þ 66

liquid viscosity lðTw; pwÞ 67

liquid-gas surface tension rðTwÞ 68

gas-liquid solubility HðTwÞ 69

liquid thermal conductivity k‘ðTw; pwÞ 67

gas thermal conductivity kgðh; qm; f Þ 47, 70

saturation vapor pressure psatðTwÞ 62

latent heat of vaporization LðTwÞ 71

gas heat capacity cvðh; f Þ 42

gas heat capacity cp ¼ cv þR ideal gas

two-gas diffusivity D12ðh; qm; f Þ 42, 70
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a useful subject for study. As suggested by Church,10 the

negative tail of a lithotripter shock wave leads to prolonged

bubble growth followed by an unforced Rayleigh collapse

several hundred microseconds later. Also, as noted by

Matula et al.,12 the amount of vapor inside the bubble

exceeds the amount of non-condensable gas throughout most

of the bubble motion. These qualitative dynamics are illus-

trated in Fig. 2. In Fig. 2(a), the radial dynamics of an air

bubble are shown for cases in which vapor is and is not

excluded from the bubble. Figure 2(b) shows the relative

evolution of air and vapor content for the latter case. Note

that to generate this figure, the present model was used while

vapor trapping per Eq. (16) was neglected. These calcula-

tions imply that lithotripsy bubbles consist mostly of vapor

during collapse, even in the absence of vapor trapping.

Moreover, as suggested by the rebounds after the main col-

lapse at roughly 165 ls, the presence of vapor significantly

affects the energy lost during collapse. Since vapor transport

is expected to be a function of both the temperature of the

surrounding liquid and diffusive interactions with non-con-

densable gases inside the bubble, these transport processes

can be explored by observing the rebounds of lithotripsy

bubbles while ambient water conditions are varied across a

range of temperatures and dissolved gas concentrations.

Such experiments with lithotripsy bubbles were con-

ducted and are described in detail elsewhere.19 These experi-

ments comprised photographic observations of individual

bubble collapses and rebounds in water, using a matrix of

nine test conditions. Each condition for the water was charac-

terized by one of three temperatures (20, 40, or 60 �C) and

one of three levels of dissolved atmospheric gases (measured

as dissolved oxygen concentrations at 10%, 50%, or 85% of

saturation). Because data collection at 60 �C, 85% dissolved

oxygen was complicated by the sequence of water processing

and the apparent spontaneous growth of supersaturated car-

bon dioxide bubbles, only data from the other eight condi-

tions were considered in evaluating best-fit values for the

model parameters Am and fm.

For each observed collapse and rebound, the dynamics

were quantified by the fraction of energy retained by the bub-

ble through the collapse. For the characteristic bubble motion

illustrated by the dashed line in Fig. 2(a), the radial velocity

is zero when the maximum radii Rmax;1 and Rmax;2 are

reached. Moreover, because there is no external forcing after

the initial few microseconds of the plot, the bubble’s energy

before and after collapse can be defined in terms of the

energy required to expand the bubble’s volume against the

pressure difference between the bubble interior and the sur-

rounding liquid. Assuming a quasistatic expansion, the liquid

pressure p0 and the vapor pressure inside the bubble psat

remain constant. Accordingly, the ratio ðRmax;2=Rmax;1Þ3 rep-

resents the fraction of energy retained by the bubble after col-

lapse and is used here to characterize the bubble dynamics.

Essentially the same normalization approach was previously

adopted for evaluation of laser-induced cavitation bubbles.49

In addition to normalization, each observed collapse

was also categorized based on the presence or absence of a

visible re-entrant jet. The presence of a jet was used to iden-

tify asymmetries, which can reduce the energy lost during

violent collapses that are associated predominantly with

acoustic radiation losses.49 In the data reported in Ref. 19

asymmetries lead to definitively more energetic rebounds for

the most violent collapses (i.e., those occurring at 20 �C as

well as those at 40 �C, 10% dissolved oxygen). However,

this trend essentially disappears for the other test conditions.

Hence, in order to compare observations with model predic-

tions that implicitly assume sphericity, calculated statistics

exclude asymmetric collapses for the conditions explicitly

cited above and include all collapses for the remaining con-

ditions that are insensitive to asymmetries. As such, experi-

mental data are plotted against model predictions in Figs. 3

and 4. In both figures, the mean for each test condition is

plotted as a circle, with vertical bars extending 61 standard

deviation.

For determining the model parameters Am and fm, it is

insightful to consider separately the model sensitivity to both

dissolved gas content and temperature. In Fig. 3, these sensi-

tivities are explored for three different combinations of pa-

rameters: (1) fm ¼ 0:997, Am ¼ 1:69; (2) fm ¼ 0:998,

Am ¼ 0:80; and (3) fm ¼ 0:999, Am ¼ 0:524. The sensitivity

to dissolved gas concentration at 20 �C is shown in Fig. 3(a),

while Fig. 3(b) depicts the sensitivity to temperature at a dis-

solved gas concentration of 50%. For these plots, the PZ

model was used for all simulations. Also, note that for each

of the labeled molar fractions fm in the figure, the aforemen-

tioned boundary-layer scaling for diffusion Am is automati-

cally implied.

As is evident in Fig. 3(a), the corresponding values for

Am were chosen so that bubbles would be predicted to retain

FIG. 2. Characteristic dynamics of a micron-sized bubble in water after ex-

citation by a lithotripter shock wave. (a) Radius-time curves for an air bub-

ble and an air-vapor bubble demonstrate that vapor affects the bubble

rebound even in the absence of vapor trapping. (b) A plot showing the com-

position of the air-vapor bubble as a function of time.
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about 2.6% of their energy after a collapse under conditions

at 20 �C and 10% dissolved gas concentration. The model is

specifically forced to fit this data point because collapses

under such conditions have been independently explored.

Akhatov et al.38 examined the spherical collapses of milli-

meter-sized, laser-induced bubbles and found that bubbles

retained about 2.4% of their energy. They reported data col-

lection in a cuvette of distilled water at 23 �C. Although they

did not specify any measured concentration of dissolved

gases, we interpret “distilled” to imply a relative absence of

dissolved gases. Hence, their result of 2.4% retained energy

is comparable to observations from Fig. 3(a) at 10% dis-

solved oxygen. Because collapses under this condition were

particularly sensitive to asymmetries and because the lack of

a visible re-entrant jet did not preclude the presence of an

asymmetry, it is reasonable to consider the lower observed

values as indicative of truly spherical collapses. Indeed, the

smallest several rebounds effectively match the rebound

energy of 2.4% moreover, no asymmetries were apparent in

any of the corresponding collapses.19 Taking other observa-

tions into account, a slightly higher level of 2.6% was used

for parameter determinations.

