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Introduction 

Overview 
 

The “HIFU beam” is a MATLAB 

application combined with a binary 

executable designed for numerical 

simulation of acoustic fields generated by 

HIFU single element transducers and 

annular arrays in a flat-layered medium 

imitating biological tissues. The 

numerical models incorporated in the 

simulator are based on one-way 

propagation equations, either a KZK-type 

(Khokhlov-Zabolotskaya-Kuznetsov) 

equation or a one-way Westervelt-type 

equation, which account for both linear 

and nonlinear wave propagation of 

radially symmetric ultrasound beams in 

homogeneous and layered media with 

thermoviscous or power law acoustic 

absorption. 

The differences between the two available modes, ‘KZK’ and ‘WAPE’ 

(abbreviation from Wide-Angle Parabolic Equation), are the approximations used when 

solving the diffraction operator and setting the boundary conditions to the models. The 

KZK equation accounts for diffraction in a parabolic approximation and the boundary 

condition is set in the initial plane using either the nominal geometric parameters of the 

source or using an equivalent source model. Wide-angle Padé approximations are used 

for solving the diffraction operator in the Westervelt-type equation with the boundary 

condition set on the spherical surface of the source. The core functionality of 

simulations is provided by finite-difference numerical schemes. 

A graphical user interface to the application has been designed to ensure both 

flexibility and user friendliness. The interface uses MATLAB GUI functionality to set user-

defined input parameters to the numerical model, to run simulations, and to read and 

visualize output data. The computational engine is compiled to a binary file from 

FORTRAN 2003 source code. The binary code has been optimized for speed, accuracy, 

and parallel execution on multi-core processors. The “HIFU beam” project is still under 

development and its functionality is still evolving. We hope that feedback from user 

community can help us to make it better. 

History, Credits, and Contributors 
 

The “HIFU beam” application has been developed within the Laboratory for 

Industrial and Medical Ultrasound (LIMU) at Moscow State University. Prior to the 

appearance of this software, several KZK solvers for axially symmetric acoustic beams 

were known. Some of them, such as the KZK Texas Code, were published, others were 

developed and used privately in different laboratories worldwide. 
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A private KZK equation solver has been under development since 2001 in the 

scientific group of Vera Khokhlova and Oleg Sapozhnikov at Moscow State University.1 

Several generations of PhD and MS students of LIMU have contributed to further 

development of this private version. The main contributors are Svetlana Kashcheeva,2 

Elena Filonenko,3 Anatoliy Ponomarev,4 Olga Georg (Bessonova),5,6,7 Mikhail Averiyanov,8 

Maria Karzova,9 Pavel Rosnitskiy,10,11,12 and Petr Yuldashev (see sections “People” and 

“Alumni” at our website https://limu.msu.ru/?language=en). 

Since 2015, we started to enhance the KZK equation with an equivalent source 

model10,11,12 in order to increase the accuracy of the parabolic approximation when 

simulating strongly focused beams. More accurate, but much more computationally 

extensive 3D models based on the one-way version of the Westervelt equation was 

developed by Petr Yuldashev13 and then applied to simulating strongly nonlinear fields 

from various high power sources.14,15,16,17,18 Later, Petr developed a code to resolve the 

diffraction operator in the one-way Westervelt equation using wide-angle 

approximations based on Padé expansions.19 This simplified the algorithm and made it 

possible to accurately account for diffraction effects in a sufficiently large range of 

diffraction angles using finite-difference methods, similar to those used in solving the 

KZK equation. 

However, as it often happens with numerical codes, our private versions were not 

organized and not documented sufficiently to be presented to a wider user community. 

The idea behind the “HIFU beam” program was to create a new piece of software to 

represent the valuable experience of LIMU on simulating the KZK and wide-angle 

parabolic equations in a structured and documented form. 

The overall development of the “HIFU beam” complex has been driven by Petr 

Yuldashev, Vera Khokhlova, Oleg Sapozhnikov, Pavel Rosnitskiy, and Maria Karzova since 

2015. Various versions of the code have been successfully validated through modeling 

and measuring nonlinear fields generated by various HIFU transducers in collaborative 

studies performed with our colleagues from the Center for Industrial and Medical 

Ultrasound of the Applied Physics Laboratory, University of Washington in Seattle: 

Michael Averkiou4 Michael Bailey, 20 , 21 , 22 , 23  Michael Canney,21,22,23 Wayne Kreider, 24 

Tatiana Khokhlova,23,24 Adam Maxwell,11 and Lawrence Crum.4,20,21,22,23  

Without breaking the tradition, the FORTRAN (2003 standard) programming 

language was chosen for realization of the computational engine. Since the MATLAB 

system is widely used in the scientific community to create GUI and text interfaces to 

different solvers, we also followed this choice. Petr Yuldashev developed software 

architecture and implemented all source codes both on MATLAB and FORTRAN. We are 

grateful to our collaborators and students who have contributed to this project through 

suggestions, usage feedback, and bug reports. 

 

Major publication 
P.V. Yuldashev, M.M. Karzova, W. Kreider, P.B. Rosnitskiy, O.A. Sapozhnikov, 

V.A. Khokhlova. “HIFU beam”: a simulator for predicting axially symmetric 

nonlinear acoustic fields generated by focused transducers in a layered 

medium. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 

Control, April 20 2021. DOI: 10.1109/TUFFC.2021.3074611  

 

https://limu.msu.ru/?language=en
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License 

Russian patent: № 2017613572, obtained on 6th of February 2017 

Authors: Petr V. Yuldashev, Vera A. Khokhlova, Oleg A. Sapozhnikov, Pavel B. Rosnitsky, 

and Maria M. Karzova 
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Installation 
 

The software “HIFU beam” comprises two folders named “AWPHRDM” and 

“MatlabLibrary”. Both should be downloaded and placed into the same directory. Then 

the user should open MATLAB and choose directory where both folders are located as its 

‘current folder’. Finally, a file ‘AWPHRD_GUI.m’ should be run in MATLAB from the 

folder ‘GUI’ located inside the ‘AWPHRDM’ folder. 

 

 
 

After starting the ‘AWPHRD_GUI.m’ file in MATLAB, the working interface appears: 
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If you see that the font size is too large or too small, adjust the font settings by clicking 

‘Options’→‘Fonts’ in the main menu and choose appropriate font size for every 

interface element. Example is given below: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

After changing font size for ‘Label text’ on 9 and for other interface elements on 10, the 

whole interface window should fit the screen perfectly: 
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Table of symbols 
 

Symbol Description 

p  acoustic pressure 

z  spatial coordinate along the beam axis 
,x y  spatial coordinates perpendicular to z -axis 

r  radial coordinate perpendicular to z -axis 

t  time 

  
2 2 2 2 2 2 ,x y z =   +  +   Laplace operator 

⊥  2 2 2 2 2 2 1 ,x y r r r−

⊥ =   +  =   +    transverse Laplace operator 

0  ambient density 

0c  isentropic sound speed 

  nonlinearity coefficient 

  diffusivity of sound 

a ( )L p   linear operator describing power law absorption 

u  vibrational velocity 

f  wave frequency 

  0/t z c = − , retarded time 

p  acoustic pressure in the retarded coordinate system 

  2 f = , angular frequency 

np  

acoustic pressure amplitude of the nth harmonic of the fundamental 

frequency  in the Fourier expansion: ( , , ) ( , ) in

n

n

p r z p r z e 


−

=−

=   

a ( )L p  
linear operator describing power law absorption in the retarded 
coordinate system 

a ( )nL p  
linear operator describing power law absorption in the retarded 
coordinate system in the frequency domain 

k  0/k c= , wavenumber corresponding to angular frequency   

p  
i tp p e dt


 =  , particular Fourier component of acoustic pressure at the 

angular frequency   

p  

( , ) ( , )exp( )p r z p r z ikz 
 = , slowly varying complex pressure amplitude at 

angular frequency   in the retarded coordinate system. Can be found 

also as .ip pe d

 =   

L̂  

2

2 2 2

1 1
L̂

k k r r r

⊥
   

= = + 
  

, differential operator 

2Q̂  

2
2

2 2

1 1ˆ ˆ1 1Q L
k r r r

  
= + = + + 

  
, differential operator  

nq  real coefficients of Taylor expansion 

Â  
( )ˆ ˆexp 1 1A ik z L =  + −

  
, propagator of one-way full diffraction 

equation 
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na ,
nb  coefficients of the Padé approximation 

( , )N N  order of the Padé approximation 

ˆ
NNA  0 0

ˆ ˆ ˆ
N N

n n

NN n n

n n

A a L b L
= =

   
=    
   
  , Padé approximation of the order ( , )N N  of 

the propagator Â  

1... N   roots of the polynomial 
0

ˆ 0
N

n

n

n

a L
=

=  

1... N   roots of the polynomial 
0

ˆ 0
N

n

n

n

b L
=

=  

n  1n n = −  

n  1n n = −  

F  Radius of curvature of the source 

D  external diameter of the source projection to the plane 0z =  

0p  pressure amplitude at the source surface 

0f  ultrasound frequency of the source 

0  0 02 f = , ultrasound angular frequency of the source 

0k  0 0 0k c= , wavenumber at the source angular frequency 
0  

F-number  ratio of focal length to diameter of the source: F-number /F D=  

pD , 
pF , 

p

0p  

diameter, focal distance, and initial pressure amplitude of the equivalent 
source, respectively 

,np  
complex pressure amplitude at angular frequency   for the incident 

wave in the n-th layer 

,rp
  

complex pressure amplitude at angular frequency   for the reflected 

wave  

n ,
nc  density and sound speed in the n-th layer, respectively 

,znu
  

z -projection of vibrational velocity at angular frequency   for the 

incident wave in the n-th layer 

,zru
  

z -projection of vibrational velocity at angular frequency   for the 

reflected wave 

pT  transmission coefficient for pressure from one layer to another one 

IT  transmission coefficient for intensity from one layer to another one 

0  absorption coefficient for biological tissue at the frequency 
0  

  absorption coefficient at the frequency   

  exponent in the absorption power law 

( )c   frequency-dependent phase velocity in tissue 

c  
deviation of phase velocity in tissue induced by dispersion from the 

reference value of the sound speed: 0( )c c c = −  

d  internal diameter of the source (diameter of the central opening) 

N  number of rings of an annular array 
g  gap between rings 

0W  acoustic power of the source 

0I  intensity at the source surface 
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  wavelength  
  focusing angle 

h  depth of a spherical bowl  

fullS  total surface area of a spherical cup 

exth  bowl depth corresponding to the external diameter D  

inth  bowl depth corresponding to the internal diameter d  

actS  active surface area of the source 

Fp  pressure amplitude at the focus 

pK  

focusing gain defined as a ratio of the pressure amplitude at the focus 
Fp  

to the initial pressure amplitude 
0p  at the source assuming propagation 

in non-absorbing medium 

p,absK  focusing gain with account for absorption losses 

LenZ  simulation box length 

LenR  simulation box width 

dz  axial grid step  

dr  radial grid step 

hN  maximum number of harmonics 

minz  proximal border of the output domain 

maxz  distant border of the output domain 

maxr  radial border of the output domain 

p+
 peak positive pressure (level of the pressure maximum in the waveform) 

p−
 peak negative pressure (level of the pressure minimum in the waveform) 

shA  shock amplitude (pressure jump at the shock front) 

PMLr  radial coordinate where perfectly matched layer (PML) begins 

w  Len PMLw R r= − , thickness of the PML 

( )r  positive attenuation function in the PML 

r  
PML

( )
,

r

r

i r
r r dr






= +   complex radial coordinate for the PML 

( )S r  
( )

( ) 1
i r

S r



= + , stretch factor for the PML 

( )S r  

PML

1 ( )
( ) 1

r

r

i r
S r dr

r






= +  , coordinate transformation factor for the PML 
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Numerical model 
Here we describe governing equations used in the “HIFU beam” software, setting 

boundary conditions to the numerical models, and realization of multi-layer propagation 

medium. In a current Version 1.0 there are two modes, ‘KZK’ and ‘WAPE’, which are 

based on numerical simulations of the KZK equation and of the one-way Westervelt-type 

equation with account for diffraction effects using wide-angle parabolic approximation, 

respectively. 

