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 
Abstract—“HIFU beam” is a freely available software 

tool that comprises a MATLAB toolbox combined with a 
user-friendly interface and binary executable compiled 
from FORTRAN source code [HIFU beam. (2021). 
Available: http://limu.msu.ru/node/3555?language=en]. It 
is designed for simulating high-intensity focused 
ultrasound (HIFU) fields generated by single-element 
transducers and annular arrays with propagation in flat-
layered media that mimic biological tissues. Numerical 
models incorporated in the simulator include evolution-
type equations, either the Khokhlov–Zabolotskaya–
Kuznetsov (KZK) equation or one-way Westervelt 
equation, for radially symmetric ultrasound beams in 
homogeneous and layered media with thermoviscous or 
power law acoustic absorption. The software uses shock-
capturing methods that allow for simulating strongly 
nonlinear acoustic fields with high-amplitude shocks. In 
this paper, a general description of the software is given 
along with three representative simulation cases of 
ultrasound transducers and focusing conditions typical for 
therapeutic applications. The examples illustrate major 
nonlinear wave effects in HIFU fields including shock 
formation. Two examples simulate propagation in water, 
involving a single-element source (1 MHz frequency, 
100 mm diameter, 90 mm radius of curvature) and a 16-
element annular array (3 MHz frequency, 48 mm 
diameter, and 35 mm radius of curvature). The third 
example mimics the scenario of a HIFU treatment in a 
‘water-muscle-kidney’ layered medium using a source 
typical for abdominal HIFU applications (1.2 MHz 
frequency, 120 mm diameter and radius of curvature). 
Linear, quasi-linear, and shock-wave exposure protocols 
are considered. It is intended that “HIFU beam” can be 
useful in teaching nonlinear acoustics; designing and 
characterizing high-power transducers; and developing 
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exposure protocols for a wide range of therapeutic 
applications such as shock-based HIFU, boiling 
histotripsy, drug delivery, immunotherapy, and others. 

Index Terms—“HIFU beam” software, shock wave, KZK 
equation, Westervelt equation, equivalent source, wide-angle 
parabolic approximation, developed shock, biological tissue. 

I. INTRODUCTION 

umerical modeling of ultrasound fields is an effective 
tool in modern HIFU research and applications. 

Simulations are used for design and characterization of HIFU 
transducers of different types and geometries [2-7] and also 
for quantitative estimation of ultrasound field parameters such 
as peak pressures, intensity, and heating rate in phantoms and 
biological tissues [8-11]. Modeling plays a critical role in 
developing, testing, and evaluating the efficiency and safety of 
HIFU protocols. The overall utility and importance of 
numerical modeling has significantly grown over the last two 
decades due to a tremendous increase of computer processing 
power, parallel computations, and development of new 
numerical algorithms [12]. These advancements have made it 
possible to consider more realistic problems including 
ultrasound propagation in inhomogeneous biological tissues 
[13-16]. 

Progress in modeling and simulation tools is also reflected 
in international standards related to medical ultrasound. In 
2014, a Technical Specification was released by the 
International Electrotechnical Commission (IEC) for 
characterizing therapeutic ultrasound fields with the inclusion 
of options for numerical calculation of some field parameters 
[17]. Related work within IEC Technical Committee 87 
continues toward the standardization of methods for 
measurement-based modeling. Moreover, computational 
studies are recognized by a formal guidance document as a 
potential part of medical device submissions to the U.S. Food 
and Drug Administration [18]. 

Various wave propagation models based on different wave 
equations and numerical algorithms have been developed [19, 
20]. An effective strategy is to publish numerical models and 
to develop and distribute software where a particular equation 
and corresponding numerical method are implemented. These 
software packages can then be used to solve typical ultrasound 
wave propagation problems [21-28]. 

Petr V. Yuldashev, Maria M. Karzova, Wayne Kreider, Pavel B. Rosnitskiy, Oleg A. Sapozhnikov, 
and Vera A. Khokhlova 

“HIFU beam”: a Simulator for Predicting 
Axially Symmetric Nonlinear Acoustic Fields 

Generated by Focused Transducers  
in a Layered Medium 

N

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 01,2021 at 09:55:53 UTC from IEEE Xplore.  Restrictions apply. 



0885-3010 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3074611, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

TUFFC-10782-2021 

 

2

In this introduction, we primarily focus on references which 
correspond to the specific features of such freely available 
ultrasound simulation software. For a broader overview, we 
refer to other papers that present different ultrasound modeling 
methods relevant to the “HIFU beam” software [29-33]. 

In general, ultrasound simulation models can be divided 
into three broad categories. In the first category, a three-
dimensional full wave equation is solved. This solution allows 
for wave propagation in inhomogeneous media including 
important phenomena such as nonlinear effects, multiple-
scattering, and reflection [12,34-36]. A commonly used 
example is the freely available “k-Wave” software which 
solves a full-wave equation in k-space using a pseudospectral 
method [26]. The “k-Wave” software can be used to simulate 
both linear and nonlinear propagation in inhomogeneous 
biological tissues with features such as frequency dependent 
power law absorption and corresponding dispersion. Another 
software version was developed for acoustic wave propagation 
in an elastic medium and was used to simulate ultrasound 
propagation through the skull [14, 37]. However, in its three-
dimensional formulation, “k-Wave” is very demanding in 
terms of computer processing power and memory, especially 
for ultrasound fields involving nonlinear propagation and the 
presence of more than a few harmonics [11]. Even for weakly 
nonlinear fields, it is recommended that simulations be 
performed on high-end desktop computers, workstations, or 
clusters [38]. 

In the second category, simplified wave equations are 
solved assuming one-way propagation. For simulating 3D 
ultrasound beams, either the KZK equation [39,40] or the 
Westervelt equation [41-44] is used. The angular spectrum 
method is frequently implemented for calculating the 
diffraction operator in the one-way form of the Westervelt 
equation [32,45]. Several publicly available software packages 
leverage this approach. The “Abersim” solver can simulate 3D 
propagation of wide-band slightly nonlinear acoustic pulses 
from arbitrarily shaped transducers [24, 46]. The ultrasound 
simulator “FOCUS”, developed at Michigan State University, 
uses the fast nearfield method to initialize pressure fields 
generated by transducers with prescribed geometries [23]. The 
initial pressure field is then propagated linearly using the 
angular spectrum method [47]. Additionally, “FOCUS” 
includes routines for steady-state and transient wavefield 
simulations with the KZK equation [48]. The software 
“CREANUIS” realized the generalized angular spectrum 
method that allows for simulation of the fundamental and 
second-harmonic pressure fields in the quasi-linear 
approximation by accounting for homogeneous or 
inhomogeneous nonlinear properties of the propagation 
medium [27]. “CREANUIS” is primarily used to simulate 
diagnostic ultrasound fields and to test different harmonic 
imaging	 techniques	 [49]. While the efficiency of such 3D 
one-way algorithms is much higher than full-wave modeling, 
only moderately nonlinear problems have been modeled using 
standard personal computers. However, simulation of 3D 
shock-wave fields from arbitrary-shaped transducers in the 
one-way approach can be performed using supercomputers 
[5,44]. 