With the approach discussed above to select Am for a

given fm, the values of fm were in turn chosen to fit overall

observations of sensitivity to dissolved gas concentration

and temperature. In both Fig. 3(a) and 3(b), it is evident that

using fm ¼ 0:998 most accurately fits the central tendencies

of experimental observations. It is instructive to note that the

model with fm ¼ 0:999 is not sensitive enough to dissolved

gases, but too sensitive to temperature. The opposite behav-

ior is apparent for fm ¼ 0:997. Hence, because Am is posi-

tively correlated with retained energy for all test conditions,

adjustment of the Am values (by relaxation of the require-

ment to fit 2.6% rebounds) would still not improve the over-

all fits for fm ¼ 0:997 or 0.999. A final observation from this

figure is that the simulations with fm ¼ 0:997 and 0.998 con-

verge as temperatures approach 60 �C. This convergence

indicates an insensitivity to Am and fm whereby vapor trap-

ping effects are not important. As such, at 60 �C and 50%

dissolved oxygen, the bubble’s collapse is not dependent

upon the amount of non-condensable gas inside the bubble;

rather, the collapse is thermally controlled by the liquid tem-

perature at the bubble wall.

For a comprehensive comparison of experimental obser-

vations with simulations based on the present reduced-order

modeling approach, Fig. 4 includes all test conditions as

well as simulations that use variations of the PZ and SCL

models. All model calculations used in this figure utilize the

parameters fm ¼ 0:998, Am ¼ 0:8. First, we note that the PZ

model simulates experimental observations well for all con-

ditions except 60 �C, 85% dissolved oxygen. As mentioned

above, data collected under these conditions were not con-

sidered reliable and are only shown here for completeness.

Although the SCL model matches observations fairly well at

20 �C and 40 �C, it does not capture the behavior at 60 �C.

Observations suggest that the dynamics are very similar at

60 �C and either 10% or 50% dissolved oxygen. However,

the SCL model predicts a sizable difference between these

FIG. 3. Illustration of model sensitivities to the tuning parameters that rep-

resent the boundary-layer scaling for mass diffusion inside the bubble Am

and the critical molar fraction of vapor below which vapor trapping occurs

fm. The energy retained after the collapse of a lithotripsy bubble is plotted

for various combinations of tuning parameters and water conditions. For

each labeled value of fm, a value of Am is implied in order to predict bubble

rebounds that retain 2.6% of their initial energy under water conditions at

20 �C and 10% dissolved oxygen. The corresponding model conditions are

fm ¼ 0:997 and Am ¼ 1:69; fm ¼ 0:998 and Am ¼ 0:8; fm ¼ 0:999 and

Am ¼ 0:524. Open circles and associated vertical bars represent the mean

61 standard deviation of experimental observations at each water condi-

tion.19 (a) Model sensitivity is plotted relative to reported observations at

20 �C and three separate dissolved oxygen concentrations. Experimental

data at 10%, 50%, and 85% concentrations include 12, 13, and 6 independent

bubble collapses, respectively. (b) Model sensitivity is plotted relative to data

at 50% dissolved oxygen and three temperatures. Experimental data at 20, 40,

and 60 �C include 13, 20, and 43 independent collapses, respectively.

FIG. 4. (Color online) Comparison of various model predictions with exper-

imental observations with regard to the energy retained after the collapses of

lithotripsy bubbles. Two tuning parameters (fm ¼ 0:998 and Am ¼ 0:8) are

used to fit eight separate groups of observations. Included here for complete-

ness, the ninth experimental group at 60 �C and 85% dissolved oxygen was

deemed unreliable given the presence of supersaturated carbon dioxide bub-

bles under the test conditions. Open circles and associated vertical bars rep-

resent the mean 6 1 standard deviation of experimental observations at each

water condition.19 Considering x axis conditions from left to right in the

plot, experimental data represent 12, 13, 6, 5, 20, 23, 46, 43, and 22 inde-

pendent bubble collapses, respectively.
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conditions and underpredicts the amount of retained energy

in both cases. In addition, calculations based on the PZ

model in the absence of vapor trapping are plotted. By using

the PZ model to estimate liquid temperatures while ignoring

vapor trapping as described by the maximum condensation

rate from Eq. (16), these calculations reflect thermal effects

only. As demonstrated in Fig. 4, such a model complements

the SCL model by matching the observations at 60 �C, but

not at lower temperatures.

To interpret the performance of model calculations in

Fig. 4, it is helpful to consider two independent mechanisms

through which vapor can affect the dynamics of an inertial

collapse. The first depends upon the diffusively controlled

amount of vapor trapped in the bubble during collapse. In

turn, the extent of vapor affects the evolution of pressure due

to compression, whereby additional vapor slows the collapse

and reduces the loss of energy. Because diffusion among

vapor and gas molecules controls the amount of trapped

vapor, this mechanism is fundamentally diffusive. The sec-

ond mechanism relates to thermal interactions of vapor with

the surrounding liquid. As a vapor bubble collapses and the

liquid at the bubble wall is heated by both thermal conduc-

tion from the compressed gas and the latent heat associated

with condensation, any increase in liquid temperature will

increase the saturation vapor pressure and thereby arrest the

collapse. This phenomenon can be described as a thermally

controlled collapse. Because the SCL model algebraically

estimates liquid temperature at each instant, the bubble’s his-

tory and the potential evolution of a thermal boundary layer

in the liquid are neglected. Consequently, the thermal effects

of vapor that appear to become significant at 60 �C are not

captured by the SCL model. Conversely, the PZ model with

no limiting of condensation rates fails to simulate the diffu-

sive effects of vapor even as the convolution used to estimate

liquid temperature predicts the observed thermal effects.

In summary, for the eight conditions with reliable data,

collapse dynamics are controlled mainly by diffusively con-

trolled vapor trapping at 20 �C and 40 �C, while thermal

effects dominate at 60 �C. The PZ model accurately simulates

experimental observations for all eight conditions even though

only two independent fitting parameters were used to tune the

model. This good fit with an overdetermined set of experi-

mental data provides validation that the present reduced-order

model includes the essential physics relevant to the inertial

collapses of millimeter-sized gas-vapor bubbles.