Governing equations  

3D Westervelt equation 

In nonlinear acoustics, the basic equation that governs propagation of nonlinear 

acoustic waves in arbitrary directions is the Westervelt equation, which takes into 

account nonlinearity, diffraction, and thermoviscous absorption: 

2 2 2 3

4 4 a2 2 2 3

0 0 0 0

1
( ).

p p p
p L p

c t c t c t

 



    
   − = − − −

  
                  (1) 

Here p  is the acoustic pressure, 
2 2 2 2 2 2p p x p y p z    =   +   +   is the Laplacian, 

z  is the spatial coordinate along the beam axis, x  and y  are spatial coordinates 

perpendicular to z , t  is time. Parameters 
0 0, , ,c   and   are ambient (or equilibrium) 

density, isentropic sound speed, nonlinearity coefficient, and diffusivity of sound of the 

medium, respectively. Additional linear operator 
a ( )L p   describes the power law 

absorption and corresponding dispersion, which are observed in biological tissues. 

In the retarded coordinate system, 
0/t z c = − , the Eq. (1) can be rewritten as: 

2 2 2 3

0
a3 2 3 3

0 0 0

( ),
2 2 2

p c p p
p L p

z c c

 

   

  
=  + + +

   
                           (2)  

where p  is the acoustic pressure and 
a ( )L p  is the operator describing the power law 

absorption and dispersion, in the retarded coordinate system, respectively. Note that 

the Westervelt Eq. (1) is valid for adiabatic flow and neglects Lagrangian energy density 

2 2

0

2

0 02 2

p

c





 
−

u
 in the nonlinear term, where u  is the vibrational velocity. 

Simulation of the three-dimensional Westervelt Eq. (2) is numerically challenging 

and only few scientific groups have numerical codes for these simulations. Thus, 

simplified models are more commonly used by scientific community for simulating high-

intensity ultrasonic fields. In “HIFU beam”, we provide simulators of these commonly 

used simplified equations, not the general full-wave 3D Westervelt equation. Below we 

shortly derive governing equations used in “HIFU beam” sequentially simplifying the 

Westervelt Eq. (2). 

 



12 
 

2D radially symmetric Westervelt equation in the time domain 

Since typical HIFU single-element transducers and annular arrays have radially 

symmetric geometry, one can use two-dimensional radially symmetric form of the 

Eq. (2): 

2 2 2 2 2 3

0
a2 2 3 2 3 3

0 0 0

1
( ).

2 2 2

p c p p p p p
L p

z z r r r c c

 

   

      
= + + + + + 

       
           (3) 

 

 

 

 

 

where r  is the radial coordinate. 

In the frequency domain, the pressure is represented in the form of Fourier series 

expansion of harmonic components: ( , , ) ( , ) ,in

n

n

p r z p r z e 


−

=−

=   where ( , )np r z  is a 

discrete Fourier harmonic of the acoustic pressure at angular frequency n , 2 f =  

and f  is frequency. According to this, Eq. (3) can be rewritten in the frequency domain 

as: 

2 21
*0

a3 3
1 10 0 0

2 ( ).
2 2 2

n
n

n m n m m n m n n

m m

p ic i n n
p p p p p p L p

z n c c

   

 

 −

+ −

= =

  
=  − + − + 

  
     (4) 

Here, constant component of acoustic pressure field is assumed equal to zero, 
*

np  

denotes the complex conjugate harmonic amplitude, and a ( )nL p  is a linear operator for 

power law absorption and dispersion represented in a frequency domain and described 

in the section ‘Realization of multi-layer medium with a power law absorption’. 

In simulations, both time-domain and frequency-domain representations of the 

acoustic field are used.6,13,15 From numerical point of view, the simulation of Eq. (3) is 

significantly complicated by the second derivative of the pressure with respect to the 

coordinate z :
2

2

p

z




. Neglecting this term means that the pressure ( , , )p r z slowly 

changes as a function of .z  This assumption leads to the KZK equation. 

 

2D radially symmetric KZK equation (mode ‘KZK’) in time domain 

The first mode ‘KZK’ available in the “HIFU beam” software is a solver of the KZK-

type (Khokhlov-Zabolotskaya-Kuznetsov) equation. The KZK equation describes nonlinear 

acoustic beams in thermoviscous medium which accounts for diffraction effects in the 

parabolic approximation. For radially symmetric acoustic beams the KZK equation is: 

 

 

Diffraction 

(full diffraction) 

Nonlinearity Thermo-

viscous 

absorption 

Power law 

absorption 

and 

dispersion 



13 
 

2 2 2 2 3

0
a2 3 2 3 3

0 0 0

1
( ).

2 2 2

p c p p p p
L p

z r r r c c

 

   

     
= + + + + 

      
             (5) 

 

 

 

 

In the frequency domain, Eq. (5) can be rewritten as: 

2 21
*0

a3 3
1 10 0 0

2 ( ),
2 2 2

n
n

n m n m m n m n n

m m

p ic i n n
p p p p p p L p

z n c c

   

 

 −

⊥ + −

= =

  
=  − + − + 

  
    (6) 

where 
⊥  is the transverse Laplacian. 

The only difference between the KZK, Eq. (5), and the Westervelt, Eq. (3), 

equations is in their diffraction operators. The diffraction operator of the Westervelt 

Eq. (3) contains an extra pressure derivative of the second order with respect to z  in 

comparison with the KZK Eq. (5). This difference reflects the fact that diffraction 

operator of the Westervelt equation exactly corresponds to the linear wave equation, 

while the KZK uses small diffraction angle approximation. It results in different accuracy 

of these two models in the case of focused beams. Obviously, for high focusing angles, 

the Westervelt equation is more accurate than the KZK equation. It is possible, however, 

to modify source boundary condition to the KZK equation to increase its accuracy. For 

this purpose, an equivalent source model is used and is described in the subsection 

‘Setting a boundary condition in the ‘KZK’ mode’ later in this section. 

 

Parabolic approximation of diffraction 
 

The linearized version of the Westervelt Eq. (1) is derived from the linear wave 

equation by assuming nonlinear and thermoviscous absorption coefficients are equal to 

zero and only describing the diffraction effects: 

2 2 2

2 2 2 2

0

1 1
0.

p p p p

z r r r c t

      
+ + − =

   
  (7) 

The solution to the linearized wave equation, Eq. (7), can be derived for a 

complex pressure amplitude of the specified Fourier harmonic p  with an angular 

frequency  : 

( , , ) ( , , ) .i tp r z p t r z e dt

  =    (8) 

Substituting Eq. (8) into the wave Eq. (7) yields the classical Helmholtz equation for the 

complex pressure amplitude p : 

2 2
2

2 2

1
0,

p p p
k p

z r r r
  



    
+ + + =

  
  (9) 

Diffraction 

(in parabolic 

approximation) 

Nonlinearity Thermo-

viscous 

absorption 

Power law 

absorption 

and 

dispersion 
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where 
0/k c=  is the wavenumber. If the differential operators L̂  and Q̂  are 

introduced as: 

2

2 2 2

1 1ˆ ,L
k k r r r

⊥
   

= = + 
  

  (10) 

and 

2
2

2 2 2

1 1ˆ ˆ1 1 1 ,Q L
k k r r r

⊥
   

= + = + = + + 
  

    (11) 

then the Helmholtz equation can be written in the operator form as follows: 

2
2 2

2
ˆ 0.k Q p

z

p






+ =


   (12) 

In the case of a homogeneous propagation medium, the wavenumber k  doesn't 

depend on z  coordinate. Therefore, the Helmholtz equation can be factored into two 

propagation equations: 

ˆ 0,

ˆ 0,

ikQ
z

ikQ

p
p

p
p

z








+ =




− 




=




   (13) 

each of which corresponds to acoustic beams traveling in either the negative or the 

positive directions of the axis z . 

To derive a parabolic approximation of the diffraction operator, one considers 

only one-way propagation in the positive direction of z  axis: 

ˆik
p

Q
z

p








=    (14) 

and represents the operator Q̂  via operator L̂  using formal Taylor expansion: 

1

ˆ ˆ ˆ1 1 ,n

n

n

Q L q L


=

= + = +   (15) 

where real numbers 
nq  are coefficients of Taylor series of square-root function. 

The parabolic approximation of the one-way Helmholtz equation is obtained when 

only the first order term is retained in the Taylor expansion of the operator Q̂ : 

ˆ ˆ1 / 2Q L + .     (16) 
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The pressure amplitude in Eq. (12) can be represented as a product of slowly 

varying complex amplitude in the retarded coordinate system p  and an oscillating 

function at carrier frequency exp( )ikz : 

( , ) ( , )exp( )p r z p r z ikz 
 = ,  (17) 

the parabolic diffraction Eq. (14) in the operator form is: 

ˆ
2

p ik
Lp

z





=


.   (18) 

Substitution of the operator L̂  yields the parabolic diffraction equation in its standard 

form: 

1

2 2

p i i p
p r

z k k r r r

 
⊥

   
=  =  

   
.  (19) 

 

Wide angle parabolic approximation  
 

‘WAPE’ (abbreviation from Wide-Angle Parabolic Equation) mode in the “HIFU 

beam” software is based on more accurate approximation of the diffraction operator, 

Eq. (15). Retaining higher-order terms in the expansion, Eq. (15), yields more accurate 

wide-angle parabolic approximation equations. However, from numerical point of view, 

there is a disadvantage in using such expansions because they include higher-order 

spatial derivatives that complicates numerical schemes and their solutions. In practice, 

the approximate equation is constructed in a different way. 