The third category is based on one-way propagation 
equations such as the Khokhlov-Zabolotskaya-Kuznetsov 
equation (KZK) limited to consideration of axially symmetric 
beams [21,22,25,50,51]. Such solvers are significantly more 
efficient compared to the 3D wave models and can therefore 
be used to simulate strongly nonlinear fields with shocks on 
standard personal computers. For example, a frequency-
domain KZK solver for axially symmetric beams known as the 
“Bergen” code was developed in the early 1990s [21]. Another 
software package based on the KZK equation for simulating 
axially symmetric high-intensity focused ultrasound beams 
included a solver of the Pennes bioheat transfer equation and 
was packaged for MATLAB (The Mathworks, Inc., Natick, 
MA) [25]. This software has been subsequently enhanced by 
replacing the diffraction operator in the parabolic 
approximation by the diffraction operator using a wide-angle 
parabolic approximation (WAKZK) and now is known as 
“HITU_Simulator” [51]. The KZK version of the software 
was also extended to account for acoustic beam propagation 
through multiple flat layers of different biological tissues [52]. 
In all versions, the nonlinear term was solved in the frequency 
domain by numerically integrating a coupled system of 
nonlinear equations for harmonic amplitudes. This process 
requires high computational resources for modeling high-
amplitude shocks because the number of operations is 
proportional to the square of the number of harmonics 
included in simulations. Soon after the Bergen code, a KZK 
time-domain solver for axially symmetric beams was 
developed and published in the form of a FORTRAN source 
code known as the Texas Code or KZKTEXAS [22]. This 
code has been used for modeling pulses with shocks, but 
suffers from strong artificial absorption due to the 
interpolation procedure in modeling the nonlinear term. 

The goal of this paper is to present a new “HIFU beam” 
solver designed for simulating nonlinear acoustic fields 
generated by single-element HIFU transducers and annular 
arrays in flat-layered media that mimic biological tissue [1]. 
The software was developed for use on standard personal 
computers as a MATLAB application combined with a binary 
executable compiled from FORTRAN source code. The major 
distinguishing features of “HIFU beam” are the ability for 
efficient simulation of high-amplitude shocks using a shock-
capturing scheme, propagation in flat-layered media, 
implementation of a realistic boundary condition for focused 
ultrasound transducers, and a user-friendly interface. The 
development of “HIFU beam” and its experimental validation 
reflects the experience of more than 20 years of collaborative 
research on therapeutic ultrasound-based applications between 
the Laboratory of Industrial and Medical Ultrasound (LIMU) 
at M.V. Lomonosov Moscow State University (Moscow, 
Russia) and the Center for Industrial and Medical Ultrasound 
(CIMU) at the University of Washington (Seattle, 
Washington) [5, 44, 53-62]. 

The numerical models incorporated in the simulator are 
based on evolution-type equations, either KZK or one-way 
Westervelt-type equations, for radially symmetric ultrasound 
beams in homogeneous and layered media with thermoviscous 

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 01,2021 at 09:55:53 UTC from IEEE Xplore.  Restrictions apply. 



0885-3010 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3074611, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

TUFFC-10782-2021 

 

3

or power law frequency dependence of acoustic absorption 
and corresponding dispersion. The differences between the 
two models available in the simulator are the approximations 
used to solve the diffraction operator and to set the boundary 
conditions to the model. When solving the KZK equation, the 
diffraction for each harmonic component of the wave is 
accounted for in the parabolic approximation (KZK-mode), 
whereas the diffraction term in the Westervelt equation is 
solved using a wide-angle Padé approximation (WAPE-mode) 
[33, 62]. An equivalent source model is included in the 
software for the KZK solver for more accurate simulation of 
strongly focused beams [59]. The core functionality of the 
application of both KZK and WAPE modes is provided by 
finite-difference numerical schemes. The nonlinear operator is 
solved in the frequency domain for slightly distorted 
waveforms and in the time domain using a shock-capturing 
scheme for strongly distorted waveforms. The absorption and 
dispersion operator is solved in the frequency domain using an 
exact solution for each harmonic component. 

A graphical user interface (GUI) to the software has been 
designed for flexibility and user friendliness. The interface 
uses MATLAB GUI functionality to set user-defined input 
parameters to the numerical model, to run simulations, and to 
read and visualize the output data. “HIFU beam” optionally 
uses a text interface based on MATLAB scripts and functions, 
which is not described in the current paper. The computational 
engine is compiled to a binary file from FORTRAN 2003 
source code and is compliant with Windows operating systems 
(Microsoft Inc.). The binary code has been optimized for 
speed, accuracy, and parallel execution on multi-core 
processors. This software is still under development and its 
functionality is still evolving. We hope that user feedback can 
help us to make it better. 

II. NUMERICAL MODEL 

In this section, we describe for “HIFU beam” the governing 
equations, the numerical algorithms used to solve these 
equations, the methods used to set model boundary conditions, 
and the options for defining multi-layer propagation media. 
Two simulation modes available in Version 1.0, KZK and 
WAPE, are based respectively on the KZK parabolic equation 
and the one-way Westervelt-type equation in a wide-angle 
parabolic approximation of the diffraction effects. 

A. Radially symmetric KZK equation (KZK-mode) 

The KZK-mode utilizes a solver of the KZK equation, 
which models nonlinear propagation of acoustic beams in a 
thermoviscous medium and accounts for diffraction effects in 
the parabolic approximation. Here, the KZK equation is 
considered for radially symmetric acoustic beams and 
generalized to account for frequency-dependent absorption in 
homogeneous tissue-like medium: 
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1
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L p
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 
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  (1) 

Here p  is the acoustic pressure, z is the spatial coordinate 

along the beam axis, r is the radial coordinate, and 

0/t z c    is the retarded time. Parameters 0 , 0c ,  , and 

  are the ambient density, isentropic sound speed, 
nonlinearity coefficient, and diffusivity of sound in the 
propagation medium, respectively. The three differential 
operators from left to right on the right-hand side of Eq. (1) 
correspond to diffraction, nonlinear, and thermoviscous 
absorption effects. The last operator generally has an integral 
form and corresponds to frequency-dependent absorption and 
dispersion effects in biological tissue and is discussed 
separately. 

B. Radially symmetric Westervelt equation (WAPE-mode) 

The WAPE-mode of the software corresponds to solving 
the one-way Westervelt equation with radial symmetry. The 
equation can be written in the retarded time coordinate system 
as follows: 
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(2) 

The only difference between the KZK and Westervelt 
equations in (1) and (2) is in the diffraction operator 
represented by the first term on the right-hand side. The 
diffraction operator of the Westervelt equation contains an 
extra second order derivative of the pressure over the axial 
coordinate z. This difference reflects the fact that the 
diffraction operator of the Westervelt equation exactly 
corresponds to the linear wave equation, while the KZK uses a 
small diffraction angle approximation. This difference results 
in different accuracies for simulating focused beams, with the 
Westervelt equation being more accurate in the presence of 
high focusing angles. However, it is possible to achieve good 
accuracy with the KZK model even for highly focused beams 
by modifying the source boundary conditions as described in 
subsequent sections. 

C. Power law absorption in biological tissue  

The last linear operator  aL p  in both Eqs. (1) and (2) 

accounts for a power law of absorption as a function of 
frequency along with corresponding dispersion as typical for 
biological tissues [63]. In the frequency domain, the 
absorption coefficient at an arbitrary angular frequency   is 
represented as: 
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         (3) 

Here 0  is the absorption coefficient at the angular 

frequency of the source 0 , and the exponent parameter   is 

typically close to unity for biological tissues [63]. Dispersion 
( )c   is introduced according to the approximate local 

Kramers-Kronig dispersion relations, which in the case of 
weak dispersion and 0 < η < 2 can be written as follows: 
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where c0 = c(ω0) [64]. Note, that in tissue-mimicking layers 
the thermoviscous absorption term is included along with 
power law absorption, since a quadratic dependence of the 
absorption coefficient on frequency is needed to keep a finite 
rise time of the shock front [53]. For weakly nonlinear cases, 
thermoviscous absorption calculated for parameters of water is 
very weak and is overwhelmed by power law absorption in 
tissue. 