B. Benchmark simulations

Above, the present reduced-order models were tuned

and tested for the collapses of lithotripsy bubbles. However,

it remains helpful to benchmark the PZ and SCL models

against published results in order to clarify model capabil-

ities and limitations, particularly with regard to heat and

mass transport. Gas diffusion during low-amplitude, periodic

bubble oscillations is commonly analyzed using the solution

developed by Eller and Flynn.22,50 However, for the large

acoustic pressures and nonlinear bubble oscillations charac-

teristic of therapeutic ultrasound, it is necessary to capture

transient behavior. As such, transient diffusion calculations

are of interest, as represented here by the convolution Eqs.

(14) and (22). Because bubble dynamics in therapeutic ultra-

sound are also characterized by violent inertial collapses,

published model predictions relevant to sonoluminescence

and HIFU also provide useful data for comparison. These

two types of model benchmarks are described in detail in the

following subsections.

1. Sensitivity to fluid properties

In making benchmark comparisons and drawing distinc-

tions among various models, it is useful to understand the

impact of the fluid properties. Unless explicitly noted other-

wise, the definitions of fluid properties cited in Table I were

used in the subsequent calculations. To examine the model’s

sensitivity to these properties, we consider changes in the

rebounds of bubbles from two types of violent collapses:

unforced collapses of millimeter-sized lithotripsy bubbles (at

20 �C, 10% dissolved gases), and forced collapses of the sono-

luminescence bubble modeled by Storey and Szeri.17 In both

cases, changes in a bubble’s simulated rebound are compared

in terms of energy, which can be estimated as a ratio of the

cube of rebound radii predicted for different fluid properties.

From Table I, we note that the middle and bottom groups

of properties are of primary interest because static values were

easily altered to make benchmark comparisons. In the middle

group, only the thermal conductivities vary enough during an

inertial collapse to alter the bubble’s rebound appreciably. If

the thermal conductivity of the gas-vapor mixture kg is eval-

uated only at the initial conditions, the test lithotripsy bubble

retains about 10% more energy after collapse, while the sono-

luminescence bubble retains about 24% more energy with a

fixed conductivity value. Similar trends are produced by fixing

the liquid thermal conductivity k‘, though the changes in

rebound energies are less by about an order of magnitude

since kg varies much more than k‘ during a collapse. Because

thermal conductivities are generally enhanced at higher tem-

peratures and pressures, adjusting the effective values after

each time step increases the thermal damping associated with

the collapse. Despite the utility of the cited formulations for

dynamically estimating thermal conductivities, such estimates

still underestimate the true values near the supercritical region.

Given the rather complex physical phenomena that may occur

during violent collapses, the present model seeks only to cap-

ture the larger features of the dynamics.

In the bottom group, psat and L are well defined proper-

ties for water that can be represented by straightforward cor-

relations. On the other hand, gas properties for diffusivity

D12 and heat capacity cv are more difficult to estimate under

the extreme conditions associated with an inertial collapse.

Because the present model is inherently sensitive to D12

through a scaled boundary layer thickness [see Eq. (16)], it is

not particularly insightful to explore the sensitivity to D12 ex-

plicitly. However, the specific heat cv can be estimated with

or without a dependence on the temperature h. If the tempera-

ture dependence for cv described in Ref. 42 is omitted, more

energy is retained through collapse. Whereas thermal conduc-

tivity affects the collapse dynamics through thermal damping,

the specific heat primarily affects acoustic damping. During
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an inertial collapse, energy that goes to internal degrees of

freedom is energy that does not contribute to the pressure

inside the bubble. Hence, accounting for the temperature de-

pendence of cv leads to a lesser buildup of the pressure pi at

any given bubble radius. Accordingly, the bubble collapses to

a smaller volume, achieves higher ultimate pressures as

energy is more concentrated, and loses more energy by

acoustic radiation. For the test lithotripsy bubble, the temper-

ature dependence of cv is more significant than variations in

thermal conductivities; omitting the temperature dependence

leads to a rebound with nearly 30% more energy. In contrast,

a fixed heat capacity cv leads to a retention of only about 6%

more energy for the cited sonoluminescence bubble, which is

considerably less than the additional energy retained with a

fixed thermal conductivity kg.

2. Application of convolution solutions

Application of the Eller-Flynn zeroth-order convolution

solution to transient bubble motions was described by

Church10 and later duplicated by Sapozhnikov et al.11 In

both of these prior efforts, the diffusion of non-condensable

gases was simulated for lithotripsy bubbles. Sapozhnikov et
al. compared their model predictions with experimental

observations of bubble dissolution times after passage of a

shock wave. Using static overpressure as an independent

variable, their observed dissolution times agreed well with

calculations of transient gas diffusion into single bubbles

excited by a shock wave. The net diffusion into an excited

bubble was calculated with the zeroth-order convolution,

while subsequent dissolution of a quiescent bubble was

simulated with the Epstein-Plesset model.51 For comparison

with this prior work, the SCL model was used while neglect-

ing vapor transport in order to calculate transient diffusion

into lithotripsy bubbles. Model predictions shown in Fig. 5

are virtually identical to those reported by Sapozhnikov

et al. Small discrepancies are attributable to differences in

the fluid properties and disappear if the properties are fixed

at their initial values while the liquid-gas diffusivity D is set

to the value cited by Sapozhnikov et al.
In addition to the calculations of Sapozhnikov et al., sim-

ilar calculations were also reported by Matula et al.12 for a

lithotripsy bubble. For the case simulated, their model pre-

dicts that about an order of magnitude more gas molecules

will diffuse into the bubble than does the present model.