If the operator Q̂  does not depend on the propagation distance z , which is true 

for homogeneous propagation medium, the commutator of two operators ˆ,z Q  
 

 is 

equal to zero. In this case the second derivative of the pressure with respect to z  is 

calculated using the one-way full diffraction propagation Eq. (14): 

( ) ( )
2 2

2
ˆ ˆ ˆ ˆ ˆ .ikQ ikQ ikQikQ ikQ

z z z

p
p p

z

p p

z
p  

  

    
= = = = =

    

  
            (20) 

Similarly, for n-th derivative of the complex pressure amplitude p  the result is: 

( )ˆ .
n n

n
ikQ

p
p

z





= 




                                               (21) 

Using the derivatives, Eq. (21), the Taylor expansion of the pressure field at z z+ : 

( ) ( )
11 1ˆ ˆ( ) ( ) ( ) ... ( ) ...

1! !

n
nz z z ikQ zp p z ikQ p z

n
p z   

   +  = +  + +  +  
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can be expressed as: 

( ) ( )
11 1ˆ ˆ( ) 1 ... ... ( ).

1! !

n

z z ik zQ ik zQ z
n

p p 

 
+  = +  + +  +




 
          (22) 

Note that infinite sum in the parenthesis is the Taylor expansion of the operator 

ˆexp ik zQ 
  . Thus, solution of the propagation Eq. (14) can be represented as 

ˆ( ) exp ( ).p z pz ik zQ z 
 +  =  
 

                                       (23) 

For slowly varying amplitude p , ( ( , ) exp( )p pr z ikz 
 = ), the Eq. (22) transforms to: 

( ) ( )ˆ ˆ( ) exp 1 ( ) exp 1 1 ( ).z z ik z Q z ik z L zp p p  
  +  =  − =  + −
    

        (24) 

According to this derived Eq.  (24), the pressure field ( )p z z +   at the distance z z+  

is obtained from the pressure field ( )p z at the distance z  by an action of the 

propagation operator Â  (called propagator) in the exponential form: 

( )ˆ ˆexp 1 1 ,A ik z L =  + −
  

                                          (25) 

which is a function of the operator L̂  and the parameter ik z . Note that the 

propagator Â  gives the exact solution of the full diffraction one-way propagation 

Eq. (14) for a homogeneous medium. 

The propagator Â , similarly to the operator Q̂ , can be approximated by the first 

several terms in the Taylor series expansion. However, as it was mentioned above, such 

representation is not practical. Therefore, the propagator is more often represented as 

a rational function: the ratio of two polynomials of the degree N, which is also called 

the Padé or the split-step Padé approximation. 

The Padé approximation of the order ( , )N N of the propagator Â  is ˆNNA : 

0 1 0

0 1

0

ˆ
ˆ ˆ...ˆ ˆ .
ˆ ˆ... ˆ

N
n

N n

N n
NN NN

nN
n

n

a L
a a L a L

A A
b b L b L

b L

=

=

+ + +
 = =

+ + +




                                 (26) 

The coefficients 
na  and 

nb of the Padé approximation can be obtained from 

coefficients of the Taylor expansion of the propagator Â  up to the 2N  terms 

inclusively: 

2

0

ˆ ˆ .
N

l

l

l

A q L
=

    (27) 

Equating Padé approximation and Taylor expansion: 
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2

0 0 0

ˆ ˆ ˆ ,
N N N

n l n

n l n

n l n

a L q L b L
= = =

=     (28) 

equations for the coefficients can be obtained by relating coefficients with equal powers 

of the operator L̂on the left and right hand sides of Eq. (28). Setting the coefficients 
0a  

and 
0b equal to unity, one obtains the following system of linear algebraic equations: 

,

1

,

1

0

0 1 2 .

n

n n l n l

l

N

n l n l

l

a q b q n N

q b q N n N

−

=

−

=


= +  



 = + +  





  (29) 

First, the second line of this system is solved for the coefficients 
nb  in a matrix form of 

these linear equations. Then the first line yields values of the coefficients 
na .  

If 
1... N   are roots of the polynomial 

0

ˆ
N

n

n

n

a L
=

  and 
1... N   are roots of the 

polynomial 
0

ˆ
N

n

n

n

b L
=

 , then the approximate propagator ˆNNA  can be factorized to: 

( )

( )

( ) ( )

( ) ( )
1 1 1

1 1 1

ˆ ˆ1 / 1
ˆ .

ˆ ˆ1 / 1

N N N
N

N n N n n

n n n
NN N N N

N

N n N n n

n n n

a L a L

A

b L b L

  

  

= = =

= = =

− − − +

= =

− − − +

  

  
 (30) 

According to Vieta's formulas: 

( )

( )

0

1

0

1

1
1 ,

1
1 ,

N
N

n

n N N

N
N

n

n N N

a

a a

b

b b





=

=

− = =

− = =





  (31) 

one obtains: 

1

1

ˆ
1

ˆ .
ˆ

1

N

n n

NN N

n n

L

A
L





=

=

 
− + 
 =
 
− + 
 





   (32) 

Denoting 1n n = −  and 1n n = − , the Padé approximated operator is finally 

written as: 

( )

( )
1

1

ˆ1
ˆ .

ˆ1

N

n

n
NN N

n

n

L

A

L





=

=

+

=

+




                                               (33) 
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Substituting the Padé approximation of the propagator Â  from Eq. (33) to the 

propagation Eq. (24), we obtain the wide-angle parabolic equation: 

 

( )

( )
1

1

ˆ1

( ) ( )
ˆ1

N

n

n

N

n

n

L

z z z

L

p p 





=

=

+

+  =

+




                                  (34) 

or  

( ) ( )
1 1

ˆ ˆ1 ( ) 1 ( ).
N N

n n

n n

L z z L zp p  
= =

+ +  = +   (35) 

This equation can be solved iteratively for 1...n N= : 

( ) ( )ˆ ˆ1 ( ) 1 ( ),n

n n

nL z z L zp p  + +  = +   (36) 

where 
1 ( ) ( )p pz z = , 

1( ) ( )n nz zp zp 

+ = +  , ( ) ( )N z z z zp p +  = +  . Thus, to obtain 

the solution at the next step z z+  , N equations of the same type should be solved. 

The larger is the number N, the better approximation of the initial propagator, Eq. (25) 

is achieved by Eq. (33). In the simulator “HIFU beam”, the value of N = 3 is used, which 

means the 6th order of accuracy in the Taylor expansion. 

In summary, the ‘WAPE’ mode differs from the ‘KZK’ mode by more accurate 

approximation of the diffraction operator: the 6th order approximation instead of the 

first order approximation of standard parabolic equation. This more accurate 

approximation uses split-step Padé approximation of the propagator in the one-way 

propagation equation. 

Historically, more accurate approximations than the parabolic one in solving 

diffraction operator are called ‘wide-angle parabolic approximation’. This term means 

that the solution of such approximation is valid for larger angles of diffraction than the 

parabolic approximation yields. Despite the fact that the word ‘parabolic’ is wrong here 

since the approximation of the dispersion relation of the Helmholtz equation (circle of 

radius k ) is not parabolic, we follow this historical term and abbreviate it as ‘WAPE’. 
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In the KZK model the boundary 

condition is set on the plane 

Setting a boundary condition in the ‘KZK’ mode. Equivalent source model. 
 

The boundary condition to the radially symmetric 

KZK Eq. (4) is usually set on the plane 0z =  as the 

pressure amplitude distribution at the source operating 

with angular frequency 
0 : 

( )
0

2

0
0 exp ,

2 2
, 0

0, .
2

k r D
p i r

F
p r z

D
r



  
−   

  = = 




     (37) 

Here F  is the focal distance of the source, D  is the 

source diameter as shown in the figure, 
0p  is the 

pressure amplitude at the source surface, 
0 0 0k c= is 

the wavenumber at a source angular frequency 
0 . However, it is well known that with 

an increase in the focusing angle of the source, the solution to this standard parabolic 

model starts to deviate from the solution to the full diffraction problem, obtained, for 

example, in the form of the Rayleigh integral.25,26 

To extend the applicability limits of the parabolic approximation, we recommend 

that “HIFU beam” users in the ‘KZK’ mode modify the boundary condition, Eq. (37), to 

the form of an equivalent source. The basic principles of building the equivalent source 

model are described in detail in Refs. [10,11]. Here, we briefly summarize the 

equivalent source, how to obtain its parameters, and the relevant formulae. 

The equivalent source is a flat source with parameters that are obtained from the 

parameters of the real spherical source so that the simulated acoustic field provides 

minimum difference between the solutions to the parabolic and full diffraction models 

in the focal region. This matching is achieved by varying the diameter, focal distance, 

and pressure amplitude in the boundary condition, Eq. (37), as compared to those of the 

real spherically curved source. In other words, the parameters of the equivalent source 

are slightly different from parameters of the real source, but its acoustic field in the 

focal region is in a good agreement (i.e. equivalent) to the real one. 

Different approaches can be used to obtain the parameters of the equivalent 

source for setting the boundary conditions to the KZK equation in order to produce the 

effects of strong focusing.21,27 A procedure for finding parameters of the equivalent 

source used in the software “HIFU beam” is based on matching pressure amplitudes at 

the focus and positions of the first diffraction zeros of the main focal lobe at the beam 

axis for solutions obtained with the parabolic model and with the Rayleigh integral. 

Analytic expressions were obtained for ( ) p pp
F-number /F D= , focal distance pF , and 
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initial pressure amplitude 
p

0p  of the equivalent source as functions of F-number /F D= , 

F , and 0p of the spherically focused source: 

1/2

1 2

1 2

1 2
0 p

1 2

2
2

0

p

0

p

p

p

p

p

1
0.5 ,

2

2
,

4 2 4 ,

F

D

F F

k F

D
p

F
p

FD

  
=  

 −  

 
= −

 + 

     = − −       











   

                             (38) 

where 

( ) ( ) ( )

( ) ( )

22 2

0 0 0 0

1,2 2 2

0 0

( ) 4 1 2 3 2
4

16 ( )

k F k F F D F D k F k FD

F k F k F F D

 −  −   +     =  
  +  

.      (39) 

It can be shown that the values of the diameter pD  and the focal distance pF  

always exceed the corresponding values of D  and F , and the difference between them 

increases with an increase in the focusing angle of the source. 

Note that the parabolic model and the proposed equivalent source method of 

setting the boundary condition at the initial plane can be used not only for a single 

spherically focused transducer that vibrates uniformly, but also for sources with slightly 

nonuniform amplitude distribution and multi-element phased arrays with circular piston 

elements distributed over a spherical cup. In such cases, the initial pressure amplitude 

p

0p , focal distance pF , and the diameter pD  of the equivalent source should be chosen 

numerically to obtain the best agreement between the axial solution of the parabolic 

equation and the calculated or measured field on the axis of the real source. 