D. Numerical algorithms 

Numerical solutions to the KZK and Westervelt equations 
are based on the fractional steps method with an operator-
splitting procedure of second-order accuracy [32, 44, 46]. 
According to this method, different physical effects 
represented by separate operators on the right-hand side of 
Eqs. (1) and (2) are calculated one after another in the 
frequency-domain or time-domain at each propagation step Δz 
along the axial coordinate. At each spatial point (r, z) of the 
numerical grid, the pressure field is stored as a set of complex 
harmonic amplitudes np  of a Fourier series expansion: 

     
max

max

0, , , exp .
N

n
n N

p r z p r z in 


        (5) 

Here i is the imaginary unit and 0n n   is the angular 

frequency of the n-th harmonic. The maximal number of 
harmonics, Nmax, is defined by the user and is typically equal 
to Nmax = 1000. Frequency domain storage of the pressure 
field is preferable since all operators are solved in the 
frequency domain, with the exception of the nonlinear 
operator when shocks are present. 

The diffraction operator in both Eqs. (1) and (2) is solved in 
the frequency domain, separately for each Fourier harmonic 

np  with corresponding wavenumber 0 0/nk n c . 

The parabolic diffraction equation related to the KZK 
equation is [50]: 

1
.
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      (6) 

This equation is discretized in the radial direction using the 
second-order finite differences on a uniform grid [22, 62]. 
Close to the source, a fully implicit algorithm of first-order 
accuracy and strong absorption is used to damp oscillations 
produced by sharp edges of the source boundary condition 
[22]. At longer distances, the solver switches to the less 
absorptive Crank-Nicolson scheme with second-order 
accuracy in both z and r coordinates. The resulting tridiagonal 
systems of linear equations for discretized pressure amplitudes 
are solved by the Thomas algorithm [65]. 

The diffraction operator of the Westervelt equation in the 
frequency domain reduces to the Helmholtz equation for each 
Fourier harmonic np . Considering a unidirectional assumption 

about the propagating beam, the Helmholtz equation is 
replaced by a one-way pseudodifferential equation [66]: 
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       (7) 

which is solved using methods developed in the theory of 
wide-angle parabolic equations [67]. In particular, a split-step 

Padé approximation method is used which includes several 
specific steps [68]. First, a formal solution of Eq. (7) with an 
exponential operator is written as: 
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    (8) 

Second, the exponential operator in Eq. (8) is approximated 
using a Padé approximation of order (M, M): 
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Increasing the approximation order M reduces the difference 
between exact exponential operator and its Padé 
approximation. The software default is M = 3 and can be 
altered in the text-based interface. 

As a result, the pressure field of the n-th harmonic at the 
next step of the algorithm is obtained by sequentially solving 
M intermediate equations: 
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where  0 ,n np p r z ,  ,M
n np p r z z   , m = 0…M – 1. 

Split-step Padé approximation coefficients  m nik z   and 

 m nik z   are evaluated as described in the literature without 

damped evanescent waves [29]. 
Equation (10) is discretized using a finite-difference scheme 

similar to the Crank-Nicolson scheme of the classic parabolic 
Eq. (6). The resulting tridiagonal systems of linear equations 
are solved using the Intel MKL (Math Kernel Library) 
routines for tridiagonal systems with partial pivoting because 
the systems are not diagonally dominant. The algorithm 
execution for different harmonics is organized in parallel. A 
detailed description of the split-step wide-angle diffraction 
algorithm implemented in the solver is given in Ref. [62]. 

To prevent artificial reflections from the outer radial 
boundary of the computational domain, a perfectly matching 
layer (PML) is included in both the classical parabolic 
equation and the wide-angle equation [30]. The PML 
attenuation coefficient σ(r) is gradually increased from the 
initial PML radial coordinate rPML to the outer boundary RLen 
according to cubic parabola law: 

 
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        (11) 

By default, the width of the PML RLen - rPML is set to be equal 
to 10 mm and the ratio 0 0/   is set to 10. These default 

parameters of the PML were used to produce simulation 
results presented below in sec. IV. 

The nonlinear and absorption operators have the same 
forms in both KZK and Westervelt equations; consequently, 
identical methods are used to calculate them. The nonlinear 
operator is represented in a form of the simple wave equation: 
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        (12) 

At small distances z close to the source, where the acoustic 
wave is not strongly distorted due to nonlinear propagation 
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effects, the nonlinear operator is solved in the frequency 
domain by integrating a system of coupled nonlinear equations 
for harmonic amplitudes using a 4th order Runge-Kutta 
method [50,53]: 
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The number of harmonics N at the current spatial location is 
varied adaptively by comparing the amplitude of the last N-th 
harmonic included in simulations with a specified threshold. 
As a result, the number of harmonics is increased with 
increasing waveform distortion and decreased otherwise. An 
adaptive approach is also applied to the outer boundary RLen in 
the diffraction algorithms calculated individually for each 
harmonic based on a specified threshold. This optimization 
greatly saves computation time for slightly distorted 
waveforms by avoiding a Fourier transform of the solution 
from the frequency domain to the time domain and back. 

Before formation of shock fronts in the pressure waveform 
in a given spatial location, the nonlinear solver is 
automatically switched to the time-domain conservative 
Godunov-type shock capturing scheme [31]. This transition is 
programmed to occur when the amplitude of the 10th 
harmonic exceeds 1% of the amplitude of the fundamental 
frequency [44]. An inverse Fourier transform implemented in 
Intel MKL is then used to construct time-domain waveform 
from pressure harmonics stored in computer memory. 
Nonlinear algorithms are executed in parallel for different 
spatial points along the radial axis. 

The absorption term is calculated in the frequency domain 
based on the exact analytic solution for each of the harmonics. 
The term includes both thermoviscous absorption and power 
law absorption, as well as dispersion: 

       
2

2 3
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n n n
n n n

i c
p z z p z z z

c c

    
   

        
  

 (14) 

where      0n nc c c     . Absorption and dispersion 

exponents for each harmonic frequency and material layer at 
the current propagation distance are precalculated, stored in 
memory, and used to multiply spectral components of the 
pressure field at each propagation substep of the absorption 
operator. In order to keep a given value of the rise time of the 
shock front, the thermoviscous diffusivity δ is artificially 
increased depending on the shock front amplitude at a local 
spatial point [61]. Artificial absorption allows for a significant 
decrease of oscillations which appear when shock fronts are 
formed and large pressure field gradients develop across the 
radial direction. This increase in absorption does not affect the 
waveform except for the steepness of the shock front [61]. 

E. Layered medium 

“HIFU beam” allows for simulation of propagation through 
biological tissue layers by using a flat-layered medium model. 
In the current version of the software, when the solution 
reaches a plane boundary between two layers, pressure 

harmonic amplitudes are multiplied by the classical pressure 
transmission coefficient for a normally incident wave: 

,2 2 2

,1 2 2 1 1

2
.n

n

p c

p c c


 




        (15) 

Here ,2np , 2c , 2  and ,1np , 1c , 1  are harmonic amplitudes, 

sound speed, and density in the next and current layers, 
respectively. In the next layer, the harmonic wavenumbers are 
updated and the marching algorithm continues with new 
medium parameters. Reflected waves are neglected due to the 
one-way nature of the model. 