Although vapor transport is included in these model calcula-

tions, it affects the diffusion of non-condensable gases very

little; hence, the model presented by Matula et al. is also

expected to predict much more gas diffusion than the model

from Sapozhnikov et al. For the bubbles studied by Sapozhni-

kov et al., such a high level of diffusion would lead to bubble

dissolution times that are 5–10 times longer than were

observed. Rather than the zeroth-order Eller-Flynn solution

used here, Matula et al. adopted the modeling approach pre-

sented by Fyrillas and Szeri,36 which should be more accu-

rate. However, they do not discuss implementation details for

the type of transient motion that characterizes lithotripsy bub-

bles. Ultimately, we consider the calculations presented by

Sapozhnikov et al. as the relevant benchmark because these

calculations were consistent with experimental observations

that directly reflect gas diffusion. The higher transient diffu-

sion rates predicted by Matula et al. could be consistent with

these observations if each lithotripsy bubble broke into many

daughter bubbles. However, even if the experimental litho-

tripsy bubbles did break into numerous daughter bubbles, it is

unclear that the subsequent dissolution of closely spaced bub-

bles would proceed quickly enough and consistently enough

to match the observed dissolution times.

Aside from modeling gas diffusion, the same convolu-

tion solution was used in the PZ model to calculate heat dif-

fusion in the liquid. The transient, monotonic growth of

vapor bubbles in superheated water has been studied theoret-

ically and experimentally, thereby providing data for com-

parison. As noted by Plesset and Zwick,52 such growth can

be split into two regimes. Rapid initial growth is controlled

by surface tension and the inertia of the surrounding liquid;

subsequent slower growth is limited by the thermal conduc-

tion of heat from the surroundings to the bubble. Plesset and

Zwick developed an asymptotic model for the thermally con-

trolled regime and found their model to closely match exper-

imental observations. As the bubble grows relatively large,

this model predicts the bubble radius to be proportional to

the square root of time; such calculations are compared to

predictions from the SCL and PZ models in Fig. 6(a). First,

note the dashed lines at left that represent the SCL model at

102 �C and 106 �C. Because the SCL model employs an in-

stantaneous algebraic solution for heat diffusion in the liq-

uid, it cannot capture the evolution of a thermal boundary

FIG. 5. Calculations of the transient diffusion of dissolved gases into a bub-

ble excited by a lithotripter shock wave. For each indicated static pressure in

the liquid, bubble oscillation and the concomitant diffusion lead to a new

equilibrium bubble radius for a given initial radius. The dashed line denotes

the locus of points corresponding to zero net diffusion such that initial and

equilibrium radii are the same. The plot was generated for comparison with

Fig. 3 from Sapozhnikov et al.11 and shows virtually the same results. Calcu-

lations utilized the SCL model, neglected vapor transport, assumed an ambi-

ent temperature of 20 �C, and assumed an initial concentration of dissolved

gases corresponding to equilibrium at a pressure of 1 bar. The lithotripter

shock wave was modeled by assuming an instantaneous pressure rise to the

shock’s peak positive value psw at time t¼ 0. Following Sapozhnikov et al.,
subsequent acoustic pressures were modeled as 2pswe�at cosð2pftþ p=3Þ,
where psw ¼ 50 MPa, a ¼ 9:1� 105 s�1, and f ¼ 83:3 kHz.
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layer that limits heat conduction and the bubble’s growth

rate. In contrast, relative agreement between the PZ model

(solid lines) and Plesset and Zwick’s asymptotic solution

(dotted lines) demonstrates that the convolution does capture

transient thermal effects. At both 102 �C and 106 �C, the PZ

model predicts slightly higher growth rates than the asymp-

totic model, suggesting that it underestimates the effective

boundary-layer thickness and overestimates the ability of

heat to flow between the distant surroundings and the bubble.

For an additional benchmark pertinent to heat diffusion,

we also consider the vapor-bubble model presented by Hao

and Prosperetti.53 For a vapor bubble in water at 100 �C, they

simulate the response of a 35 lm bubble to a 1 kHz, 0.4 atm

sine wave. Their calculations predict rectified heat transfer

leading to bubble growth up to and beyond the resonance ra-

dius. As shown in Fig. 6(b), the PZ model demonstrates the

same qualitative behavior, while the SCL does not. Note that

the dotted lines in this figure represent the envelope of the ra-

dius-time curve reported by Hao and Prosperetti. Because the

SCL model does not capture the evolution of a thermal

boundary layer, heat is readily conducted to/from the sur-

roundings and the bubble cannot concentrate energy to grow

by rectified heat transfer. In contrast, the PZ model does pre-

dict rectified heat transfer and bubble growth through reso-

nance. Notably, the PZ model predicts slightly slower bubble

growth than the Hao and Prosperetti model, both before and

after resonance size is reached. Moreover, after the bubble

grows beyond resonance size, the PZ model predicts larger

peak-to-peak oscillations during each acoustic cycle. Because

the oscillatory stiffness of vapor bubbles depends upon the

concentration of thermal effects in the liquid close to the bub-

ble, larger oscillations coupled with slower overall growth

rates are consistent with the earlier observation that the PZ

model slightly overestimates the instantaneous rate of heat

transfer between the bubble and the distant surroundings.

Convolution calculations in the present model rely on a

basic assumption that diffusion is slow and the diffusive

boundary layer remains thin. As discussed by Fyrillas and

Szeri,36 the assumption of a thin boundary layer is tanta-

mount to the presence of a large Peclet number, which is

inversely proportional to the diffusivity. Given that the ther-

mal diffusivity of water is about 70 times larger than the dif-

fusivity of dissolved air in water, we would expect this thin-

boundary-layer assumption to be more restrictive for heat

diffusion. In addition, we note that the model implementa-

tion utilizes integration substeps to treat transient bubble

motions for which the radial bubble dynamics are not neces-

sarily decoupled from diffusion. In this context, the calcula-

tions shown in Figs. 5 and 6 provide useful benchmarks of

overall model performance and demonstrate that the present

model appears to capture the basic features of transport

behavior. Because the zeroth-order convolution tends to

underestimate the boundary-layer thickness, net transport is

overestimated during any monotonic bubble growth or col-

lapse. However, for an oscillating bubble, the thinner bound-

ary layer implies that the bubble is more closely coupled to

the surrounding liquid as a source or sink; as such,

“concentrating” behaviors like rectified diffusion and recti-

fied heat transfer will be less prevalent.