 

Setting a boundary condition in the ‘WAPE’ mode 
 

In the ‘WAPE’ mode, the user directly sets parameters of the real HIFU spherical 

source. The boundary condition in a form of pressure amplitude distribution in the initial 

plane is obtained in two steps. First, the program uses the Rayleigh integral to calculate 

acoustic pressure distribution in the plane located in the middle between the edge of 

the source and the focus, assuming a uniform distribution of the normal component of 

the vibrational velocity at the source surface. Then, the obtained pressure amplitude 

distribution is back-propagated to the plane 0z =  using the linear WAPE and further is 

used as a boundary condition. In contrast to the ‘KZK’ mode, in the ‘WAPE’ mode the 

pressure amplitude distribution at the initial plane has a nonuniform pattern along the 
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Transmission through 

layers 

radial coordinate and is notably different from the rectangular distributions of the 

parabolic model. 

Various methods can be used to choose the location of the plane between the 

source and the focus or to backpropagate the field for setting a boundary condition on 

the initial plane 0z = . For example, the plane can be chosen not at the half distance to 

the focus, but closer to it. For back-propagation, the angular spectrum method or the 

Rayleigh integral can be employed. The specific choice of such procedure implemented 

in the “HIFU beam” software is not critical. 

Our general recommendation is to use ‘WAPE’ mode if you do not have strict 

preferences to obtain results using the KZK equation because it provides a more 

accurate solution in the nearfield of the source. 

Realization of multi-layer medium with a power law absorption 

Boundary conditions between two layers 

The simulator “HIFU beam” allows the user to imitate 

propagation through biological tissue layers by using a model of 

flat-layered medium. The user may set up to 10 different 

layers. Acoustic conditions at the interface between two plane 

layers with different acoustic properties are the following: 

,1 , ,2

, 1 , , 2

,

,

r

z zr z

p p p

u u u

  

  

  + =

  + =
  (40) 

where 
,1p  is the complex amplitude at the angular frequency   of the incident wave 

propagating in the first layer with density 1  and sound speed 1c ; 
,rp  is the complex 

amplitude of the reflected wave propagating in the same layer; 
,2p  is the amplitude of 

the transmitted wave propagating in the second layer with density 2  and sound speed 

2c ; and 
, 1 , , 2, ,z zr zu u u  
    are z-components of vibrational velocities at the angular 

frequency   for the corresponding layers. The first condition is the equality of pressure, 

and the second one is the medium continuity condition. Since acoustic oscillation 

velocity is related to the pressure gradient as t p    = −u , for Fourier harmonic 

amplitudes the relation is: 

 ,

1
z

p
u

i z







 =


    (41) 

and the interface equations are rewritten as: 

 

,1 , ,2

,1 , ,2

1 1 2

,

1 1 1
.

r

r

p p p

p p p

z z z

  

  

  

  + =

    
+ =

  

  (42) 

These conditions should be satisfied at all points of the interface between the two 

layers. In the current Version 1.0 of the software the transmission coefficient pT  for 
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pressure from one layer to another one is approximated by the transmission coefficient 

for a plane wave propagating perpendicular to the interface between the layers: 

,2 2 2

,1 2 2 1 1

2
.p

p c
T

p c c







 
= =

+
                                            (43) 

Power law absorption in layers 

In equations (4) and (6), which describe nonlinear propagation of focused axially 

symmetric acoustic beam in thermoviscous medium, there is an additional operator 

a ( )nL p  accounting for the power law of absorption typical for biological tissues. Since 

such absorption is calculated in a frequency domain, we did not write an explicit 

formula for 
a ( )L p  in the time domain in Eqs. (3), (5). In the frequency domain, the 

operator a ( )nL p  governs both the absorption and dispersion. Absorption is described 

according to the power law: 

0

0

( ) .




  



 
=  

 
                                                  (44) 

Here 
0  is the absorption coefficient for biological tissue at the source frequency 

0 , 

while   is the absorption coefficient at the frequency  ,   is the exponent in the 

absorption law and is typically close to unity for biological tissues. Dispersion is 

described by frequency-dependent phase velocity ( )c   in tissue introduced in 

accordance with the local dispersion relationship:28,29,30 

1

0 0

0 00

0 0
0 0

0 0

tan 1 , 1
2( )

2
ln , 1.

c

c cc

c c
c



  
 

 

 


 

−      − −      −    = = 
  

=  
  

                    (45) 

As soon as the absorption coefficient ( )   and phase velocity ( )c   are determined for 

each angular frequency, the pressure amplitude of each frequency component p  in the 

frequency domain is obtained taking into account ( )0 0( ) 1 /k c c c c  =  −  as: 

 2

0

( )
( ) ( )exp exp ( ) .

c
p z z p z i z z

c
 


  

 
+  =  −  

 
               (46) 

Thus, in the equations (4) and (6) the operator a ( )nL p  is: 

2

0

a (
)

.)
(

( ) nnL
c n

i n pp
c


  

 
=  
 


−                                   (47) 

Finally, the pressure p  is reconstructed in the time domain from all frequency 

components using the Fourier transform.  
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Setting parameters for simulation 
 

This section is intended to help the user to correctly set the input data for the 

simulator. We tried to organize the interface in an intuitive manner. Detailed 

description of all steps in setting parameters in the “HIFU beam” simulator is given here. 

First step: Propagation equation selection 
 

First step is the choice of the solver – either the ‘KZK’ or ‘WAPE’ mode. The difference 

between the choices is the approximation used when solving the diffraction operator. If 

the user has no preferences, we recommend using ‘WAPE’ mode because it is more 

accurate than the ‘KZK’ mode. The user should also decide whether to include 

thermoviscous and/or power law absorption, as well as nonlinear effects. If there is no 

preference or the degree of nonlinear effects is unknown, the user should check that all 

effects are included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second step: Acoustic source —single-element transducer or annular array 
 

The software “HIFU beam” provides possibilities in customizing the acoustic source 

parameters with the limitation of its axial symmetry. Acoustic sources available for 

simulation in “HIFU beam” can be divided into two choices: a single-element circular 

transducer (with or without an opening at the apex of the spherical cup) and a multi-

element annular array with any given amplitude and phase distribution on the elements. 

Consider here the realizations of both possibilities. 

 

 

‘WAPE’ mode is on; absorption and nonlinear effects are taken into account. 
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Interface in ‘WAPE’ mode. Option ‘Design’ in the box ‘Source parameters’ is active. 

Single-element focused HIFU transducer: ‘WAPE’ mode 

A single-element focused HIFU transducer can be implemented in both the ‘KZK’ 

and ‘WAPE’ modes. Since we recommend simulation in ‘WAPE’ mode as more accurate 

and simpler in use, we first describe setting the single element source parameters in this 

mode. 

After choosing the ‘WAPE’ mode and clicking on ‘Design’ push button in a box 

‘Source parameters’, the user will see this interface: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the single-element HIFU source the user should provide the following 

parameters: the focal distance F , external diameter D , internal diameter d  (only if 

the source has an opening at the apex, otherwise it equals to zero), and ultrasound 

frequency 
0f . The number of rings N  should be set to 1; in this case technical gap 

between the rings g  is ignored. The dimensions of all parameters are given in 

parentheses. The user can set either the power 
0W  of the source, the intensity 

0I , or 

the characteristic pressure amplitude 
0p  on the source surface to control the source 

output. Note that these parameters are related to each other: the power 
0W  is the 

intensity 
0I  integrated over the active surface of the source; pressure amplitude 

0p  is 

related to intensity 
0I  through acoustic parameters 

0  and 
0c  of the closest to the 

source material layer: 0 0 0 02 .p I c=  

For example, a single-element circular HIFU transducer with the focal distance of 

90 mm, the external diameter of 100 mm, the diameter of the central opening 20 mm 

(internal diameter), and frequency of 1 MHz should be set in this manner: 
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To visualize the source geometry and to see additional source characteristics 

calculated based on the set ones, there are display modes named ‘Amplitude’, ‘Phase’, 

‘3D view’, and ‘Info’ in the upper right corner of the interface. ‘Info’ mode displays the 

following characteristics (the listing order is changed to simplify each parameter 

description): 
 

Characteristics  

in the ‘Info’ mode 
Description 

Wavelength ( ) 
0 0/с f = , where 

0с  is sound speed in the closest to the 

source layer 

Wavenumber ( k ) 2 /k  =  

F-number F-number /F D=  

Focusing angle ( ) arcsin( / 2 )D F =  

Spherical bowl depth ( h ) 
Calculated based on only external diameter D  as: 

(1 cos )h F = −  

Total surface of the 

spherical cup ( fullS ) 

Surface of the spherical bowl between internal and external 

diameters: 
full ext int2 ( )S F h h= − , where 

exth  is bowl depth 

for the external diameter D  and 
inth  is bowl depth 

corresponded to internal diameter d  

Active surface area of 

the source (
actS ) 

Surface area of the active part of the source. If the source 

has no gaps between elements, active surface area equals to 

the total surface area 

Filling factor of the 

spherical cup surface (%) 

Ratio of the active surface area to the total surface area of 

the source. 

Interface in ‘WAPE’ mode. Single-element HIFU source with the following parameters: 

 = 90 mm,  = 100 mm,  = 20 mm, and  = 1 MHz is set. Display mode is ‘Amplitude’. 
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Focusing gain without 

absorption losses (
pK ) 

Ratio of the pressure amplitude at the focus 
Fp  to the 

initial pressure amplitude 
0p  assuming propagation in non-

absorbing medium: 
p F 0 ext int( )K p p k h h= = − . If the source 

is a ring-shaped array, it is the sum of focusing gains 

calculated for all rings. 

Focusing gain with 

absorption losses ( p,absK ) 

This focusing gain accounts for absorption in layers located 

between the source and the focus. If there is only one layer, 

p,absK  is calculated as follows: 

( )
2

0
p,abs p 3

0

0exp exp ( )
2

K K F F
c





 

= − − 
 

,  

where the first exponent describes thermoviscous 

absorption, while the second exponent describes power law 

absorption (if it is included by the user into the model). For 

several layers the formula is similar, but each exponent is 

calculated on its layer width 
iz  and with layer’s 

parameters 
i , 

0ic , and 
i : 

( )
2

0
p,abs p 3

0

0exp exp ( ) .
2

i
i i i

i i

K K z z
c







 
= −  −  

 
  

Amp. reduction on 

propagation distance up 

to the focus  

Amplitude reduction is calculated as the ratio of the 

pressure amplitude at the focus 
Fp  in non-absorbing 

medium to the pressure amplitude at the focus in the user-

defined layered medium, i.e., it is p p,abs/K K . 

 

In the following figure one can see how ‘3D view’ and ‘Info’ modes look like. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 On the left -‘3D view’ mode is active. On the right - ‘Info’ mode is active. 
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Single-element focused HIFU transducer: ‘KZK’ mode 

When working in the ‘KZK’ mode, the user should remember that the boundary 

condition in the KZK equation is set on the plane (see section ‘Setting a boundary 

condition in the ‘KZK’ mode. Equivalent source model.’) and thus the data assigned by 

the user in the box ‘Source parameters’ will be interpreted by the KZK model as set on 

the plane 0z = . 