F. Source boundary conditions 

The source boundary conditions for the KZK and 
Westervelt equations are set in separate ways. By default, only 
a focused source can be simulated using the GUI. In KZK-
mode, a uniform pressure amplitude distribution p1 is set at the 
plane z = 0 for a piston source of diameter D with an optional 
central opening of diameter d, focal distance F, and 
operational angular frequency 0 . A complex pressure 

amplitude corresponding to the real pressure magnitude p0 is 
set by an analytical expression which includes parabolic 
focusing of phase [2]: 

2
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d D
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  
       

  

      (16) 

This parabolic form of the boundary condition can 
adequately describe the acoustic field only for weakly focused 
transducers with high F-numbers (F/D > 1.9), defined as a 
ratio of the focal distance to the diameter [69, 70]. In order to 
extend the applicability of the KZK equation for simulating 
strongly focused transducers, a method of an equivalent source 
has been proposed and demonstrated for the case of a single-
element spherical bowl transducer without a central opening 
(d = 0) [59, 60, 62]. The idea of the equivalent source method 
is to match the location of the prefocal and postfocal nulls and 
the amplitude of the focal lobe, considering the fields 
generated by both a spherically focused transducer obtained in 
linear approximation using the Rayleigh integral [71] and the 
solution of a linear parabolic equation. As a result, analytical 
formulae have been derived to describe the diameter eqD , 

focal distance eqF , and pressure amplitude 0eqp  of an 

equivalent source from the corresponding parameters D, F, 
and p0 of a spherical bowl source [59]: 
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           (17) 
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where 

     
   

2 2 2
0 0 0 0

1,2 2 2

0 0

( ) 4 1 2 3 2
4 .
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k F k F F D F D k F k FF

D k F k F F D

              
     

 

Equivalent source parameters are then substituted into Eq. (16) 
to set an initial pressure field for a single-element focused 
transducer. Comparison of nonlinear fields simulated using the 
KZK equation with an equivalent source model and the 
Westervelt equation with more realistic boundary condition 
described below show that very good accuracy is achieved for 
nonlinear wave parameters around the focal maximum of the 
beam [60, 62]. A typical difference is shown below in Fig. 7 
and is less than 3 percent excluding tiny details related to 
shock-shock interaction described in section IV A. 

The source boundary condition to the Westervelt equation is 
set by calculating a pressure hologram using the Rayleigh 
integral [72]. A source is assumed to have a shape of a 
spherical bowl with a given radius of curvature, external 
diameter, optional central opening, and uniform distribution of 
the vibration velocity un on its surface. For generality, an 
annular array pattern with an arbitrary number of elements of 
equal surface can be defined on the spherical surface, with a 
distinct velocity magnitude and phase assigned to each 
element. Spacing gaps between the array elements also can be 
specified by the user. The characteristic pressure amplitude p0 
on the surface of each array element is calculated by assuming 
the plane wave relation p0 = |un|ρ0c0. 

In order to calculate the Rayleigh integral, the active surface 
of the array is covered by a mesh of triangles with side lengths 
several times smaller than the wavelength at the fundamental 
frequency. The normal component of the velocity un is 
specified at the surface of each triangle. For electronic focus 
steering along the axial direction z, a phase for each element is 
calculated from the path length difference between the central 

rim of the circular element and position of the steered focus. 
The radius of the central rim is calculated from the mean value 
of polar angles of the internal and external rims of the 
element. The calculated phase is included in the complex 
amplitude of the oscillation velocity of all triangles belonging 
to a given element of the array. Then, the pressure amplitude 
distribution along the radial coordinate is calculated at the 
axial distance halfway between the source and the geometrical 
focus. Finally, the hologram is propagated backward to the 
initial plane, z = 0, using the same wide-angle diffraction 
algorithm described in the previous sections. The resulting 
pressure field is tapered by a smooth spatial filter to achieve 
zero pressure amplitude inside the PML layer and is used as a 
boundary condition. 

G. Output data 

While simulations are performed over the coordinate z, 
acoustic field data are collected and stored for user specified 
spatial locations in the (r, z) plane. Data include pressure 
magnitudes of the first several harmonics, pressure 
waveforms, peak positive and peak negative pressures in the 
acoustic waveform, intensity, and heat sources. In KZK-mode, 
the intensity is calculated in a plane wave approximation as 
[25, 53]: 

max
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p n
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I p
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         (18) 

In the WAPE-mode, the z component of intensity is 
calculated as 
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      (19) 

for the first 20 harmonics; however, for higher harmonics the 
plane wave approximation from Eq. (18) is used to save 
computational time. Equation (19) is the sum of products of 

 

Fig. 1. Software label and main screen of the graphical user interface. 
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harmonics of complex conjugate of acoustic pressure and the 
z-component of the acoustic velocity vector in which the 
pseudo-differential operator is calculated using the Padé 
approximations of the square-root operator [66,73]. In the 
current version of the “HIFU beam” software, heat sources are 
calculated in a quasi-plane wave approximation as a difference 
of intensities using Eq. (18) on the previous and on the next z 
distances when applying nonlinear and absorption operators 
divided by the marching step Δz [58]. 

III. HIFU BEAM GUI MAIN SCREEN STRUCTURE 

The main screen of the “HIFU beam” software is shown in 
Fig. 1. A logo, which normally appears separately when 
starting the program, is attached on the right. The main screen 
is partitioned into several areas, which control different groups 
of user-defined input parameters. In the central area of the 
screen, the geometry of the problem is depicted, including a 
contour of a spherical bowl source, the position of the focus, 
layers of the propagation medium, and a rectangular box 
containing the output domain. At bottom, parameters 
describing the propagation medium layers are grouped. Here 
the user can define the number of layers, axial positions of 
their boundaries, acoustic properties of each layer, display 
colors, and labels. Custom lists of materials and their acoustic 
parameters can be created, stored for future use, and loaded. In 
the upper left part of the screen, two push buttons are located: 
“Run” and “Results”. The “Run” button launches simulations 
and the “Results” button pulls up an additional window for 
displaying data. 

Below these buttons on the left of the main screen, source 
parameters are grouped. The main geometrical parameters of 
an annular array are specified together with source pressure 
amplitude 0p , corresponding intensity 2

0 0 0 0/ 2I p c , and total 

acoustic power of the source 0W  calculated as a product of 

active radiating surface of the source and intensity 0I . The 

number of elements is set to one if a single-element transducer 
is simulated. The button “Design” displays an additional panel 
for defining source parameters (in place of the central area). In 
this design panel, axial electronic focus steering properties as 
well as relative amplitude coefficients of individual elements 
can be specified. The panel also illustrates the prescribed 
source in multiple views, provides additional information such 
as linear focusing gain, and displays a button “Eqv. source” 
that can be activated to calculate the parameters of an 
equivalent source boundary condition to the KZK equation in 
place of a previously defined single-element spherically 
focused source. 

Below the source parameters on the main screen, 
dimensions of the simulation output domain can be modified 
as well as the number of harmonics to store. Additional 
controls for the numerical domain used during the simulation 
are provided in the bottom left corner – namely radial and 
axial dimensions of the numerical domain, numerical grid 
steps, and the maximal number of harmonics Nmax. These 
parameters can be defined explicitly or chosen automatically 
to match recommended values displayed in green. 

Additional parameters are contained in the “Options” menu 
where the user can tune fonts of different interface elements 
and change the number of parallel threads in the hardware 
setup. Overall configuration can be saved and loaded from the 
“File” menu. Note that only the most necessary parameters are 
allowed to be modified via GUI. Additional tuning parameters 
are available when using the text interface of the software. 

IV. HIFU BEAM SIMULATION EXAMPLES 

In this section, capabilities of the “HIFU beam” solver for 
nonlinear acoustic field characterization and calculations for 
heat deposition sources are demonstrated by three 
representative examples of typical ultrasonic transducers. 
Simulation results are shown for both KZK and WAPE 
modes, single-element transducers and annular array sources, 
propagation in water as well as in a medium with multiple 
layers. 

A. Single-element focused transducer, propagation in water 

In the first example, an acoustic field was generated by a 
single-element source in a shape of a spherical bowl. The 
simulation represented a transducer with a 100 mm diameter, 
90 mm focal distance, 1 MHz operational frequency, and 
water as the propagation medium. Parameters of water were 
chosen from default GUI settings: c0 = 1500 m/s, ρ0 = 
1000 kg/m3, β = 3.5, δ = 4.33 mm2/s. This typical laboratory 
ultrasound source has been also considered in our previous 
papers [60,62]. Here, the results of simulations performed in 
the KZK-mode for an equivalent source model are presented 
to demonstrate critical nonlinear wave effects relevant to 
shock-forming focusing conditions and compared the results 
of modeling using the KZK and WAPE modes of the solver. 