3. Simulation of violent bubble collapses

With regard to violently collapsing bubbles, single-bub-

ble sonoluminescence is a phenomenon that has been studied

in detail. In particular, Storey and Szeri17 have reported

model calculations to elucidate the physical mechanisms that

affect the collapse dynamics of individual sonoluminescence

bubbles. For comparison with the present model, the “case

II” calculations of Storey and Szeri are considered here,

allowing for vapor transport in the absence of chemical reac-

tions or mass diffusion in the liquid. This case pertains to the

response of a 4.5 lm bubble excited by a sinusoidal pressure

wave of 1.2 bar at 26.5 kHz. Their simulations consider an ar-

gon bubble in water at 25 �C; for comparison, the air bubble

described by the present model is treated using the fluid prop-

erties described in Sec. 3.3, with the thermal conductivity of

FIG. 6. Calculations to benchmark model performance for vapor bubbles,

whereby bubble motion is coupled to thermal conduction in the surrounding

liquid. (a) The radial growth of superheated vapor bubbles is plotted for the

surrounding liquid at two initial temperatures. PZ and SCL model calcula-

tions are compared with the asymptotic approximation derived by Plesset

and Zwick.52 Note that the initial bubble growth rate is influenced primarily

by the initial radius (assumed to be 20 lm here) rather than thermal conduc-

tion in the liquid; accordingly, this rate is not a part of the asymptotic

approximation. With regard to the ultimate growth rates, the PZ model pre-

dicts slightly faster growth while the SCL model predicts much faster

growth. Identical fluid properties are used for calculations from the present

models and the asymptotic approximation. (b) Calculations of rectified heat

transfer are plotted for a 35 lm bubble in 100 �C water after excitation by a

0.4 atm sine wave at 1 kHz. Note that the plotted bubble radius is normal-

ized relative to the resonance size of 2.71 mm for a vapor bubble. The plot

includes lines for the PZ and SCL models as well as an envelope that repre-

sents the results reported in Fig. 3 from Hao and Prosperetti (H&P).53
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air multiplied by 2=3 to approximate that of argon.54 This

implementatation of the fluid properties is very similar to that

used by Storey and Szeri; a notable difference is their use of

a non-ideal equation of state inside the bubble.

For benchmarking purposes, the bubble’s energy con-

tent before, during, and after a violent collapse are of inter-

est. First, we compare radius-time curves, as shown in Fig.

7(a). In this plot, the solid line represents calculations from

the present PZ model, while the dotted lines mark peak radii

reported by Storey and Szeri between collapses. While the

PZ model predicts a maximum radius that is about 3%

smaller, subsequent peak radii decay more quickly with the

PZ model to imply higher damping. This increased damping

is consistent with the earlier conclusion that the PZ model

tends to overestimate the exchange of heat with the sur-

roundings, which act here as a sink that dissipates heat gen-

erated during each collapse. In addition to the smaller

maximum radius, we also note that the minimum radius of

0.38 lm is less than the 0.70 lm value reported by Storey

and Szeri. Discrepancies in absolute values of bubble radius

are expected given the use of different equations of state in

the gas as well as the consideration of spatial inhomogene-

ities by Storey and Szeri. Accordingly, it is useful to assess

energy concentration inside the bubble by the peak gas tem-

perature rather than the minimum bubble radius. Along these

lines, the PZ model predicts a peak temperature of 4200 K

throughout the bubble, while Storey and Szeri predict a peak

of 9700 K at the center. Because the PZ model assumes spa-

tial homogeneity, the 4200 K prediction represents a spatial

average, which should clearly be lower than the spatial peak.

These peak temperatures are consistent with one another.

A main point made by Storey and Szeri as well as by

Toegel et al.35 is that peak temperatures are affected by the

trapping of vapor molecules inside the bubble during late

stages of collapse. As shown in Fig. 7(b), the PZ model pre-

dicts that the molar fraction of vapor at the end of the initial

collapse is 7%, whereas Storey and Szeri report 14%. In this

plot, the dotted lines again denote the peak values predicted

by Storey and Szeri between collapses. Because both models

predict the same maximum value prior to the initial collapse,

we conclude that the PZ model predicts less influence of dif-

fusion inside the bubble as far as limiting the rate of conden-

sation during collapse. Such a discrepancy is not surprising

since the PZ model does not attempt to simulate full details

of the gas dynamics. Nonetheless, the PZ model appears to

capture the basic vapor-trapping behavior.

Another aspect of the model that is closely coupled to

phase change at the bubble wall is the liquid temperature at

this interface. Figure 7(c) shows this temperature as calcu-

lated by the SCL and PZ models. The dotted horizontal line

denotes the critical temperature of water, and the open

circles indicate the times between which the temperature

exceeds the critical value in Storey and Szeri’s calculations.

First, we note that the temperature for the SCL model is

almost symmetric about the time of the bubble’s minimum

radius. This result is easily explained in that the interface

temperature is algebraically calculated at each instant and is

essentially determined by the state of compression of the gas

inside the bubble. In contrast, the other two models display

an asymmetry in the temperature, owing to the buildup of

heat throughout the collapse. As such, the history of the bub-

ble motion affects the temperature at any given time. While

both the PZ model and the calculations from Storey and

Szeri exhibit similar asymmetries, it is interesting that the

PZ model predicts supercritical temperatures for a slightly

longer duration. Given the previous discussion that the PZ

convolution overestimates thermal conduction between the

bubble and the surroundings in the liquid phase, we might

expect the opposite result. However, the interface tempera-

ture during a violent collapse is controlled not only by ther-

mal conduction in the liquid, but also by thermal conduction

in the gas phase (which acts as a boundary condition for

FIG. 7. Model calculations for comparison with the “case II” sonolumines-

cence bubble described by Storey and Szeri.17 In this case, a 4.5 lm bubble

is harmonically excited with a pressure amplitude of 1.2 bar at 26.5 kHz.

Simulations consider an air bubble in water at 298 K; for comparison with

Storey and Szeri’s calculations, diffusion of non-condensable gases is

neglected and the thermal conductivity of air is multiplied by 2=3 to approx-

imate that of argon.54 (a) The radius-time curve predicted by the PZ model

is plotted, with the horizontal dotted lines marking specific peak radii

reported by Storey and Szeri. (b) Solid lines represent PZ model calculations

for bubble contents in terms of argon and water vapor; horizontal dotted

lines indicate peak numbers of vapor molecules reported by Storey and

Szeri. (c) Liquid temperatures at the bubble wall are plotted for the SCL and

PZ models, showing that the choice of AT ¼ 1:3 in the SCL model matches

the PZ model’s peak temperature. The noise in PZ model calculations

reflects a numerical instability at small time steps, as discussed in Sec. 3.2.