An option of using equivalent source model is applicable in the software only for 

the spherical single-element HIFU transducer without an opening at the apex. 

Let’s consider the source with parameters similar to the previously considered 

ones but without an opening: F  = 90 mm, D  = 100 mm, and 
0f  = 1 MHz. In the ‘KZK’ 

mode button ‘Eqv.src.’ becomes active. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After clicking on the push button ‘Eqv.src.’, a 

box ‘Equivalent parabolic source’ appears. For 

defining parameters of the equivalent source 

user should click ‘Calc. eqv.src.’ button. 

Eq. (38) will be used in the software for this 

procedure. Calculated geometrical parameters 

of the equivalent source usually have larger 

values than the initial ones assigned by user. 

For HIFU transducers with an opening at 

the apex for insertion of a diagnostic ultrasound 

probe, the button ‘Eqv.src.’ is not active and 

the indicated external and internal diameters 

of the source will be set in the plane. 
Box ‘Equivalent parabolic source’’ is open. 

Interface in the ‘KZK’ mode. Single element HIFU source with the following parameters 

 = 90 mm,  = 100 mm, and  = 1 MHz is set. Mode ‘Eqv. src.’ is active for applying. 
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Multi-element annular array 

The functional of the software to set multi-element ring-shaped arrays is quite 

extensive: available options are to switch on/off different rings of the array, to set 

manually phases and amplitudes for each ring, and to set a point for axial steering or an 

interval of steered foci to produce an elongated focus. 

Here, a demonstration of the ring-shaped array settings is presented for ‘WAPE’ 

mode. In the ‘KZK’ mode the adjusting is similar, but the user should pay attention that 

in this case the array parameters will be set on the plane, not on a spherical segment. 

Setting the number of rings N  and technical gap g  between them leads to 

dividing the surface of a spherical bowl into N  rings of equal area spaced apart by a gap 

distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parameters of each ring are configured in the box ‘Amplitude and phase of 

annular array elements’. User can adjust the amplitude and phase of each ring 

Setting equivalent source as a boundary condition in the ‘KZK’ mode. 

Setting 12-elements-ring-shaped array in the ‘WAPE’ mode. Technical gap is 0.5 mm. 
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separately. In particular, selected rings can be turned off by setting to zero the 

amplitude coefficient. 

In the box ‘Amplitude coefficients of ring shape array elements’ there are four 

options: 

• ‘All rings are enabled’. In this option, all rings are turned on, amplitude 

coefficients are equal to unity for all rings. 

• ‘Single ring is enabled’. The number of the only emitting ring is selected, 

the rest will be inoperative. 

• ‘Several rings are enabled’. User specifies the beginning and ending ring 

number of the working section of the array. 

• ‘Manual setup in a table’. User manually sets the amplitude coefficients for 

each of the rings. In this case, setting zero amplitude will mean that the 

ring does not vibrate. 

Below is an example of an interface with manual setup of the amplitude coefficients for 

a 12-element ring-shaped annular array with the 5th and the 10th rings off and the 4th and 

8th rings emitting at half of the amplitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The element phase settings are adjusted in the box ‘Phases of ring shaped array 

elements’. Options are: 

• ‘No phasing’. Phase of each element is zero, focusing occurs only due to the 

spherical shape of the surface. 

• ‘Single steered focus’. Each element has additional phase shift so that 

focusing occurs in steered focus chosen by the user. 

• ‘Interval of steered foci’. This option is used to obtain an elongated focal 

region of a given axial length determined by the user specified interval on the 

axis. This interval is split into (N-1) equal subintervals (N – number of the 

array elements), and the centers of each subinterval are considered as 

Manual setup of the amplitude coefficients for a 12-element ring-shaped array in ‘WAPE’ mode. 
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electronic foci where portion of the field should be focused. The inner 

element (ring #1) phase is set to zero. The software calculates phases of the 

rest elements in such a way that each successive pair of the elements has a 

mutual phase shift corresponding to focusing at the center of the 

corresponding subinterval. In particular, the 2nd ring has an additional phase 

shift such that the interference of its field with the field of the 1st ring is 

constructive (in-phase) at the center of the 1st subinterval, which is closest to 

the source. Similarly, the combination of the (N-1)th and Nth rings focuses field 

to the center of the distal subinterval. 

• ‘Manual setup in a table’. User manually sets the phases for each of array 

elements. 

Third step: Propagation in a multi-layer medium 
 

The software “HIFU beam” allows a user to calculate the propagation of ultrasonic wave 

in a flat-layered medium. The number of layers can vary from one (a homogeneous 

medium) to ten. User can configure the parameters of the propagation medium in the 

box ‘Material parameters’ shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Default settings include seven materials with acoustic 

parameters given in a table below. The user can change these 

parameters or add a new material with the user-defined 

properties. To add a new user-defined layer, the user should 

enter material name in the field ‘Layer label’, click button 

‘Add’, and indicate acoustic parameters of the created 

material. If specified material has a power law absorption with 

frequency, user should check the box ‘Pow. Law abs on/off’. 

User can also choose a color for the created layer by clicking to 

the push button ‘Color’. 

Setting parameters of propagation medium in the box ‘Material parameters’.  

Setting user-defined 

layer. Enter layer name 

in ‘Layer Label’ field 

and click ‘Add’. 
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All manipulations with layer coordinates are immediately displayed graphically in 

the box ‘Geometry of the problem’. The user should indicate total number of layers and 

then for each current layer enter coordinates of its left and right boundaries. 

Coordinates can be set by entering numbers or by using sliders. When the user 

configures current layer, it is highlighted with a thick gray dotted line in the geometrical 

sketch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that in calculations of the ultrasonic field, the transmission coefficient pT  

for pressure from one layer to another one is accounted for by assuming normally 

incident plane waves (43). Both transmission coefficients for pressure pT  and intensity 

 water skin fat kidney muscle liver blood 

sound speed, 

0c  (m/s) 
1500 1500 1450 1570 1585 1580 1560 

density, 

0  (kg/m3) 
1000 1020 920 1050 1060 1050 1050 

nonlinearity coef.,  3.5 5 6 4.7 4.8 4.9 4.1 

thermoviscous 

absorption coef., 

  (mm2/s) 

4.33 4.33 4.33 4.33 4.33 4.33 4.33 

absorption coef. at 

1 MHz frequency, 

0  (Np/cm) 

off 0.2 0.065 0.1 0.12 0.046 0.016 

exponent in the 

absorption law,   
off 0.6 1.1 1.1 1.1 1.15 1.21 

Table with parameters of default materials which a user can choose for layers. 

Current 4th 

layer is 

highlighted 

with a gray 

dotted line  
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Setting grid parameters. Check 

‘Auto’ column to set recommended 

parameters. 

IT  are displayed in the settings in the box ‘Material parameters’. Also, for each layer 

power law, absorption losses are displayed in dB and in percentage. 

In the software, user-defined list of materials can be saved by clicking the button 

‘Save list’ and subsequently used by loading the list through ‘Load list’. 

Fourth step: Setting the grid and output domain parameters 
 

Grid parameters 

For setting the numerical grid for simulation, five parameters should be specified in the 

box ‘Grid parameters’: 

• ‘Simulation box length ZLen (mm)’. Enter size of 

the calculation area along the axial coordinate. 

• ‘Simulation box width RLen (mm)’. Enter size of 

the calculation area along the radial coordinate. 

• ‘Axial grid step dz (mm)’. 

• ‘Radial grid step dr (mm)’. 

• ‘Maximal number of harmonics Nh’. This 

parameter is especially important for nonlinear 

calculations when shock fronts are formed. 

If user has no preferences about the grid parameters, the best option is to use 

recommended parameters displayed in the green column. They are automatically copied 

to the current-use parameter boxes after checking corresponding check-boxes ‘auto’ on 

the left. 

 

Output domain parameters 

In the box ‘Output domain parameters’ the size of the output area and number of 

output harmonics should be indicated: 

• ‘Near border zmin (mm)’ (along the axial coordinate) 

• ‘Far border zmax (mm)’ (along the axial coordinate) 

• ‘Radial border rmax (mm)’ (along the radial coordinate) 

• ‘Number of harmonics Nh’ 

The output domain is displayed in the geometrical sketch by the red box. The area 

around the focus is most commonly used as the output area. 

 

Run simulations 

After settings all groups of parameters, calculations are started by clicking the 

button ‘Run’ in the upper left corner of the interface. After the simulation completes, 

the user can press the ‘Results’ button to get access to pressure waveforms in any 

chosen location along z-axis and along r-axis in the focal plane, at the distance z = F, 

and to four type of distributions (1D axial, 1D radial, 2D in the axial plane, 2D in the 

transverse plane) for peak positive pressure, peak negative pressure, shock amplitude, 
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intensity, heat sources, acoustic power, and harmonic amplitudes in the output domain. 

The results from previous simulations may be accessed in the ‘Results’ tab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Setting output domain around the focus (shown as red box in the interface). 

Simulations is ready to run! 

Output 

domain is 

displayed as 

red box  
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Single element spherical 

source of 1-MHz frequency 

(F = 90 mm, D = 100 mm) 

produced by Imasonic. 

Examples of numerical simulations 
 

In this section, numerical simulations for two representative laboratory ultrasonic 

transducers are presented. Simulations are shown for both ‘KZK’ and ‘WAPE’ modes. The 

sources are single element transducer and annular array, propagation in water as well as 

in a layered medium is considered. 

Single-element focused transducer, propagation in water 

The first example is a single element spherical source 

of 1 MHz frequency with radius of 5 cm and focal distance of 

9 cm. Calibration of its acoustic field in water is presented in 

papers [10,11,19]. Here, a detail description is provided on 

how to calculate acoustic field of this transducer in water for 

different initial pressure amplitudes at the source. Three 

cases will be considered below: quasilinear propagation 

(p0 = 0.15 MPa), developed shock formation (p0 = 0.45 MPa), 

and saturation regime of focusing (p0 = 0.70 MPa) with 

formation of two shocks in acoustic waveform close to the 

focus leading to specific double spike structure on the axial 

distribution of the peak positive pressure. Calculations are 

launched in the ‘KZK’ mode in order to show how equivalent 

source model works. 