When the KZK-mode is chosen, the user indicates 
parameters of the source in the interface, then corresponding 
parameters of the equivalent source defined in the initial plane 
z = 0 are recalculated inside the software [59]. For the 
considered single-element transducer, the parameters of the 
equivalent source are: diameter 114.06 mm, focal distance 
98.27 mm, scaling factor of the source pressure amplitude 

00 qep p  = 0.92. 

Shown in Fig. 2(a) are normalized pressure waveforms 
obtained at the focus using the KZK-mode for different source 

 
Fig. 2. (a) Focal pressure waveforms and (b) corresponding waveform 
spectra for various source pressure amplitudes p0 that reflect different 
nonlinear regimes of focusing: linear (0.015 MPa), quasi-linear (0.15 MPa), 
developed shock formation (0.45 MPa), and saturated shocks (0.7 MPa and 
1.45 MPa). For better visibility, the waveforms are slightly shifted in phase. 
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Fig. 4.  Two dimensional spatial distributions of peak positive pressure (a-c) and peak negative pressure (d-f) in cases of quasi-linear propagation (a,d)
at p0 = 0.15 MPa, formation of the developed shock at the focus (b,e) at p0 = 0.45 MPa, and in a saturation regime at p0 = 1.45 MPa. 

pressure amplitudes p0. At very low source pressure amplitude 
(p0 = 0.015 MPa), linear propagation is observed and only the 
fundamental frequency is present in the wave spectrum as 
shown in Fig. 2(b). With increasing pressure p0 at the source, 
nonlinear effects become noticeable and the pressure 
waveform at the focus begins to become distorted in an 
asymmetric manner. Following the criterion that 10% of the 
total wave intensity is distributed over harmonics of the 
fundamental frequency, the threshold for quasi-linear 
waveform distortion corresponds to p0 = 0.15 MPa (Fig. 2(a)) 
[74]. For this waveform, the pressure amplitude of the second 
harmonic reaches about a third of the amplitude of the 
fundamental frequency (Fig. 2(b)). 

After increasing p0 beyond the quasi-linear condition 
threshold of p0 = 0.15 MPa, the formation of a shock front 
occurs at a certain source pressure level. First, the shock 
appears near the positive peak of the waveform. Further 
increases of p0 cause the bottom edge of the shock to move 

toward the zero pressure level. When the shock amplitude 
normalized to the source pressure p0 reaches a maximum, the 
nonlinear distortion level can be described to correspond to the 
formation of a developed shock [60]. At this level, the bottom 
edge of the shock front in the focal waveform is located at the 
zero-pressure level, therefore the shock amplitude is equal to 
the peak positive pressure of the waveform [60]. In the 
considered example of a single element transducer the 
developed shock forms at p0 = 0.45 MPa (Fig. 2(a)). 

With further increase of p0 beyond the level of the 
developed shock formation in the focal waveform (p0 = 0.45 
MPa), the bottom edge of the shock continues to move down 
below the zero-pressure level. However, the growth rate of the 
shock front amplitude slows down (Fig. 2(a), waveforms for 
0.7 MPa and 1.45 MPa) because of strong energy absorption 
at the shocks, which begin to form prefocally. For these 
saturated shocks, the waveform becomes closer to an 
asymmetric saw-tooth shape (Fig. 2(b)). Note that “HIFU 
beam” default interface allows display of pressure waveforms 
not only at the focus, but also along the axial coordinate z (on-
axis at r = 0 mm) and along the transverse coordinate r at the 
focal plane (z = F). 

Characteristic changes in the shape of the main focal lobe 
caused by nonlinear effects are illustrated in Fig. 3, where 
axial (Fig. 3 (a,c)) and transverse (Fig. 3 (b,d)) distributions of 

 
Fig. 3. (a,b) Distributions of the normalized peak positive (p+) and peak
negative (p-) pressures and (c,d) distributions of intensity normalized on its
value I0 on source elements along (a,c) axial coordinate and (b,d) radial one
at the focal plane. 

Tab.1. Characteristic source pressure p0=|un|ρ0c0 used in nonlinear simulations 
of single-element source using the KZK-mode; corresponding peak positive 
pressure (p+) and peak negative pressure (p-) focal gains in geometrical focus, 
axial and radial dimensions of the focal region at -3 dB level calculated from 
the geometrical focus maximum. 

p0 (MPa) 0.015 0.15 0.45 0.70 1.45 

p+ focusing gain 63.4 92.6 218.7 165.5 91.7 

p- focusing gain 63.4 49.6 35.8 29.7 20.8 

p+ axial (mm) 7.8 6.0 5.1 7.4 11.7 

p+ radial (mm) 1.32 0.95 0.52 0.63 0.72 

p- axial (mm) 7.8 9.2 10.7  11.5 12.5 

p- radial (mm) 1.32 1.58 1.86  1.98 2.10 
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the normalized peak positive p+ and peak negative p- pressures 
(Fig. 3 (a,b)) as well as normalized intensity (Fig. 3 (c,d)) are 
presented for increasing source pressure amplitudes p0. For 
linear focusing conditions (p0 = 0.015 MPa), distributions of 
the peak positive and peak negative pressures are symmetric 
with respect to zero (Fig. 3(a,b)) and the focal pressure gain is 
equal to 63.4. The combined effect of nonlinearity and 
diffraction leads to significant asymmetry in distributions at 
higher output levels. In the quasi-linear focusing case (p0 = 
0.15 MPa), the focusing gain for the peak positive pressure is 
92.6 and for the peak negative pressure is almost twofold less, 
49.6. In the case of developed shock formation at the focus 
(p0 = 0.45 MPa) the focusing gain for the peak positive 
pressure is 218.7, which is 3.5 times higher than in the linear 
case; for the peak negative pressure, the focusing gain of 35.8 
is 1.7 times lower than in the linear case. The distributions of 
p+ and p- become strongly asymmetric relative to each other 
with 6 times difference in the peak pressure levels. At even 
higher source pressures, in the saturated focusing conditions 
the focusing gain for the peak positive pressure is 165.5 and 
91.7 for p0 = 0.7 MPa and 1.45 MPa, respectively; 
corresponding focal gains for the peak negative pressure are 
29.7 and 20.8. 

Spatial distributions of the intensity change with increase of 
the source amplitude following nonlinear changes of the wave 
spectrum and increased energy deposition when shocks are 
formed. At the beginning, intensity focusing efficiency 
increase with the source pressure p0 due to more efficient 
focusing of higher harmonics generated in the beam [58, 75]. 
After formation of the developed shock, focusing efficiency 
drops down due to absorption of the wave energy at the shocks 
that occurs prefocally (Fig.3 (c, d)). When increasing p0 from 
0.45 MPa (developed shock) to 1.45 MPa (saturated shock), 
the focusing gain for the intensity decreased by almost 4 times 
(Fig.3 (c, d)). 