Last, the dotted line denotes the critical temperature of water, while the

open circles mark the times between which Storey and Szeri reported super-

critical temperatures.
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thermal diffusion in the liquid). Hence, the longer duration

of supercritical temperatures suggests that thermal conduc-

tion in the gas is overestimated. Since thermal conduction is

calculated from Eqs. (18) and (19), we conclude that the

boundary layer thickness in the gas is underestimated.

Although the tuning defined by Ah ¼ 0:5 matches thick-

nesses reported by Preston for a bubble containing an ideal

gas,18 the prediction of a smaller minimum radius of 0.38

lm for the present case apparently distorts the spatial scaling

for thermal conduction. Based on all of the comparisons in

Fig. 7, the bubble contents and associated peak temperatures

predicted by the PZ model are generally consistent with the

more detailed calculations of Storey and Szeri. We conclude

that the PZ model provides a realistic estimate of the bub-

ble’s energy even during the late stages of a violent collapse.

Accordingly, the model should provide a reasonable approx-

imation of the energy dissipated during a violent collapse.

Additional benchmarks regarding energy dissipation can

be determined by comparison with calculations reported by

Matsumoto et al.15 Exploring the use of bubbles to transduce

incident acoustic energy into heat for thermal therapies such

as HIFU, they considered energy deposition to the surround-

ing medium via three mechanisms: viscous damping, ther-

mal conduction, and acoustic radiation. For air bubbles, they

report radial responses and rates of energy deposition for a

range of initial bubble sizes. The PZ model was used to sim-

ulate the same conditions in ambient water at 20 �C, where

bubbles are excited by a 100 kPa sine wave at 1 MHz. In

Fig. 8(a), resonance curves are compared. While the present

model predicts a curve with the same shape as reported by

Matsumoto et al., it predicts the bubble to undergo smaller

oscillation amplitudes. This result is consistent with the

above comparison to Storey and Szeri’s calculations for a

sonoluminescence bubble, where the PZ model predicted a

smaller maximum radius. In Fig. 8(b), energy deposition

mechanisms associated with bubble motions are illustrated;

plotted lines reflect PZ model calculations, and the open

circles represent thermal conduction calculations reported by

Matsumoto et al. Because energy deposition by viscous dis-

sipation and acoustic radiation is virtually the same for both

models, the corresponding calculations from Matsumoto et
al. are not shown in Fig. 8(b). However, the plot highlights

that significantly higher thermal damping is predicted by the

PZ model for bubbles near resonance. Notably, higher ther-

mal conduction in the gas for the PZ model was also inferred

in the previous benchmark for a sonoluminescence bubble.

Again, we attribute the discrepancy to gas dynamics that are

more complicated than those captured by the present

reduced-order model. Although the discrepancy in thermal

conduction is significant for a resonant bubble at the rela-

tively low excitation amplitude of 100 kPa, acoustic radia-

tion quickly becomes the dominant damping mechanism at

higher acoustic pressures. Moreover, acoustic radiation is

captured well by the present models.

V. RESULTS

Using the tuned model, numerical results were gener-

ated for conditions pertinent to therapeutic ultrasound, with

a particular focus on behaviors at elevated temperatures.

First, calculations identifying the resonance structure of gas-

vapor bubbles are presented. Next, the dynamics of HIFU

bubbles are investigated to explore energy deposition related

to inertial bubble collapses.

A. Bubble resonances

A basic aspect of any dynamic system is its resonance

structure. Bubbles containing non-condensable gases can

easily be described as a single-degree-of-freedom system in

which the surrounding liquid provides an effective mass and

the gas pressure inside the bubble represents a spring-like

stiffness. The undamped resonance frequency (in hertz) of a

gas bubble is described by the following expression:32

fg ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3cðp0 þ 2r=R0Þ � 2r=R0

qR2
0

s
: (29)

The symbols used here have the same meanings as in the ear-

lier modeling section: c is the ratio of specific heats in the gas,

r is surface tension, p0 is the static pressure in the liquid, and

R0 is the undisturbed bubble radius. Because vapor can con-

dense, vapor bubbles possess a different stiffness than gas

bubbles. Rather than arising from the compression of non-

condensable gases, the stiffness of a vapor bubble comes from

FIG. 8. Comparison of energy dissipation between the PZ model and calcu-

lations reported by Matsumoto et al.15 for bubbles excited by a 100 kPa sine

wave at 1 MHz. Calculations represent air bubbles in water at 20 �C. (a)

Resonance curves demonstrate that the PZ model predicts lower oscillation

amplitudes. (b) Energy deposition rates predicted by the PZ model are com-

pared for thermal conduction, viscous dissipation, and acoustic radiation.

Matsumoto et al. report essentially the same dissipation rates for viscous

and acoustic mechanisms; however, for resonant bubbles, they predict about

half of the energy deposition rate by thermal conduction, as represented by

the open circles.
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thermal behaviors.53 As a bubble collapses, vapor condenses

and heats the surrounding liquid, which in turn raises the satu-

ration pressure of the vapor inside the bubble. As described

by Hao and Prosperetti,53 vapor bubbles can exhibit two reso-

nance-like behaviors: a true resonance for which the thermal

stiffness is balanced by inertial forces and an unstable pseudo-

resonance for which the thermal stiffness is balanced by

surface tension. Hao and Prosperetti present the following ap-

proximate expressions for stable and unstable resonance fre-

quencies of vapor bubbles:

fvs ¼
1

2p
0:56L4q4

m

R2
0q

3
0cp‘k‘T2

1

� 	1=3

(30)

fvu ¼
1

2p
0:94

R4
0

k‘
q0cp‘

2rcp‘q0T1

Lqmð Þ2

" #2

: (31)

Because our interest here is in gas-vapor bubbles, we seek to

plot these three expressions together for gas and vapor bub-

bles, while using the present model to explore the resonances

of gas-vapor bubbles.

