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Abstract—The radiation force generated upon the scattering of a quasi-Gaussian acoustic beam on a homo-
geneous elastic sphere in a f luid is investigated. It is shown that the force depends nonmonotonically on the
ratio between the sphere’s diameter and the beam’s waist. For a given beam power, the radiation force has its
maximum value when the diameters are roughly egual to each other. This is due to the resonant excitation of
shear waves on the sphere’s surface under the impact of acoustic wave in the surrounding f luid.
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INTRODUCTION
The use of ultrasonic waves in medicine and indus-

trial technologies is a rapidly developing area of
applied acoustics. Not only traditional ways of expos-
ing a medium to ultrasound by heating or cavitation
are used, but more precise nonlinear phenomena as
well. One of these is the generation of radiation pres-
sure (the acoustic radiation force). Several years ago, a
new way of treating urolithiasis was proposed that
consisted of the noninvasive propulsion of small
stones from a kidney under the impact of an ultrasonic
beam [1, 2]. The possibility of repositioning and levi-
tating small scatterers via the effect of ultrasound radi-
ation pressure has been known for a long time [3]. The
radiation force was investigated in a number of works
for scatterers whose dimensions were comparable to
the wavelength. Different techniques for experimen-
tally measuring the force were proposed in [4, 5].

To optimize the radiation force action on a scat-
terer, we must have an effective numerical algorithm
for accurate and quick calculation of the radiation

force that allows us to determine its dependence on the
diameter and elastic properties of a scatterer, and on
the transverse size, intensity, and frequency of the
acoustic beam. Such an algorithm for an elastic spher-
ical scatterer and a quasi-Gaussian acoustic beam is
proposed in this work, and the dependence of the radi-
ation force on the ratio of the diameters of the scatterer
and the beam is analyzed.

THEORETICAL MODEL
As it is known, the radiation force appears as a

result of the scattering of an incident acoustic beam on
an investigated body. Calculations of the radiation
force are thus based on analyzing the scattering for the
acoustic beam. With a quasi-Gaussian beam, this
problem can be solved using the results obtained in [6].
Let us briefly consider the calculation algorithm.

The following equation [6] can be used as the solu-
tion to the Helmholtz equation for an incident quasi-
Gaussian beam:

(1)

where pi is the complex amplitude of acoustic pressure
in an incident wave, p0 is the initial wave amplitude on
the beam axis,  is the wavenumber, c is the

speed of sound in f luid,  is the length of the
diffraction divergence of beam, a0 is the beam waist

radius, and  is the transverse coordinate

(the distance from the beam axis). The solution to
Eq. (1) is a superposition of two pairs of sources and
sinks that ensures a wave does not propagate in the
opposite direction and prevents the emergence of sin-
gularities and branch points in the solution. Represen-
tation (1) describes the beams at an arbitrary degree of
their focusing, including a focal waist on the scale of
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the order diffraction limit ( ). When 
Eq. (1) becomes the solution for a Gaussian beam.

The quasi-Gaussian beam structure presented by
Eq. (1) depends on the numerical value of parameter

. With a fixed value of beam radius a0 and 
the wave structure barely resembles a directional
beam. When , however, directivity is expressed
more clearly, and the divergence of quasi-Gaussian
beam is reduced as  grows.

Since the radiation force appears as a result of the
partial transfer of momentum to the scattering object,
we must first solve the scattering problem. To do so
and subsequently calculate the radiation force, let us
consider the more general case of an arbitrary axial-
symmetric incident beam. We write the complex
amplitude of the acoustic pressure in this beam in the
form of expansion by spherical harmonics:

(2)

where r and θ are spherical coordinates, 
denotes Legendre polynomials, and jn(x) are spherical
Bessel functions. For the incident wave described
by (2), the scattered wave can be expressed as a super-
position of outgoing waves represented by the follow-
ing series 

(3)

where  are spherical Hankel functions, and
coefficient cn characterizes the scattering of the corre-
sponding spherical harmonics. When the scatterer is a
isotropic elastic sphere with its center at the origin
(which is considered below), the expressions for scat-
tering coefficient cn have the familiar analytical form
presented in [7–10].

Being the vector variable, the radiation force gener-
ally has three Cartesian components and can move
millimeter objects in arbitrary directions. When both
the beam and the scatterer are axially symmetric, we
are left with component Fz moving the scatterer along
the axis of propagation. It can be expressed by coeffi-
cients cn and Qn [7, 8]:

(4)

To apply common expression (4) to a specific type
of incident beam, the expansion coefficient is conve-
niently written as

(5)

≤0 1ka �d 1kz

0ka =0 1ka

=0 2ka

0ka

∞

=

= ∑
0

( ) (cos θ),i n n n

n

p Q j kr P

( )θcosnP

∞

=

= ∑
(1)

0

( (cos θ),s n n n n

n

p c Q h kr)P

(1)( )nh kr

( )
( ) ( )

( ){ }

∞

=

+ + +

+=
+ +

× + +

∑2 2
0

1 1 1

12π
2 1 2 3ρ

* **Im 2 .

z

n

n n n n n n

n
F

n nc k

Q Q c c c c

( ) ( )= +0 d2 1 .n
n nQ p i n g kz

Here, the multiplier  considers the difference
between the beam and a plane wave (the solution for a
plane wave corresponds to when  ). For the
quasi-Gaussian beam described by Eq. (1), depen-
dency  can be expressed analytically as [6]

(6)

where  is the Infeld function.

