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Abstract—A novel numerical algorithm based on the wide-angle parabolic approximation is developed for
modeling linear and nonlinear fields generated by axially symmetric ultrasound transducers. An example of
a strongly focused single-element transducer is used to compare the results of ultrasound field simulations
based on the Westervelt equation, Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation with differently
modified boundary condition, and nonlinear wide-angle parabolic equation. It is demonstrated that having
a computational speed comparable to modeling the KZK equation, the use of wide-angle parabolic approx-
imation makes it possible to obtain solutions for highly focused ultrasound beams that are closer in accuracy
to solutions based on the Westervelt equation.
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INTRODUCTION
During the last decade, high-intensity focused

ultrasound (HIFU) has been emerging to a broader
range of noninvasive surgery applications for thermal
and mechanical tissue ablation in various organs [1,
2]. The distinctive features of HIFU transducers are
large focusing angles and strong degree of nonlinear
acoustic effects, particularly in novel applications
based on the use of shock-wave exposures [2, 3]. To
ensure the efficiency and safety of ultrasound surgical
devices in clinical use, it is necessary to quantitatively
characterize the parameters of ultrasound fields gen-
erated by HIFU transducers in water and in biological
tissue; such characterization can aid the assessment of
risks and efficacy of a treatment.

When novel medical devices are being developed,
calibration characteristics of ultrasound fields they
generate are first determined when focusing in water
[4]. For this purpose, numerical simulations based on
experimental data obtained for a specific transducer
can serve as a powerful performance-testing tool.
Recently, such measurement-based simulation
method for ultrasound field characterization was pro-
posed and receives acceptance in various laboratories
around the world [5–7]. The method is based on mea-
surements of the linear pressure field to set exact
boundary condition to a wave model. Then, a series of
numerical simulations of nonlinear pressure field is
conducted over the range of transducer operating
power outputs. Simulation accuracy is controlled by

comparing the modeling results with measurements of
acoustic pressure waveforms at the focus. An import-
ant particular geometry of ultrasound fields generated
by ultrasound surgery transducers are fields possessing
an axial symmetry. First, most applications use trans-
ducers in the shape of a single spherical segment [5, 7]
or in the form of an annular array [8]. In addition, even
the fields of more complex transducers, including
multi-element arrays, can be approximated with high
accuracy by the field of an equivalent single-element
circular transducer [9]. Therefore, an important theo-
retical and practical problem for ultrasound medical
applications is the development of efficient and accu-
rate methods for numerical simulations of nonlinear
axially symmetric focused beams.

Current wave models used in medical acoustics are
different in the accuracy of describing nonlinear and
diffraction effects, the limits of applicability, and the
complexity of numerical calculations. One of the most
complete wave models is the Westervelt equation,
which exactly takes into account the diffraction effects
[6, 9, 10]. However, for an axially symmetric field, this
equation has the drawback of requiring unreasonably
high computational costs. A widely used approximate
model for describing axially symmetric beams is the non-
linear Khokhlov–Zabolotskaya–Kuznetsov (KZK)
equation, which accounts for diffraction effects in the
parabolic approximation and therefore is valid only for
small focusing angles [11]. The capabilities of using
the parabolic model for HIFU transducers has been
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successfully extended by modifying the boundary con-
dition to the model. This approach named as an equiv-
alent source method has been shown to yield accurate
results in the focal region of the beam [9, 12]. The
Padé approximation method is less frequently used but
potentially more exact model for describing diffrac-
tion effects in the focused axially symmetric fields of
medical transducers [13–17]. Such method is often
called as a wide-angle approximation, which can also
be considered as a generalization of the parabolic
model.

The wide-angle approximation has been success-
fully used in describing the propagation of low-fre-
quency linear sound waves in models of marine media
[15, 16]. It has been also applied for nonlinear prob-
lems of simulating weakly nonlinear fields in water [17]
and air [18]. Various methods have been used to
approximate an exact propagator of the one-way wave
equation. For example, in [17], the propagator was
approximated by the Nth-order rational function, and
in [18], by the sum of first-order rational functions. As
a result, when calculating the diffraction operator,
according to [18], the transverse Laplacian appears
only in the left-hand side of the corresponding equa-
tion, and in [17], symmetrically on the left- and right-
hand sides. This makes the numerical algorithm of
[18] close to totally implicit scheme, with all its short-
comings, while the algorithm of [17] is close to the
Crank–Nicolson scheme. To calculate the nonlinear
operator, a spectral approach has been used in [17, 18],
which limited the implementation of the method to
solving only weakly linear problems.

This study is based on using the wide-angle
approximation in constructing a novel numerical
algorithm for simulating both linear and strongly non-
linear ultrasound fields generated by axially symmetric
focused transducers used in ultrasound surgery. The
novelty of the algorithm is the implementation of a
shock-capturing numerical scheme to calculate the
nonlinear operator and thus the possibility of model-
ing ultrasound fields with shock fronts [10]; the
method for approximating the exact propagator corre-
sponds to [17]. Another important difference of the
present work is the formulation of the boundary con-
dition to the wave model. In [17], it was set in a plane
as a circular source with uniformly distributed pressure
and phase variation that provided focusing. In our
study, a realistic boundary condition was obtained by
calculating the Rayleigh integral over the surface of an
arbitrary shape radiating onto the initial plane. This
approach makes it possible to simulate fields of realis-
tic medical ultrasound transduces having, e.g., a shape
of a spherical segment.