Similar to the focusing gain values, axial and transverse 
dimensions of the focal area (-3 dB level) for the peak positive 
pressure change nonmonotonically. Initially, with increase of 
the source pressure, axial dimensions of focal areas decrease, 
reaching their minima when developed shock formation 
occurs; then, with the formation of saturated shocks, these 
axial dimensions start to grow slowly. A visual representation 
of the shape evolution of focal regions of the peak positive and 
peak negative pressures is provided in Fig. 4. The dimensions 
of the focal area of the peak positive pressure at -3 dB level 
start at 7.8 mm×1.32 mm along the z and r coordinates, 
respectively, in the linear case. These dimensions shrink to 
6.0 mm×0.95 mm in the quasi-linear case (Fig.4(a)), reach 
minimum values of 5.1 mm×0.52 mm in the case of the 
developed shock formation (Fig.4(b)), and then grow to 
11.7 mm×0.72 mm in the saturation regime at p0 = 1.45 MPa 
(Fig.4(c)). In the last case, peak positive pressure absolute 
levels reach about 150 MPa. Note that such a small width of 

the focal area in the transverse direction r (0.52 mm for p0 = 
0.45 MPa) is comparable to the size of a hydrophone tip in 
experiments and therefore can be affected by an averaging 
effect and is very sensitive to accurate positioning of the tip. 
This is the major reason why the peak positive pressures are 
sometimes underestimated in hydrophone measurements of 
nonlinear fields at very high source output levels [6]. This 
averaging effect underlines the benefit and importance of 
modelling tools when characterizing acoustic fields with fine 
spatial and temporal structures that develop due to nonlinear 
propagation effects. 

The position of maximum peak positive pressure p+ changes 
as the source pressure p0 increases. In the linear case, the 
maximum of p+ is located at z = 89.8 mm, slightly closer to the 
source than the geometrical focus z = F =90 mm. Then, the 
maximum of the p+ shifts away from the source to z = 
90.1 mm even beyond the geometric focus. Further, at p0 = 
0.45 MPa it returns closer to the source at z = 89.5 mm, and 
for saturated shocks starts to move away from the source due 
to a nonlinear defocusing effect (z = 90.5 mm and z = 
93.3 mm for p0 = 0.7 MPa and 1.45 MPa, respectively). The 
focus shift phenomenon is important to account for in point 
hydrophone measurements by indicating at which source 
output the maximum of p+ was determined [5,6]. 

Unlike the peak positive pressure p+, the dimensions of the 
focal area of the peak negative pressure p- change 
monotonically with increasing p0: its dimensions in both 
directions z and r slightly increase and the focal maximum 
moves towards the transducer. In the quasi-linear case, focal 
area changes from 7.8 mm×1.32 mm of the linear beam to 9.2 
mm×1.58 mm along the z and r coordinates, respectively 
(Fig.4(d)). In the case of the developed shock formation 
corresponding sizes increase to 10.7 mm×1.86 mm (Fig.4(e)) 
and in the saturation regime become 12.5 mm×2.1 mm 
(Fig.4(f)). 

 
 
Fig. 5.  Axial waveforms at different coordinates z of the focal lobe of p+

(shown in inset) at p0 = 0.7 MPa. Dots in the inset correspond to coordinates
z where waveforms are plotted.  
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At source pressure levels p0 that correspond to saturation 
effects at the focus, a specific double-spike structure on the 
axial distribution of p+ have observed when using the KZK 
simulation model. Indeed, such a structure is clearly seen as 
prefocal spikes in Fig.  3(a) on the p+ curves at p0 = 0.7 MPa 
and p0 = 1.45 MPa. In order to identify the physical reasons 
for the formation of such spikes, it is instructive to analyze 
pressure waveforms in its vicinity (Fig. 5). 

A single-element transducer considered here is a piston 
source that generates direct and edge waves. In the focal lobe 
of the beam, just before the spike formation near the focus, the 
pressure waveform contains two fronts (Fig. 5, waveforms at z 
= 86.2 and 86.7 mm). The left (lower) shock in the waveform 
corresponds to the direct wave while the right (upper) shock 
comes with the edge wave of the piston source [75]. Since 
energy absorption at the shock front is proportional to the cube 
of the shock amplitude 3

sh
A , energy absorption for a wave with 

two shocks is proportional to the sum of cubes of two shock 

amplitudes  3 3

sh1 sh2
A A . Propagating closer to the focus, 

shock fronts of the direct and the edge waves merge at a 
certain distance (Fig. 5, waveform at z = 87.2 mm). Exactly at 
this distance, the top of the spike is located. After merging of 
these two shocks, energy absorption is proportional to 

 3

sh1 sh2
A A  and increases sharply because of inequality 

   3
3 3

sh1 sh2 sh1 sh2
A A A A    leading to the drop in the amplitude of 

resulting merged shock and the peak pressure of the waveform 
(Fig. 5, waveform at z = 87.4 mm). Since this shock-shock 
interaction occurs prefocally, sharp decrease of p+ returns back 
to increase due to diffraction amplification near the focus. 
Similar shock-shock interactions have been observed 
previously [76-78]. 

In aeroacoustics, a similar interaction of shock fronts occurs 
near a reflecting boundary when the Mach stem forms [79]. It 
is common to visualize the Mach stem in experiments by 
using the schlieren technique. Here, a numerical imitation of 
the schlieren image of the beam is presented in order to show 
the structure and geometry of the shock fronts. Shown in Fig. 
6(a) are pressure waveforms at different transverse distances r 
from the beam axis at a distance z = 86.7 mm from the source. 
At this distance, the edge and the central waves have not yet 

merged. A two-dimensional distribution of the temporal 
derivative of these pressure waveforms (Fig. 6(b)) is an 
analogy of a schlieren image. The dark stripe on this image 
corresponds to location of shock front in the central wave 
while the front of the edge waves is represented by brighter 
grey lines. It is clearly seen that merging of shocks of the 
central and edge waves occurs inside the triangle formed at the 
central part between these fronts (Fig. 6(b)). After merging, 
the Mach stem forms perpendicular to the beam axis (not 
shown here). 

The physical mechanism behind the formation and merging 
of two shocks within one wave period is diffraction, in 
particular, the arrival of the edge waves. The phenomenon of 
shock-shock interaction is quite subtle to study since fine 
structure of shock fronts should be analyzed for correct 
description and interpretation. Since the KZK equation takes 
into account diffraction effects in a parabolic approximation, a 
logical question here is whether such spatial structures caused 
by shock-shock interaction are correctly described in the 
parabolic approximation. 

In order to test this, additional simulations were performed 
in the WAPE-mode of “HIFU beam”. For both KZK and 
WAPE modes, the numerical grids were the same for the same 
values of p0 chosen as recommended grid parameters provided 
in the interface. The radial grid step was 0.0125 mm for all 
calculations, maximal harmonic number was 1000, axial grid 
step was 0.08 mm for linear propagation, 0.04 mm for quasi-
linear and developed shock formation cases, 0.025 mm for p0 
= 0.7 MPa, and 0.0125 mm for p0 = 1.45 MPa. The runtime of 
the simulated examples ranged from 2 min (linear case) to 1 
hour 17 minutes (saturated shock at p0 = 1.45 MPa) in the 
KZK-mode and from 6 min to 2 hours 10 minutes for 
corresponding cases in the WAPE-mode. Simulations were 
performed on a desktop PC with AMD Ryzen 3800X 8 
physical cores processor. 

Overall, the results obtained with these two models were in 
very good agreement within few percent demonstrating that 
the combination of the KZK equation with the equivalent 
source model provides characterization of the acoustic 
nonlinear fields with high accuracy. For example, the 

 
Fig. 7.  Axial distributions of the peak positive (p+) and peak negative (p-) 
pressures at p0 = 0.7 MPa obtained using the KZK and WAPE modes of the 
“HIFU beam” software. 

 
Fig. 6.  (a) Temporal pressure waveforms at different transverse distances r
from the beam axis and (b) corresponding temporal derivatives of these
pressure waveforms (“numerical schlieren image”) at fixed prefocal distance
z = 86.7 mm from the source. 
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difference between the peak postive and peak negative 
pressures at the geometrical focus does not exceed 3%. The 
greatest discrepancy was observed in the vicinity of the spike, 
for p0 = 0.7 MPa, where the effect of shock-shock peak 
formation resulted in peak positive pressure about 8 % higher 
for the KZK model than predicted by the WAPE model 
(Fig. 7). Our recommendation is to exclude this spike from 
evaluation of the maximum values of the peak positive 
pressure or use WAPE-mode of the “HIFU beam” if there is 
no preference to simulate the KZK equation. 