For air bubbles in water at T1 ¼ 100�C, resonances

were determined numerically from the PZ model by sweep-

ing the initial bubble radius for excitations at a given fre-

quency. For gas-vapor bubbles, the bubble was initialized

such that its partial pressure of vapor was equal to the satura-

tion pressure at T1. Peaks in the amplitude of the response

DR=Req were identified as resonances, where Req is the equi-

librium radius about which oscillations occur, and DR is the

amplitude of these oscillations. Notably, the resonance fre-

quencies of both gas and vapor bubbles can be affected by

the amplitude of the excitation53,55; accordingly, resonances

were identified by using the lowest excitation amplitudes

that were able to produce steady-state (or nearly steady-

state) oscillations. In Fig. 9, the solid and dashed lines repre-

sent resonance frequencies calculated from Eqs. (29)–(31),

while the individual marks represent resonances identified

numerically from the PZ model. Of the dashed lines corre-

sponding to vapor-bubble resonances, the more vertical line

represents unstable pseudo-resonances. To the left of this

line, surface tension is dominant and no stable motions of

vapor bubbles are possible.

In Fig. 9, it is clear that the PZ model exhibits resonance

behaviors that match analytical predictions for gas bubbles

and for stable resonances of vapor bubbles. Because pseudo-

resonances are by definition unstable, these resonances were

not able to be identified numerically from the PZ model. For

gas bubbles, we note that the analytical resonance frequen-

cies at any given radius are slightly higher than those from

the PZ model, especially for smaller bubbles. This discrep-

ancy is explained by the inclusion of viscous and thermal

damping in the PZ model [such damping is omitted from the

analytical expression (29)]. For vapor bubbles larger than

about 0.5 mm, the PZ model predicts lower resonance fre-

quencies than Eq. (30); for smaller bubbles, the PZ model

predicts higher frequencies. This trend is fully consistent

with calculations presented by Hao and Prosperetti that uti-

lize a more complete formulation than is captured by Eq.

(30). Last, we note that the resonances identified for gas-

vapor bubbles correspond to both gas and vapor resonances.

Moreover, because the presence of non-condensable gas sta-

bilizes very small bubbles, resonances can be identified near

the pseudo-resonance line. Interestingly, at 10 and 40 kHz,

three distinct resonance sizes were found, matching the three

analytical resonances. For gas-vapor bubbles at micron sizes

that can be relevant in therapeutic ultrasound, the added ther-

mal effects of vapor appear to lower the effective resonance

frequencies relative to those for gas bubbles.

B. HIFU bubbles

HIFU treatments typically involve rapid heating in con-

junction with the potential for violent cavitation activity.56

Gaining insight into the bubble dynamics under such condi-

tions requires an understanding of heat and mass transport

for bubbles excited by high acoustic pressures at elevated

temperatures. Under these conditions, it is necessary to

account for vapor transport; a particular challenge for such

models is maintaining numerical stability through violent

bubble collapses. Accordingly, the present model has utility

in simulating the relevant bubble dynamics.

A specific area of interest involves the potential for bub-

ble activity to enhance the rate of HIFU heating.13,56–58 As

described initially by Holt and Roy13 (and illustrated in Fig.

8), oscillating bubbles can deposit energy in the surrounding

medium by thermal conduction, viscous dissipation, or acous-

tic radiation. While some HIFU applications use ultrasound

contrast agents in conjunction with relatively low excitation

pressures around 1 bar,15,57 we focus here on treatments that

involve excitation pressures on the order of megapascals.

Bubbles excited at such pressures deposit energy primarily by

acoustic radiation as they inertially collapse and emit short

acoustic pulses that have broadband frequency content. In this

way, HIFU bubbles transduce the incident acoustic wave at

megahertz frequencies to waves that contain energy at much

higher frequencies. Because acoustic absorption increases

with frequency, this transduction enhances the rate of heating

within the focal region of the HIFU treatment.

FIG. 9. (Color online) Resonances of gas bubbles, vapor bubbles, and gas-

vapor bubbles. All resonances assume an air bubble in water at 100 �C. Solid

and dashed lines represent analytical expressions, while the discrete marks

represent peaks in the response predicted by the PZ model.
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To explore how thermodynamic conditions relevant to

HIFU affect the bubble dynamics and the potential for bub-

ble-enhanced heating, the PZ model was used to simulate the

response of a 2 lm bubble to a sinusoidal excitation at 2

MHz and 2 MPa. To account for changing temperature con-

ditions during a HIFU treatment, simulations were per-

formed for ambient temperatures ranging from T1 ¼20 �C
to 95 �C. Bubble responses were simulated over 250 acoustic

cycles to capture the behavior after any start-up transients.

Samples of the predicted radial dynamics are plotted in Fig.

10(a). At 20 �C, the bubble grows to a maximum radius of

about 12 lm and collapses inertially every second or third

cycle. At 95 �C, the bubble growth is more pronounced

(maximum radius over 20 lm) and the collapses are much

less frequent. Also, we note that the minimum radius

obtained during collapse is smaller at 20 �C.

The broadband energy acoustically radiated from the

bubble was calculated based on the pressure at the bubble

wall as defined by Eq. (10). Across a range of temperatures,

the energy spectral density of the pressure signal was aver-

aged between 10 and 50 MHz and normalized relative to the

energy spectral density at 2 MHz of the excitation pressure

waveform. Note that the energy spectral density is propor-

tional to the magnitude squared of the Fourier transform of

the signal. This metric of broadband acoustic radiation is

plotted for the PZ model in Fig. 10(b), showing a steep

decline as temperature increases. Because broadband acoustic

radiation is the dominant dissipation mechanism for this bub-

ble, this plot implies that the potential for bubbles to enhance

heating during HIFU will decrease quickly as temperatures

rise above about 60 �C. Between 60 �C and 80 �C, the PZ

model predicts a decline in broadband energy by more than 2

orders of magnitude. To better understand the role of vapor in

causing this sensitivity to T1, calculations were repeated for

two model variations: the SCL model and a “static vapor”

model in which explicit vapor transport is neglected. As pro-

posed by Wu,59 the latter model accounts for temperature

changes by reducing the static liquid pressure from p0 to

p0 � psat, where psat is evaluated at T1. Results of these cal-

culations are also shown in Fig. 10(b). Clearly, the “static

vapor” model misses the quenching effect predicted by the

PZ model. On the other hand, the SCL model predicts a

quenching effect that is somewhat less severe than that from

the PZ model. Interestingly, the SCL model predicts less

broadband radiation that the PZ model even at 20 �C. An ex-

planation for this result relies on the prior conclusion that the

SCL model conducts thermal energy between the bubble and

the surroundings more easily than the PZ model. Accord-

ingly, the SCL model predicts more thermal damping so that

inertial collapses are on average less violent and less energy

is dissipated by acoustic radiation.