 

Quasilinear case (p0 = 0.15 MPa) 

A quasilinear waveform distortion is usually defined following the criterion that 

less than 10% of the wave intensity is distributed over harmonics above the fundamental 

frequency. For the chosen transducer, a limiting situation at which exactly 10% of the 

focal intensity is distributed at higher harmonics corresponds to p0 = 0.15 MPa.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Step1: setting parameters of the single element spherical source in the ‘KZK’ mode. 
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The first step in calculations is to set parameters of the single-element spherical 

source in the ‘KZK’ mode. Since source parameters are known over a spherical surface, 

the equivalent source model should be applied to transfer correctly the boundary 

condition to the initial plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, in the box ‘Source parameters’, focal distance, external diameter, and 

pressure are recalculated: F = 98.2744 mm (instead of 90 mm), D = 114.0638 mm 

(instead of 100 mm), and p0 = 0.13747 MPa (instead of 0.15 MPa). Preliminary 

preparation of the source configuration is done, the user can run simulations. 

After finishing the calculations, results are displayed by clicking the button 

‘Results’. In the pop-up window ‘Simulation data 

plotting’, the left half is dedicated to displaying 

pressure waveforms. The interface allows the user 

to display waveforms for on-axis coordinate z (r = 

0 mm) or off-axis coordinate r in the focal plane 

(z = 98.2744 mm in the current case). Note that the 

axial coordinate z in the displayed results is tied to 

the parabolic source and is shifted relative to the 

real spherical one by 8.2744 mm. 

The right column of ‘Simulation data 

plotting’ is for setting the output of the field 

parameters: peak positive pressure p+, peak 

negative pressure p-, shock front amplitude (in the 

Version 1.0 doesn’t work     , it will be 

implemeted in the next version), intensity, heat 

sources, acoustic power, and harmonic amplitude. 

 

Step 2: applying equivalent source model (‘Design’→ ‘Eqv.src.’→‘Calc.eqv.src’) in the ‘KZK’ mode. 

Interface for plotting results. 
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Acoustic power is displayed only along the z-axis, so plotting the power 

distribution requires setting ‘Axial distribution: Z’ in the ‘Plot type selection’. In this 

example propagation is in water, there are no shock fronts, thus absorption is negligible, 

and the beam power is almost constant: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other field parameters can be displayed as one-dimensional distributions along z 

or r axes (the latter one in the focal plane) and as two-dimensional distributions in the 

axial plane zr or in the focal plane xy. Several examples shown below illustrate how 

these distributions are displayed in the interface of the software “HIFU beam”. 

Display results: waveform at the geometrical focus. This waveform corresponds to the 

quasilinear case: it is slightly distorted by nonlinear effects but only 10% of the wave 

intensity is distributed over harmonics of the fundamental frequency. 

Display results: Acoustic power of the beam along the z-axis.  



37 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Display results: axial distributions (along the z-axis) of the peak positive pressure, 

peak negative pressure, intensity, and heat sources. Note, that axis z is shifted in 

8.2744 mm since equivalent source model is applied. 

Display results: radial distributions (along the r-axis) of peak positive and peak 

negative pressures. Checking the box ‘Add new plot’ allows to plot both distributions 

on the same graph. 
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Display results: 2D distributions of the peak positive pressure in the axial 

plane zr (left) and at the focal plane xy (right). 

Display results: Pressure amplitude of the first seven harmonics along the z-axis. 

Number of harmonics in displaying results can’t be larger than indicated initially 

in the box ‘Output domain parameters’.  

Display results: 2D pressure amplitude distributions are displayed for each of the 

harmonic separately. Here are the results for first four harmonics in the plane zr. 
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Case corresponding to the developed shock formation (p0 = 0.45 MPa) 

After increasing p0 beyond quasilinear condition (p0 ≤ 0.15 MPa), formation of a 

shock front occurs at a certain pressure level. The shock initially forms near the positive 

peak of the waveform, and then, with further increase of p0, the shock grows in 

amplitude so that its bottom edge moves down toward a level of zero pressure. The 

level of distortion, where the shock amplitude normalized to the source pressure p0 

reaches a maximum, is termed as the level of developed shock formation.10 At this level, 

the focusing gain for the shock amplitude relative to the source pressure reaches its 

maximum, thus, the focusing is most effective. To determine which level of p0 

corresponds to the formation of the developed shock, a specific feature of this regime 

can be used: the bottom of the shock front in the focal waveform should be located at 

the zero-pressure level. For the chosen single-element transducer this occurs at p0 = 

0.45 MPa, as shown below. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear effects are significant at this 

drive level and a large portion of the intensity 

is distributed over higher harmonics, as shown 

on the 1D axial distributions of the harmonics’ 

amplitudes. While the amplitude of the shock 

front reaches almost 100 MPa, the amplitude of 

the fundamental harmonic (harmonic #1 in the 

figure) is only about 23 MPa. 

The axial distributions of the peak 

positive and peak negative pressures become 

strongly asymmetric relative to each other. 

The focal spot for the peak positive pressure 

is about twice shorter along the z-axis than 

the focal spot for the peak negative pressure. 

Display results: formation of the developed shock front in the focal pressure waveform 

(simulations in the ‘KZK’ mode, equivalent source model is applied). 

Bottom of 

the shock 

located at 

zero-

pressure 

level  

Display results: axial distribution of the 

pressure amplitude for first 10 harmonics. 
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Display results: 2D distributions in the axial 

zr plane of the peak positive (upper inset) 

and peak negative (lower inset) pressures. 

Shock front formation 

occurs, energy absorption 

increases sharply 

Display results: power along the beam axis z. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The width of the focal spot for the 

peak positive pressure along the radial 

coordinate r (at -3 dB level) is only 0.5 mm 

which is comparable to the size of a 

hydrophone tip in experiments. This is why 

the peak positive pressures are sometimes 

underestimated in the hydrophone 

measurements at very high source 

pressures.31 The corresponding width of the 

focal spot for the peak negative pressure is 

1.8 mm, more than three times wider than 

for the peak positive pressure. 

The moment of the beginning of shock 

front formation corresponds to a sharp 

decrease of the beam power and is clearly 

seen in the figure with power dependence 

along z-axis. 

Display results: axial distributions (along the z-axis) of the peak positive and 

peak negative pressures. 
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Saturation regime (p0 = 0.7 MPa) with specific double spike structure on p+(z) 

With further increase in p0 beyond 

the level of the developed shock 

formation (p0 = 0.45 MPa), the bottom 

edge of the shock continues to move 

down below the zero-pressure level. 

However, the growth rate of the shock 

front becomes slower because of strong 

energy attenuation in the shocks which 

start to form prefocally. At these 

pressure levels, experienced users of the 

parabolic KZK model expect to see a 

specific double spike structure on the 

axial distribution of the peak positive 

pressure.1,32,33,34 Indeed, such structure 

forms for the considered transducer and 

shown in the figure on the right for p0 = 

0.7 MPa. 

In order to identify the physical reasons for the formation of such a spike, 

pressure waveforms should be analyzed in its vicinity. In the prefocal region, just before 

the spike formation distance, the pressure waveform contains two shock fronts (see 

waveforms at z = 94.85 and 95.09 mm in the figure below). The left (lower) shock in the 

waveform corresponds to the direct wave while right (upper) shock comes with the edge 

wave of the piston source. Since energy absorption at the shock front is proportional to 

the cube of the shock amplitude 3

sh
A , energy absorption for a wave with two shocks is 

Display results: axial distribution of the peak 

positive pressure (‘KZK’ mode with eqv. source). 

specific double 

peaks structure 

caused by 

shock-shock 

interaction 

Display results: axial pressure waveforms in the vicinity of the prefocal peak. 
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proportional to the sum of cubes of two shock amplitudes ( )3 3

sh1 sh2
A A+ . Propagating 

closer to the focus, shock fronts of the direct and the edge waves merge at a certain 

distance. Exactly at this distance top of the peak is located (z = 95.55 mm). After 

merging of the two shocks, energy absorption is proportional to ( )
3

sh1 sh2
A A+  and 

increases sharply because of inequality ( ) ( )
3

3 3

sh1 sh2 sh1 sh2
A A A A+  + . Amplitude of the 

resulting shock decreases due to absorption (waveform at z = 96.25 mm). Since this 

shock-shock interaction occurs in the prefocal area, decrease of p+
 after the spike turns 

into its increase due to diffraction amplification near the focus. 

The physical mechanism behind the formation of two shocks at one wave period is 

diffraction, more specifically, it is related to the arrival of the edge waves. Phenomenon 

of shock-shock interaction is quite subtle to study. Fine structure of shock fronts should 

be analyzed for correct description and interpretation. The ‘KZK’ mode takes into 

account diffraction effects in a parabolic approximation and may underestimate or 

overestimate this effect. Comparison with the WAPE modeling and further discussion are 

given in the next section. 

‘WAPE’ vs. ‘KZK’: certain differences in calculation details 

The ultrasound field of a single element spherical source of 1 MHz frequency 

(F = 90 mm, D = 100 mm) considered above was also characterized in the ‘WAPE’ mode. 

For both ‘KZK’ and ‘WAPE’ modes the numerical grids in the simulation were the same 

for the same values of p0 (auto grid parameters were chosen in the interface). 

Comparison of axial distributions of the peak positive and the peak negative pressures as 

well as comparison of waveforms at the geometrical focus (z = F = 90 mm) are shown 

below in the figure for both ‘KZK’ and ‘WAPE’ modes. The z-axis for the ‘KZK’ results 

was shifted on 8.2744 mm to have it related to the real source, not to the parabolic 

equivalent one. 

In general, the results are in a very good agreement for both models. For the 

quasilinear case (p0 = 0.15 MPa) maximal discrepancy between levels of focal pressure 

does not exceed 3%. For the level of p0 that corresponded to the developed shock 

formation (p0 = 0.45 MPa), the discrepancy between two models is less than 2%. At 

saturation level, for p0 = 0.7 MPa, the effect of shock-shock peak formation is slightly 

higher in the KZK model. The WAPE model also predicts a small peak on the p+ 

distribution, but it is less pronounced compared to the parabolic model. The reason for 

this discrepancy is most probably related to different accuracy of governing the 

diffraction effects. For small diffraction angles, shock-shock interaction is stronger since 

the shock fronts are less distant from each other and merge faster. The parabolic KZK 

model reduces the diffraction angle, which leads to an artificial enhancement of shock-

shock interactions in the prefocal zone. Nevertheless, even in this case the maximal 

discrepancy between the two models is 7% in tiny vicinity of the prefocal peak only. 
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Note that a tenfold reduction in steps of the calculation grid halves the prefocal 

peak amplitude in the ‘KZK’ mode, but the calculation time increases significantly and 

the peak is still higher than in the WAPE model. Our recommendation is to use ‘WAPE’ 

mode if you don’t have specific preference to simulate the KZK equation and exclude 

this tiny extra peak when evaluating the peak positive pressure values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Examples of scripts to plot results directly from .mat files 

Some users of “HIFU beam” may prefer to plot the results not through a graphical 

interface, but directly through MATLAB scripts, as it has been done with the last figure. 