B. Annular array, propagation in water 

The next example of a typical HIFU source is an annular 
array used in development of thermal and mechanical methods 
of tissue ablation in mouse tumors [80, 81]. The source is a 
16-element annular array (3 MHz frequency, 48 mm diameter, 
and 35 mm radius of curvature, and 0.15 mm spatial gaps 
between the elements). In calculations of the acoustic field in 
water, WAPE-mode was used and specific nonlinear effects 
related to electronic focus steering are illustrated. 

Simulations were performed for linear, quasi-linear, and 
developed shock formation cases. In the first series of 
simulations, there was no additional phasing of the array 
elements. When focusing at the geometrical focus of the array, 
the quasi-linear case corresponds to p0 = 0.14 MPa and the 
developed shock forms at the focus at p0 = 0.425 MPa. The 
case corresponding to saturation was simulated for p0 = 0.75 
MPa. In the second series of simulations, the focus was 
steered to the distance z = 30 mm by adding phases on the 
array elements. In this case, the waveform at the steered focus 
is quasi-linear at p0 = 0.17 MPa and formation of a developed 
shock at the steered focus occurred at p0 = 0.525 MPa. The 
saturation case was also simulated for p0 = 0.75 MPa to show 
the differences arising at the same source output with and 
without focus steering. Grid steps were chosen the same for 
both series of simulations: 0.0025 mm in radial direction r and 
0.025 mm in axial direction z, maximal number of harmonics 
1000. Runtimes were from 18 min (linear case) to 2 hours 
(developed shock formtation case) on desktop PC mentioned 
above. 

Pressure waveforms shown in Fig. 8 correspond to three 
degrees of nonlinear waveform distortion at the focus (quasi-
linear, formation of the developed shock, and saturation) when 
focusing at the geometrical focus (Fig. 8(a)) and steered 5 mm 

closer to the source (Fig. 8(b)). Small dimensions of the 
source and its relatively high operation frequency (3 MHz) 
allow for generating shock fronts of very high amplitude 
(about 200 MPa) at the focus. Steering the focus toward the 
source increases the focusing angle which is the most 
important parameter of the source that controls nonlinear 
effects, characteristic source output for shock-forming 
conditions and characteristic amplitude of the developed shock 
at the focus [60,82]. When focus is steered at z = 30 mm, the 
beam has higher focusing angle than without steering, the 
developed shock forms at higher pressure levels 
(p0 = 0.525 MPa versus 0.425 MPa) and has greater amplitude 
(Fig. 8). 

The sizes of focal lobe also change with changing of the 
focusing angle. Weakly focused beams have longer focal lobes 
as is clearly seen in peak pressure distributions: the focal lobe 
in the case of steering is narrower in both z and r directions 
than in the case without steering (Fig. 9). Thus, for the 
considered 16-element array, steering the focus 5 mm closer to 
the source leads to the following relative characteristics: 
smaller dimensions of the main focal lobe; formation of a 
developed shock front of higher amplitude and at a higher 
source pressure; higher pressure levels at the steered focus in 
the saturation regime of focusing. These effects should be 
taken into account and can be analyzed using “HIFU beam” 
when designing annular arrays, characterizing their nonlinear 
fields, and testing nonlinear steering capabilities when 
shockwave exposure protocols are developed. 

 
Fig. 8.  (a) Pressure waveforms at the focus z = F = 35 mm for quasi-linear 
(p0 = 0.14 MPa), developed shock formation (p0 = 0.425 MPa), and
saturation (p0 = 0.75 MPa) cases. (b) Pressure waveforms at steered focus z = 
30 mm for quasi-linear (p0 = 0.17 MPa), developed shock formation (p0 = 
0.525 MPa), and saturation (p0 = 0.75 MPa) cases. 

 
 
Fig. 9. Peak positive (p+) and peak negative (p-) pressure distributions along
the z-axis of the annular array (a-c) and at the focal plane (d-f) along the
radial coordinate r. For linear propagation (a, d) pressure is normalized to the
source pressure amplitude p0. For quasi-linear (b, e) and developed shock
formation (c, f) cases dimensional pressure is plotted. Solid curves
correspond to focusing at the geometrical focus z = 35 mm, dotted curves
correspond to focusing at the steered focus z = 30 mm. 
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C. Single element spherical HIFU source, multi-layered 
medium 

The last example is a single-element spherically focused 
transducer with parameters comparable to those from the 256-
element array used in the clinical Sonalleve V1 MRgHIFU 
system (Profound Medical Corp., Mississauga, ON, 
Canada) [5]. Specifically, we consider a single-element source 
with operating frequency f0 = 1.2 MHz, the focal distance F = 
120 mm, and diameter D = 120 mm. Propagation is considered 
in a layered medium consisting of water (0 ≤ z ≤ 80 mm), 
muscle (80 mm ≤ z ≤ 105 mm), and kidney (z ≥ 105 mm). 
Parameters of tissues were selected from default “HIFU 
beam” tissue profiles [63]: c0 = 1585 m/s, ρ0 = 1060 kg/m3, 
β = 4.8, δ = 4.33 mm2/s, α0 = 0.12 Np/cm/MHz, η = 1.1 for 
muscle and c0 = 1570 m/s, ρ0 = 1050 kg/m3, β = 4.7, δ = 
4.33 mm2/s, α0 = 0.1 Np/cm/MHz, η = 1.1 for kidney. 
Simulations were performed in the WAPE-mode for linear, 
quasi-linear (p0 = 0.15 MPa), and developed shock formation 
(p0 = 0.375 MPa) cases. Grid steps were chosen to be 0.0025 
mm in the radial direction r and 0.025 mm in the axial 
direction z, with 1000 as the maximal number of harmonics. 
Runtimes were from 16 min (linear case) to 1 hour (developed 
shock formation case) on desktop PC mentioned above. 

In the presence of tissue layers, the maxima of the peak 
positive pressure p+ and absolute value of the peak negative 
pressure |p-| are reached closer to the source than would occur 
in water because of refraction effects. For this transducer with 
focal distance F = 120 mm, the maximum linear pressure 

amplitude in water is located at z = 119.8 mm (not shown 
here). In the water-muscle-kidney medium the peak is shifted 
2.6 mm closer to the source at z = 117.2 mm (Fig. 10(a)). The 
linear focal gain in water is 80.8, but decreases to about 50 in 
the absorptive layered medium (Fig. 10(a)). 

Similar to the previous examples with propagation only in 
water, nonlinear beam focusing in tissue layers exhibits an 
increase in the focusing gain of p+ until developed shock 
formation occurs. In the quasi-linear case, the focal gain of p+ 
reaches 70 (Fig. 10). When developed shocks form at the 
focus, the focal gain for p+ is 165. However, the amplitude of 
the developed shock is only about 60 MPa because the higher 
value of the nonlinearity parameter in tissue leads to shock 
formation at a lower pressure level. 

With an increase of p0 beyond the level of developed shock 
formation, shocks are present not only at the focus but also in 
adjacent regions. Moreover, the focusing gain begins to 
decrease and the size of the focal area increases (not shown 
here). The focal lobe of the peak negative pressure p- also 
behaves in the same way as in previous cases: it grows in the 
axial direction z as p0 increases and its maximum moves 
towards the source (Fig. 10). Thus, the presence of tissue 
layers does not qualitatively change manifestation of nonlinear 
effects close to the focus. However, achieving comparable 
shocked focal waveforms requires higher source output levels 
to compensate for absorption effects in tissue as well as the 
altered shock-forming conditions related to the higher 
nonlinearity of tissue. These effects are used in methods of 
nonlinear derating when acoustic field parameters obtained in 
water are recalculated for propagation in tissue [57, 83]. 