The previous calculations pertain to a specifically sized

bubble excited by a pressure waveform at a particular ampli-

tude and frequency. However, HIFU treatments may involve

a wide range of excitation frequencies, amplitudes, and bub-

ble sizes. Although a comprehensive investigation of such a

parameter space is beyond the scope of this effort, the role of

temperature and vapor across a range of bubble collapses can

be explored relatively easily. Neglecting the compressive part

of a HIFU waveform that forces bubble collapse, we consider

Rayleigh collapses characterized by different maximum radii

and ambient temperatures. With this approach, the maximum

radius prior to collapse serves as a proxy measure for the

initial bubble size as well as the excitation amplitude and fre-

quency. To simulate this range of collapses, a series of half-

cycle sinusoids was considered as excitations for a 1 lm bub-

ble. The sinusoids were defined as�A sinð2pftÞ. Accordingly,

the half-cycle excitations comprised a single negative pulse

that forced bubble growth. To achieve a maximum radius

Rmax and a subsequent free collapse, we set A ¼ 3:75 MPa

and defined the frequency f so that the period was one-fifth of

the Rayleigh collapse time associated with Rmax (i.e.,

5ð1=f Þ ¼ 0:915Rmax

ffiffiffiffiffiffiffiffiffiffiffiffi
p0=q0

p
). This approach was used to

simulate bubble collapses as a function of both Rmax and T1.

To summarize the results from 464 simulated collapses,

the energies dissipated by acoustic radiation during each col-

lapse are represented by the contour plot in Fig. 11. For com-

parison among differently sized bubbles, the plotted energies

were normalized relative to an energy associated with the bub-

ble’s size: ð4=3ÞpR3
maxp0 þ 4pR2

maxr. Accordingly, the con-

tours identify bubble sizes and temperatures for which

unforced collapses have the same efficiency in converting

available energy into acoustic radiation. For Rmax less than

FIG. 10. Model simulations for a 2 lm bubble excited by a 2 MPa sinusoi-

dal HIFU waveform at 2 MHz. (a) Examples of the predicted radial dynam-

ics at low and high temperatures. (b) Variation of the broadband acoustic

energy radiated by the bubble as a function of the ambient temperature and

the bubble model used for the simulation. The “static vapor” model simu-

lates a bubble with only non-condensable gas, while reducing the static liq-

uid pressure by the saturation vapor pressure at a given ambient

temperature.
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about 10 lm, the contours tend to have a positive slope

because larger bubbles possess more inertia to drive more vio-

lent collapses. However, as Rmax continues to increase, the

contours tend to have a negative slope. This trend is caused by

vapor trapping, whereby the extra vapor molecules present

prior to the collapse of larger bubbles cannot condense quickly

enough to prevent a “cushioning” effect. As Rmax increases

further, the contour slope changes to become positive again.

This transition happens more quickly at elevated temperatures

and is indicative of a transition to thermally controlled collap-

ses for which vapor trapping is no longer important.

VI. DISCUSSION AND CONCLUSIONS

A reduced-order approach for modeling the dynamics of a

bubble excited by therapeutic ultrasound is presented. Because

relevant conditions for such bubbles include high excitation

pressures and elevated temperatures, the model includes heat

transport in the gaseous and liquid phases as well as the trans-

port of vapor and non-condensable gases. As a part of the

modeling approach, two methods for calculating the tempera-

ture in the liquid at the bubble wall are proposed: The SCL

model calculates this temperature algebraically by assuming a

temperature gradient based on a scaling of the problem. In

contrast, the PZ model does not require scaling assumptions

but rather uses a convolution as a low-order approximate solu-

tion for the diffusive transport. The two models are comple-

mentary in that the SCL model is utilized to enhance the

numerical stability of the more complete PZ model.

The PZ and SCL models possess two free parameters

related to mass diffusion inside the bubble, which can limit the

rate of condensation at the bubble wall. These two parameters

were tuned using experimental observations of the collapses

and rebounds of lithotripsy bubbles under varying conditions.

By tuning these parameters, the PZ model is able to success-

fully fit experimental observations under 8 separate test condi-

tions, while the SCL model provides successful fits only at

lower temperatures. The tuned PZ model was then bench-

marked against results from other models in the literature.

Benchmark results demonstrate that the model is capable of

capturing behaviors such as rectified diffusion and rectified

heat transfer. Although the basic features of vapor bubble

growth due to ambient superheat or rectified heat transfer are

captured, these comparisons do suggest that the PZ model

underestimates the instantaneous thickness of the thermal

boundary layer in the liquid, thereby overstimating the net heat

transfer between the bubble and its surroundings. Additional

benchmark calculations related to violent bubble collapses

demonstrate that the present model provides reasonable predic-

tions, even though more sophisticated models of the gas dy-

namics inside the bubble yield some quantitative differences.

Ultimately, we conclude that the reduced level of detail

of the gas dynamics included in the present model is appro-

priate for capturing the basic mechanics of violent bubble

collapses. In particular, the goal of this model is to elucidate

the physics underlying basic trends in bubble behaviors that

are likely to be physically realized in experiments and/or

treatments. Accordingly, given the sensitivity of bubble-col-

lapse dynamics to various physical uncertainties including

the fluid properties or geometric asymmetry,60 the impor-

tance of quantitative discrepancies related to more compli-

cated gas dynamics is diminished. Moreover, Storey and

Szeri note that the equation of state used for the gas inside

the bubble may affect quantitative predictions, but not the

basic physics represented by the model.17

An important aspect of the present model is its numeri-

cal stability across a broad parameter space. This stability

enables a consistent evaluation of the mechanisms underly-

ing trends in bubble behavior. Figure 11 shows such a com-

parison across a parameter space that includes micron-sized

HIFU bubbles with millimeter-sized lithotripsy bubbles. As

a result, a model tuned to fit experimental observations of

lithotripsy bubbles can be reasonably applied to HIFU bub-

bles. Based on the calculations presented in Figs. 10 and 11,

vapor can strongly alter the collapses of micron-sized HIFU

bubbles by cushioning collapses at elevated temperatures.

Consequently, treatment strategies that rely on bubble-

enhanced heating may be ineffective at temperatures above

about 60 �C. Indeed, this prediction appears to be consistent

with recent experimental observations of bubble-enhanced

heating in a tissue phantom.61
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