For those who prefer their own plot scripts we give examples on how to plot axial 

Waveforms at the focus Axial peak pressures 

p0 = 0.15 MPa 

p0 = 0.45 MPa 

p0 = 0.7 MPa 

Comparison of results obtained by using ‘KZK’ and ‘WAPE’ modes for a single-

element spherical source of 1-MHz frequency (F = 90 mm, D = 100 mm). 

p+ 

p- 
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distributions of the peak pressures and waveform at the focus from the .mat file created 

by the software. At the end of the simulation, save the results and refer to the scripts 

shown here. The data are packed into a structure called ‘simdata’. Note that the 

pressures ‘simdata.Pmax’ and ‘simdata.Pmin’ are dimensionless and normalized to p0. 

All axes are in ‘simdata.Axes’. Below is provided a possible script to plot results, just 

copy it to your MATLAB editor, change path and run after commenting unnecessary 

parts. 

 
%----script to plot results obtained by HIFU beam software------ 

clc; 

clear all 

  

path = 'G:\Projects_rus\HIFUbeam\'; %enter path to the folder 'MatlabLibrary' 

GPath.lib = fullfile([path 'MatlabLibrary\']); 

addpath(genpath([GPath.lib]));  

  

datapath = 'G:\Projects_rus\HIFUbeam\Data_HIFUbeam\'; %enter path to folder where results were saved 

load(fullfile(datapath,'D100_F90_P0_045.mat')); %load .mat file with data 

 

%---------------axial pressures (for KZK mode with eqv. source)------------ 

hf = figure; 

Font = 10; 

set(hf,'Units','centimeters','Position',[11 6 8 7]); 

set(hf,'DefaultLineLineWidth',1.0,'DefaulttextFontsize',Font, 'DefaulttextFontName', 'Arial'); 

F = simdata.Source.RingP.F * 1e3; % focal distance in mm 

shift = F - 90; % enter focal depth of the real source, 90 mm in given case 

plot(simdata.Axes.Pmax.pt.zg-shift, simdata.Pmax.pt{1, 1}.*simdata.Phys.p0.*1e-6); hold on 

plot(simdata.Axes.Pmin.pt.zg-shift, simdata.Pmin.pt{1, 1}.*simdata.Phys.p0.*1e-6); hold on 

grid on 

xlim([0 max(simdata.Axes.Pmax.pt.zg-shift)]); 

set(gca,'fontSize',Font,'fontName','Arial', 'box','on','TickDir','out'); 

ylabel('\rmPressure, MPa'); 

xlabel('\itz\rm, mm'); 

%-------------------------------------------------------------------------- 

  

%---------------axial pressures (for WAPE mode)---------------------------- 

hf = figure; 

Font = 10; 

set(hf,'Units','centimeters','Position',[11 6 8 7]); 

set(hf,'DefaultLineLineWidth',1.0,'DefaulttextFontsize',Font, 'DefaulttextFontName', 'Arial'); 

plot(simdata.Axes.Pmax.pt.zg, simdata.Pmax.pt{1, 1}.*simdata.Phys.p0.*1e-6); hold on 

plot(simdata.Axes.Pmin.pt.zg, simdata.Pmin.pt{1, 1}.*simdata.Phys.p0.*1e-6); hold on 

grid on 

xlim([0 max(simdata.Axes.Pmax.pt.zg)]); 

set(gca,'fontSize',Font,'fontName','Arial', 'box','on','TickDir','out'); 

ylabel('\rmPressure, MPa'); 

xlabel('\itz\rm, mm'); 

%-------------------------------------------------------------------------- 

  

%--------------------------waveforms at the focus ------------------------- 

hf = figure; 

Font = 10; 

set(hf,'Units','centimeters','Position',[11 6 8 7]); 

set(hf,'DefaultLineLineWidth',1.0,'DefaulttextFontsize',Font, 'DefaulttextFontName', 'Arial'); 

  

% choose variant with ind - first for 'KZK', second for 'WAPE' (RingP or RingF) 

%ind = find(simdata.Axes.Wf.pt.zg >= simdata.Source.RingP.F * 1e3,1); % index of z = F for KZK  

ind = find(simdata.Axes.Wf.pt.zg >= simdata.Source.RingF.F * 1e3,1); % index of z = F for WAPE  

 

% plotE is a function from the folder 'MatlabLibrary' 

plotE(simdata.Axes.tg, simdata.Wf.pt{1,1}(:,1, ind).*simdata.Phys.p0.*1e-6,'t2'); hold on 

  

grid on 

set(gca,'fontSize',Font,'fontName','Arial', 'box','on','TickDir','out'); 

ylabel('\rmPressure, MPa'); 

xlabel('\rmDimensionless time, rad'); 

xlim([0 4*pi]); 

set(gca,'XTick',0:pi:4*pi)  

set(gca,'XTickLabel',{'0','\fontsize{13}\pi','\fontsize{10}2\fontsize{13}\pi',... 

     '\fontsize{10}3\fontsize{13}\pi','4\fontsize{13}\pi'}); 

%-------------------------------------------------------------------------- 
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Ring-shaped array, propagation in water 

The next example of a representative ultrasound source 

is a ring-shaped array that has been used for developing 

thermal and mechanical methods of tissue ablation in mouse 

tumors.35 The source is a 3 MHz 16-element annular array of 

48 mm diameter, 35 mm radius of curvature, and the ring 

spacing is 0.15 mm. In calculations of its acoustic field in 

water, ‘WAPE’ mode is used. 

Results of simulations shown here were performed for 

quasilinear, developed shock formation, and saturation 

cases. In the first series of simulations, there was no 

additional phasing of the array elements. When focusing at the geometrical focus, the 

quasilinear case corresponds to p0 = 0.14 MPa and developed shock forms at the focus at 

p0 = 0.425 MPa. The case that corresponded to saturation regime was simulated for p0 = 

0.75 MPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the second series of calculations, the focus was steered to the location z = 30 

mm by adding phases to the array elements. In this case, the waveform at steered focus 

was quasilinear at p0 = 0.17 MPa and formation of a developed shock at steered focus 

occurred at p0 = 0.525 MPa. The saturation case was also simulated for p0 = 0.75 MPa to 

show the differences arising when source power W0 is the same but with and without 

steering. In order to compare the results of simulations for different values of p0, we 

saved the data obtained with “HIFU beam” and plotted them by a MATLAB script without 

using the graphical interface of the software. 

Shown below are pressure waveforms simulated for 3 cases (quasilinear, 

formation of the developed shock, and saturation) when focusing occurs at the 

geometrical focus (on the left) and steered 5 mm closer to the source (on the right). 

Ring-shaped array of 3-MHz 

frequency (F = 35 mm, D = 

48 mm, 16 elements). Photo 

is taken from [35] (fig.1a). 

Setting parameters of 3 MHz 16-element ring-shaped array (F = 35 mm, D = 48mm) in 

the ‘WAPE’ mode for p0 = 0.14 MPa (quasilinear case). 
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Small dimensions of the source and its quite high operation frequency (3 MHz) allow to 

obtain shock fronts of very high amplitude (about 200 MPa) at the focus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steering the focus by phasing the array elements increases the focusing angle for 

comparing to the current geometry. In a publication discussing this data [12] it was 

shown that the most important parameter of the source that controls nonlinear effects 

is the focusing angle. It follows that focus steering can change manifestation of 

nonlinear effects. When the focus is steered at z = 30 mm, the beam has higher focusing 

angle than without steering, developed shock forms at higher pressure levels p0 

(0.525 MPa vs. 0.425 MPa) and has higher amplitude.  

The size of the focal lobe also changes with changing focusing angle. Weakly 

focused beams have longer focal lobes. In 1D axial distributions of the peak positive and 

peak negative pressures (see figure below) it is clearly shown that focal lobe in the case 

of steering (right column) is narrower than in the case without steering (left column). 

Thus, for the considered 16-element array, steering the focus 5 mm closer to the source 

Setting parameters of 3 MHz 16-element ring-shaped array (F = 35 mm, D = 48 mm) in 

the ‘WAPE’ mode with focus steered at z = 30 mm for p0 = 0.17 MPa (quasilinear case). 

Pressure waveforms at the focus z = F = 35 mm 

for quasilinear (p0 = 0.14 MPa), developed 

shock formation (p0 = 0.425 MPa), and 

saturation (p0 = 0.75 MPa) cases. 

Pressure waveforms at steered focus z = 

30 mm for quasilinear (p0 = 0.17 MPa), 

developed shock formation (p0 = 0.525 MPa), 

and saturation (p0 = 0.75 MPa) cases. 
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leads to decrease of the length of the focal lobe, to formation of the developed shock 

front at higher array power and to higher pressure levels achievable at steered focus in 

saturation regime (see figures below). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1D axial and radial distributions of the peak positive and the peak negative pressures. Left part 

corresponds to focusing at the focus z = F = 35 mm, right part - to steering the focus at z =30 mm. 
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2D distributions of the peak positive (a,b,c) and the peak negative (d,e,f) pressures in cases 

without steering and with steering. a),d) corresponds to quasilinear case; b),e) –to developed 

shock formation; c),f)– to saturation case. 
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Single-element spherical HIFU source, multi-layered medium 

The last example is for a transducer with parameters typical for real HIFU 

transducer in a clinical setting. The source has the same operating frequency f0 = 

1.2 MHz and the same focal distance F = 120 mm as the array of the MRgHIFU Sonalleve 

system (Med. Profound, Canada).14 The diameter D is 120 mm which provides F-number 

equal to unity. Propagation is in a layered medium consisting of water (0 z 80 mm), 

muscle (80  z  105 mm), and kidney (z  105 mm). Simulations are performed in the 

‘WAPE’ mode for linear, quasilinear (p0 = 0.15 MPa), developed shock formation 

(p0 = 0.375 MPa), and saturation (p0 = 0.75 MPa) cases. The saturation case corresponds 

to the source power of 2273 W which is achievable in practice and the results for this 

case are presented to demonstrate how nonlinear effects develop further after shock 

formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the presence of tissue layers, the maximum of p+ is reached closer to the 

source than it would be in water due to the refraction at layer interfaces: in the linear 

case the pressure maximum is shifted to z = 117.2 mm while geometrical focus is at 

z = F = 120 mm. The focal gain is about 50 for the linear propagation. 

 

 

 

 

 

 

 

 

Setting parameters for 1.2 MHz single-element spherical source (F = D = 120 mm) in the ‘WAPE’ mode, 

propagation medium includes 3 layers (water, muscle, kidney), p0 = 0.15 MPa (quasilinear case). 

1D axial (on left) and radial (on right) distributions of normalized peak positive 

and peak negative pressures for linear, quasilinear (p0 = 0.15 MPa), and 

developed shock formation (p0 = 0.375 MPa) cases. 
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Nonlinear effects increase the focal gain 

for the peak positive pressure:6,11 it reaches 70 

already in quasilinear case although the pressure 

waveform is slightly distorted. When developed 

shock formation occurs, the focal gain is 165. 

However, the amplitude of the developed shock 

is only about 60 MPa because of significant 

absorption in muscle layer and in kidney. 