In addition to characterizing acoustic properties of nonlinear 
fields, the “HIFU beam” software also allows for evaluating 
the thermal effect of ultrasound focusing into tissue. Options 
available to the user are the visualization of a change of the 
total acoustic beam power W with the propagation distance as 
well as one- and two-dimensional distributions of the heat 
deposition rate. 

In the linear case, the total acoustic power of a beam in 
tissue decreases exponentially (Fig. 11(a)). Formation of the 
shock front leads to additional heat deposition proportional to 
the cube of the shock amplitude 3

sh
A . As shown clearly in 

 
Fig. 10.  (a) Axial and (b) radial distributions of normalized peak positive
and peak negative pressures for linear, quasi-linear (p0 = 0.15 MPa), and
developed shock formation (p0 = 0.375 MPa) cases. Radial distribution (b) is
plotted at z = 117.2 mm, where maximum of pressure amplitude in linear
propagation locates.   

Fig. 12.  Heat sources in (a, b) axial zr and in (c, d) focal xy planes for the
same power of 568 W when ultrasound propagation model is linear (a, c) and
nonlinear with developed shock formation at the focus (b, d). 

 
Fig. 11.  Distributions of (a) total acoustic beam power W and (b) losses of
power dW/dz, both normalized to the initial acoustic power W0, along the
beam axis z for linear, quasi-linear (p0 = 0.15 MPa), and developed shock
formation (p0 = 0.375 MPa) cases. 
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Fig. 11(a), in the case of developed shock formation the 
decrease of the total beam power significantly deviates from 
the exponential law close to the focus after the ‘muscle-
kidney’ boundary. In the focal region, there is a sharp jump in 
power loss caused by shock formation (Fig. 11(b)). Despite 
the fact that normalized total losses of the beam power in the 
focus differ by only about two times between the linear beam 
focusing and nonlinear regime with the developed shocks in 
the focus (Fig. 11(b)), these losses are distributed over 
different volumes (Fig. 12): axial and radial sizes of focal 
areas for heat sources are 3 times smaller when developed 
shock formation occurs (Fig.12). This results in a significant 
difference of the local heat deposition at the focus. In the 
linear case, calculated for the same power as for developed 
shock formation (568 W, p0 = 0.375 MPa), the maximum heat 
deposition rate is 2.6 W/mm3 while for nonlinear propagation 
it is about 20 times higher (50.6 W/mm3). 

Thus, shock wave exposure protocols can provide very fast 
heating of tissue in a very localized volume. This rapid heating 
has been used in boiling histotripsy methods and in developing 
methods of fast volumetric thermal tissue ablation by shock 
waves in existing clinical HIFU systems [61,83-86]. 

V. DISCUSSION 

The “HIFU beam” software presented in this paper 
represents knowledge accumulated over many years for 
simulating nonlinear focused ultrasound beams using a 
paradigm of one-way propagation equations. Incorporation of 
a method of fractional steps with an operator-splitting 
procedure allowed for applying the most efficient numerical 
schemes when simulating various physical effects. For 
example, the diffraction operator is effectively solved in the 
frequency domain both in parabolic and wide-angle 
formulations. The wide-angle diffraction equation is 
commonly used in underwater and atmospheric acoustics [66, 
87]; however, only a few papers use this method in the 
medical ultrasound community, which suggests that its 
potential is not fully appreciated for such applications. In the 
radially symmetric case, the wide-angle method is much more 
efficient than the angular spectrum method based on Hankel 
functions [45] since the finite-difference scheme produces 
systems of linear equations with tridiagonal matrices, which 
are easy to invert. Additionally, PML can be naturally 
incorporated in the finite-difference schemes allowing more 
compact numerical domains. It also should be noted that an 
error of Padé approximations can be regulated depending on a 
particular problem by changing the approximation order, 
thereby providing a trade-off between accuracy and 
computational speed. As a rule, strongly focused beams 
require higher approximation orders M than weakly focused 
beams. The default value M = 3 available in the software GUI 
should be sufficient for most practical cases. The use of a dual 
domain solver of the nonlinear operator allows for 
computational efficiency both for weakly nonlinear fields with 
a small number of harmonics and for strongly nonlinear cases 
when the discrete spectrum is fully populated and time-
domain methods are more efficient than spectral methods. 

Even though “HIFU beam” is limited to axially symmetric 
fields, it can be used for examining a large number of typical 
scenarios. Three important cases for its use are noted: One 
case involves characterization of ultrasound fields generated in 
water by existing transducers when the source is axially 
symmetric [2] or its field can be approximated by the field of 
an equivalent axially symmetric source [5, 60, 61]. Second, 
together with guidance from solution of the inverse nonlinear 
problem for the field of a focused transducer [82], “HIFU 
beam” can be used for designing new transducers that generate 
ultrasound fields with desired nonlinear parameters in the 
focal region [88]. In addition to providing design assistance 
for single-element transducers, “HIFU beam” can also be used 
to test the nonlinear steering capabilities of annular arrays 
when developing shockwave exposure protocols [81]. Third, 
the software is helpful in predicting nonlinear ultrasound 
fields in biological tissue, which may be useful for protocol 
design and treatment planning. Although an approximation of 
a flat-layered propagation medium model is included, the 
“HIFU beam” could be useful in accounting for absorption 
over the path length from the source to the focus for making 
nonlinear derating estimates. 

The bright side of the most crucial simplification of the 
model – axial symmetry – is that the computational burden is 
moderate. Consequently, “HIFU beam” can be run on typical 
desktop or laptop computers. Actual run time will depend on 
how strong nonlinear effects are and what are the source 
dimensions. Quasi-linear fields are calculated in several 
minutes or at least in tens of minutes. Run time for strongly 
nonlinear fields with shocks can reach several hours. Also, a 
transducer with larger diameter will need longer computations 
than a smaller transducer. To improve performance, a user 
should correctly set the number of threads for parallel 
computations and choose executable file specification, which 
is compliant with processor architecture. The run time also 
significantly depends on values of numerical grid steps. Note 
that recommended values of the numerical grid steps are given 
for guidance only and are not mandatory. User responsibilities 
include the need to check if a particular simulation converges 
numerically and produces results that reasonably match any 
available analytic solutions or known data from published 
papers. In the typical use-cases reported in the paper 
verification of numerical convergence was performed by the 
authors. 

VI. CONCLUSIONS 

In this paper, a freely available software package (freeware) 
named “HIFU beam” [1] is described for simulating axially 
symmetric high intensity ultrasound beams. The software 
comprises a solver for models based on the KZK and 
Westervelt equations as well as GUI tools for defining 
relevant boundary conditions and physical properties of the 
simulation domain, and visualizing the simulation results. 
These tools and numerical algorithms of the software are 
briefly described. Functionality of the software and specific 
nonlinear wave phenomena are demonstrated by simulating 
three typical usage examples: the ultrasound field of a strongly 
focused single-element transducer in water; the field of an 
annular array with focus steering in water; and the field of a 
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single-element transducer in layered tissue. The method of an 
equivalent source applicable for modeling strongly focused 
single-element transducers using the KZK equation is 
included. It was shown that “HIFU beam” allows efficient 
simulation of focused ultrasound fields in a wide range of 
intensities including formation of high-amplitude shock fronts 
at the focus. Such simulations can help in academic courses, 
research on designing transducers and characterizing their 
fields, as well as developing nonlinear exposure protocols for 
therapeutic applications. In addition, given that current efforts 
within the international standards community seek to identify 
and standardize the use of numerical simulations for 
characterizing therapeutic medical ultrasound fields, “HIFU 
beam” may have relevant uses for providing calculations 
against which results from other simulation tools can be 
compared. 
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