NUMERICAL CALCULATION
Expressions (4)–(6) are used for numerical calcu-

lation of the radiation force from a quasi-Gaussian
beam incident on a elastic spherical scatterer in a f luid.
Our calculations were performed in Fortran. Expres-
sion (4) was summed from n = 0 to n = (5–7) ka.

The calculations were performed for two types of elas-
tic spheres. The first scatterer was made of COM (cal-
cium oxalate monohydrate or vevellit), the characteris-
tics of which are closest to one type of kidney stone with
density  and speed of longitudinal and
shear waves , respec-
tively [11]. The second considered scatterer was a
stone made of U-30 (Ultracal; 

 which is often used to
create phantoms of kidney stones [12].

The dependences of radiation force magnitude

 (where  is the

acoustic power of a quasi-Gaussian beam [6]) nor-
malized for the beam acoustic power on parameter ka
with fixed ratio of waist radius a0 to scatterer radius a
were plotted for both types of scatterers (Fig. 1). Wav-
enumber  is a variable parameter propor-
tional to the frequency of the acoustic wave. The mag-
nitude of the radiation force depends nonmonotoni-
cally on the scatterer radius, and the behavior of this
dependence is associated with the elastic properties of
the spherical object’s material. The occurance of local
minima and maxima is due to resonant oscillations of
the scatterer at certain frequencies. Plotting this type
of dependence for specific materials allows us to deter-
mine the frequencies of the maximum magnitude of
radiation force or frequency that must be avoided due
to ineffective force generation achieved at one and the
same acoustic power.

The dependences of normalized radiation force
 on the radius of the beam waist were also

plotted for the considered scatterers using different
fixed values of scatterer radius a0 The calculated
dependencies are represented in Fig. 2.
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The curves look counterintuitive. It is obvious to
assume that the force falls monotonically as the beam
waist radius grows and a rising proportion of the wave
energy travels past the scatterer without affecting it.
We might therefore expect that the magnitude of radi-
ation force would be greatest if the ultrasonic beam
radius were much smaller than the scatterer radius
( ), since the beam is fully incident on the
sphere and has the greatest force action. However, the
dependence for ka = 3 presented in Fig. 2 contradicts
this assumption. Agreement is seen only in area

 when the beam is significantly wider than the
scatterer, which can be explained by the fact that the

�0a a

�0a a

majority of the beam energy misses the target. At the
same time, the maximum value of the radiation force
is achieved not when , but when the beam waist
radius is comparable to the scatterer radius ( )
when the beam “wraps around” the sphere. Even
though some of this energy does travel past the scat-
terer, the force acting on it grows relative to when

. With different configurations between a0 and
a, the difference in force compared to a very narrow
beam can be as high as 40%. When ka = 5, the effect is
not observed for either COM or U-30, most likely
because at this parameter the characteristic depen-
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Fig. 1. Dependence of normalized values of the radiation
force on parameter ka at a fixed ratio of the beam radius to
the scatterer radius (  ) for two types of materials:
(a) U-30 and (b) COM.
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Fig. 2. Dependence of the normalized values of the radia-
tion force on the waist radius of a quasi-Gaussian beam at
different fixed values of parameters ka (ka = 3, 5; a =
2.5 mm). The diagrams are plotted for two types of elastic
spherical scatterers: (a) U-30 and (b) COM.
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dence of the radiation force on ka lies in one of the
points of minimum, and the effect of radiation force is
particularly weak (Fig. 1).

DISCUSSION
To understand the reason for this effect, we must

refer to an earlier study on the destruction of kidney
stones [13]. It was shown there that when a scatterer
is exposed to shock pulses the elastic stresses origi-
nating in it depend directly on the shear waves gener-
ated in the scatterer. The maximum tension is
reached when the focal area dimensions of the acous-
tic pulse slightly exceed the linear dimensions of the
stone. The stone is thus most effectively fragmented
when the propagating pulse f lows past the scatterer.
This conclusion is valid for the situation considered
in this work. The main reason for the effect of reach-
ing the maximum value of the radiation force when
the dimensions of the scatterer and the quasi-Gauss-
ian beam are comparable is that as the ultrasonic
beam propagates through the scatterer, the speed of
the shear waves generated in it is close to the speed of
sound in the f luid. Side areas thus emerge on the
scatterer that effectively capture the energy of the
beam f lowing past the scatterer, facilitating the pen-
etration of wave energy into it and a more efficient
transfer of momentum to it.
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