When shock front starts to develop in the 

pressure waveform, the focusing efficiency 

increases, but at the same time the focal lobe 

becomes narrower. The smallest size of the focal 

lobe approximately corresponds to formation of the fully developed shock. In this case, 

the spectrum is dominated by higher harmonics which are focused very locally. The focal 

region of p+ has elongated shape: its axial length is about 6 mm while the transverse 

size is only 0.6 mm at -6 dB level. With further increase of p0, shocks form not only close 

to the focus but also in adjacent area. The focusing efficiency decreases as compared to 

the case of the developed shock formation and the size of the focal area increases (see 

figure below, left column with 2D p+ distributions). 

The focal lobe of the peak negative pressure p- is extending in the axial direction 

with the increase of p0 and moves towards the source (see figure below, right column 

with 2D p- distributions). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The software “HIFU beam” can also help users to evaluate the increase in the 

thermal effect caused by nonlinear focusing of ultrasound in tissue. Clicking ‘Acoustic 

power’, the user can visualize the change of the total acoustic beam power W with 

propagation distance. The button ‘heat sources’ is for 1D and 2D distributions of the 

heat deposition rate. 

2D distributions of the peak positive (a,b,c) and the peak negative (d,e,f) pressures. 

a),d) corresponds to quasilinear case; b),e) –to developed shock formation; c),f)– to 

saturation case. 

Pressure waveforms at z = 117.2 mm for 

quasilinear (p0 = 0.15 MPa), developed 

shock formation (p0 = 0.375 MPa), and 

saturation (p0 = 0.75 MPa) cases. 
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In the linear case, the total acoustic beam power decreases exponentially in 

tissue. Formation of the shock front leads to additional heat deposition proportional to 

the cube of the shock amplitude 3

sh
A . As shown in the figure below, in the case of 

developed shock formation, the decrease of the total beam power deviates significantly 

from the exponential law after ‘muscle-kidney’ boundary in comparison to the 

quasilinear case. In a focal region, there is a sharp jump in power losses caused by 

formation of the shock. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despite the fact that normalized power losses 

( )01 W dW dz−  differ in the focus by only about two 

times between linear propagation and nonlinear with 

the developed shock formation, acoustic beam power is 

distributed over different volumes. In the linear case, 

calculated for the same power as for the developed 

shock formation (568 W, p0 = 0.375 MPa), the maximum 

of the heat deposition rate is 2.6 W/mm3 while for the 

nonlinear propagation it is about 20 times higher 

(50.6 W/mm3). At the same time, axial and radial sizes 

of focal areas for heat sources differ in 3 times: it is 

smaller when the developed shock formation occurs 

(see figure with heat sources).  

In summary, shock-wave exposure protocols provide very fast heating of tissue in 

a localized volume. This effect is used in boiling histotripsy methods to liquefy tissue 

mechanically22,23 and in developing methods of faster volumetric thermal tissue ablation 

by shock waves in existing clinical HIFU systems36. 

  

Total acoustic beam power (on the left) and losses of power dW/dz (on the right) 

normalized to the initial acoustic power W0 along the beam axis z for linear, quasilinear 

(p0 = 0.15 MPa), and developed shock formation (p0 = 0.375 MPa) cases. 

Heat sources in axial zr and focal xy 

planes for the same power of 568 W 

when propagation is linear (a) and 

nonlinear with developed shock 

formation at the focus (b). 
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Appendix: numerical methods and algorithms 

Numerical simulations of the KZK equation and WAPE are based on the method of 

fractional steps with an operator splitting procedure of the second-order accuracy. A 

combined time-and frequency-domain approach is used to describe different physical 

effects separately at each step of the grid along the beam axis from z  to z z+  . At 

each spatial point ( , )r z  the pressure is represented either as a temporal pressure 

waveform or in the form of a finite Fourier series expansion by harmonic components. 

An adaptive algorithm with varying number of harmonics included in simulations is used 

at each step over the coordinate z . The number of harmonics is increased with 

increasing distortion of the waveform and corresponding broadening of its spectrum. If 

the amplitude of the last currently used harmonic exceeds 1% of the source amplitude, 

then larger number of higher harmonics is added to the calculation up to the maximal 

number of 1000, which was found to be sufficient for accurate governing nonlinear 

propagation effects and evolution of high-amplitude shocks generated by HIFU single-

element transducers and annular arrays in a flat-layered medium imitating biological 

tissues. 

Since the nonlinear and absorption operators are the same for both the ‘KZK’ and 

‘WAPE’ modes, identical methods to calculate them were used. 

Boundary Conditions for the Radial Coordinate (PML) 

The waves radiated by the source propagate both in radial and axial directions. 

Eventually, they reach the radial boundary of the numerical domain 
LenR . If no special 

care is taken, the waves reflect back to the beam axis 0r =  and interfere with the 

primary acoustic field, which is typically observed as appearance of ripples. This effect 

can be mitigated by increasing 
LenR , since for longer propagation distances the wave 

amplitude decreases at least due to geometrical spreading. However, it is not practical 

to take 
LenR  significantly larger than 1.5−2 of the source radius. In order to properly 

deal with reflections from radial boundary, the perfectly matched layer (PML) method is 

used. Here, details of the method are presented for radially symmetric case realized in 

the “HIFU beam” simulator. 

A small boundary layer with thickness Len PMLw R r= −  is introduced, in which the 

radial coordinate r  is transformed to the complex value r  as: 

PML

( )
,

r

r

i r
r r dr






= +     (A1) 

where ( )r  is a positive attenuation function which is non-zero only within PML; the 

PML begins at the spatial coordinate 
PMLr  and continues up to the outer boundary 

LenR . 

In simulations, 
LenR  was chosen equal to D , so the simulation box width is equal to 

twice the external diameter of the source. 
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The function for infinitesimal variations of complex spatial coordinate r  gives 

,dr Sdr=  where 
( )

( ) 1
i r

S r



= +  has a meaning of complex stretch factor. Introducing 

a variable 

PML

1 ( )
( ) 1

r

r

i r
S r dr

r






= +  , one obtains the relation between the coordinates 

r  and r : ( )r rS r= . 

As a result, differential operator L̂  within the layer is transformed as:  

2 2

2

1 1 1 1 1 1 1 1

1 1
,

S S S S S S
r r r r

k r r r Sr S r S r Sr S S r r Sr S S r

S S S S
r

S r r r SS r

          −    
= = + =                  

    −  
= +  

    

  (A2) 

where ( )S r and ( )S r denote their derivatives over the coordinate r . These functions 

differ from unity only within the PML; outside the PML, the differential operator L̂ has 

its original form. 

In the simulator “HIFU beam” the attenuation function ( )r  is chosen following a 

power law as follows: 

3

PML
0

Len PML

( ) .
r r

r
R r

 
 −

=  
− 

          (A3) 

The value of the coefficient 
0  and the PML thickness are usually chosen 

experimentally by minimizing the amplitude of the reflected waves. In the “HIFU 

beam”, 
0 is chosen exceeding the angular frequency 

0  by a factor of 10. The layer 

width w  is chosen equal to 10 mm. The amplitude of the reflected waves for such 

choice was less than –80 dB of the incident wave amplitude in typical cases that have 

been evaluated. 

Diffraction operator 
 

Diffraction operator in the 2D radially symmetric KZK equation (mode ‘KZK’) 

The diffraction operator in the ‘KZK’ mode is calculated in the frequency domain 

independently for each harmonic component: 

0

0

.
2

n
n

p ic
p

z n
⊥


= 


                   (A4) 

At each splitting step, the diffraction operator is solved by finite difference 

schemes, either using a fully implicit backward differences scheme or a semi-implicit 

Crank-Nicolson scheme.37 The fully implicit backward differences scheme is the more 
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absorptive of the two and it is used at the initial stage of the wave propagation. In the 

software, it is applied up to the distance of 0.05F  in order to suppress field oscillations 

caused by sharp edges of the pressure distribution in the source plane. Especially, 

oscillations can occur in the case of the piston source with sharp edges. The finite 

difference equations for the backward differences scheme are: 

1 1

, 1 , 11 1 1 10
, , , 1 , , 12
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1 0
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2 , 2... 1,

2 ( ) 2( 1)
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
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1 1

, Len, ( ).
r

m

n N rp j N r R+ + − = = 

(A5) 

The scheme (A5) is of second order of accuracy over the radial coordinate r  (step r , 

index of the spatial grid node j ) and of first order of accuracy over the axial coordinate 

z  (step ,z  index of the spatial grid node m ). For the axial node 1j =  the discrete 

equation is obtained based on the radial symmetry 

0

0,
r

p

r



=


=


 and for the outer 

boundary node 
rj N=  rigid wall condition is chosen 

max

0.
r r

p

r



=


=


 Finally, equations of 

the system (A5) are represented in a tridiagonal matrix form, which is then solved using 

the Thomas algorithm.37 

A semi-implicit Crank-Nicolson scheme is applied at larger ( 0.05z F ) distances. 

The discrete equations for each harmonic component np  are: 
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(A6) 

The boundary conditions on the axis and on the edge of the spatial window are 

the same as they were described for the backward differences scheme. The 

approximations (A6) are of second order of accuracy over both coordinate r  and z . The 

system is solved similarly to the backward differences scheme using the Thomas 

algorithm. 
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Note that the splitting step of the diffraction operator is appropriately divided 

into smaller substeps to maintain necessary accuracy of the numerical method.13  

 

Diffraction operator in the wide angle parabolic approximation (mode 

‘WAPE’) 

For the WAPE, the diffraction operator (35) is solved iteratively for each harmonic 

component np : 

( ) ( )
1 1

ˆ ˆ1 ( ) 1 ( ),n n

N N

m m

m m
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where 3N =  iterations were used: 
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The discrete equations for each iteration are: 
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  (A9) 

The system (A9) is similar to the equation obtained for the semi-implicit Crank-Nicolson 

scheme (A6) and it is also solved using the Thomas algorithm. Within the PML layer, the 

finite-difference schemes presented above were modified following the transformation 

of the operator L̂ . 
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Nonlinear operator 

To calculate the nonlinear operator, both frequency- and time-domains are used. 

At small distances from the source, a set of coupled equations for the harmonic 

amplitudes  

1
*0

3
1 10 0

2
2

n
n

m n m m n m

m m

p i n
p p p p

z c
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

 −

+ −

= =

  
= + 
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         (A10) 

is solved using the fourth-order accuracy Runge–Kutta method.37 When the amplitude of 

the 10-th harmonic exceeds the amplitude of the fundamental frequency by 1%, a 

conservative Godunov-type scheme in the time domain is applied.6,13,38 

Absorption  

The absorption term is calculated in the spectral domain based on exact analytic 

solution for each of the harmonics. The term includes thermoviscous absorption of the 

medium and the power law absorption, Eq. (43), with corresponding dispersion, Eq. (44), 

in biological tissue: 

0
0
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