To test the accuracy of the new algorithm, field-
simulation results obtained using the Westervelt equa-
tion [9, 10], the KZK equation [9], and the developed
wide-angle parabolic equation were compared. It is
demonstrated that the use of wide-angle approxima-
tion makes it possible to simulate the fields of strongly
focused axially symmetric sources over the entire spa-
tial domain of the beam with an accuracy close to that
provided by the Westervelt equation. However, the
computational complexity of the algorithm is compa-
rable to the standard algorithms for solving the KZK
equation.

THEORETICAL METHOD
А. The Westervelt and KZK Equations

The Westervelt equation that governs the propaga-
tion of nonlinear acoustic waves in arbitrary directions
has the form

(1)

Here  is the acoustic pressure, t is the time,

Δ is the Laplace operator  +

 in the Cartesian coordinate system
   , and δ are the density, sound velocity,

nonlinearity coefficient, and thermoviscous absorp-
tion coefficient of the propagation medium, respec-
tively. The physical parameters in Eq. (1), that corre-
spond to propagation in water at a temperature of
20°С, are kg/m3, m/s, = 3.5, and

= 4.33 × 10–6 m2/s [6, 9].
To model an ultrasound beam generated by an axi-

ally symmetric source in a homogeneous medium,
i.e., in the absence of reflections and backscattering
effects, the Eq. 1 can be rewritten in the retarted coor-
dinate system:

(2)

where  

 is the radial coordinate in the plane per-
pendicular to the axis of symmetry of the source. In
the parabolic approximation, the Eq. 2 is reduced to
the KZK equation:

(3)

Both Eqs. (2) and (3) are evolutionary in terms of
the coordinate z, i.e. the pressure  slowly
changes as a function of z, and rapid phase changes are
taken into account by introducing the delayed time 
in the accompanying coordinate system. The KZK
equation (3) differs from the Westervelt equation (2)
only by the absence of the second order partial deriva-
tive of pressure over the coordinate z in the right-hand
side of the equation. This difference is related to the
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WIDE-ANGLE PARABOLIC APPROXIMATION 311
use of a simplifying assumption on the smallness of the
diffraction angles in the KZK equation, whereas the
diffraction part of the Westervelt Eqs. (1) and (2)
exactly corresponds to the linear wave equation.
Assuming nonlinear and thermoviscous absorption
coefficients equal to zero in Eqs. (2) and (3), the cor-
responding linear wave equations describing only the
diffraction effects are obtained.

B. Wide-Angle Parabolic Approximation

The wide-angle parabolic approximation can be
considered, on the one hand, as a generalization of the
standard parabolic diffraction operator in the Eq. (3),
and, on the other hand, as one of the ways to construct
an approximate solution to the diffraction part of the
Eqs. (1) and (2). Consider the derivation of the wide-
angle approximation equation for individual harmonic
components in the Fourier series expansion

 of the pressure field

 in Eq. (1). In the absence of nonlinear effects
and absorption, the Eq. (1) yields the Helmholtz
equation for the complex amplitude :

(4)

where k = ω/c0 is the wavenumber. If we introduce the
differential operators  and  as

(5)

then the Helmholtz equation can be represented as

(6)

Taking into account that for a homogeneous
medium considered here the wavenumber k does not
depend on the spatial coordinates, the Helmholtz
equation splits into two independent equations:

(7a)

(7b)

each of which corresponds to waves traveling at acute
angles in either the negative (7a) or the positive (7b)
directions of the axis z [13].

The operator  is a psuedodifferential
operator, which can be represented as the Fourier

transform  of the complex pressure ampli-
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multiplied by the corresponding transfer function. The
representation

(8)
therefore means that for the Fourier transforms of the
left- and right-hand sides of the Eq. (8), the following
equation is valid:

(9)

Here the operator  means finding Fourier
transform of the function that is the argument of the
operator over the transverse spatial coordinates. The
contribution of the components of the spatial Fourier
spectrum of the field for  can be neglected,
since they correspond to rapidly attenuating evanes-
cent waves.

To obtain the wide-angle approximation, consider
the accompanying coordinate system, in which the
slowly varying complex amplitude p is used instead of
the pressure amplitude :

(10)
In this case, the Eq. (7b) for one-way propagation

along the positive direction of the axis z transforms to

(11)

The operator  can be represented as a Tay-
lor series in terms of powers of the operator 
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for the frequency components 
in the lossless linearized KZK equation (3):
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If the distribution of the pressure amplitude  is
known at a distance z along the transverse coordinate
r, then the solution to the Eq. (11) at the step z + Δz
can be represented as [13]

(14)

where the operator

(15)

is termed as the propagator. The propagator , similar
to the operator  can be approximated by the first sev-
eral terms in the Taylor series for the operator  How-
ever, as mentioned above, such representation is not
practical. Therefore, the propagator is more often rep-
resented as a rational function: the ratio of two poly-
nomials of the degree N, which is also called the Padé
or the split-step Padé approximation [13]:

(16)

The coefficients of the Padé approximation can be
found if the coefficients for expansion of the propaga-
tor into a Taylor series are known up to the 2N inclu-
sively. The coefficients  and  in the Eq. (16) are
equal to unity. The larger is the number N, the better
approximation of the initial propagator (15) is
achieved by the Eq. (16). In this study, the value of
N = 4 was used. Then, each of the polynomials was
factored resulting in the following representation of
the propagator (16):

(17)

where   and  and  are the
roots of the corresponding polynomials in the numer-
ator and denominator of the Padé approximation. To
calculate the roots, an algorithm based on the Aberth–
Erlich method was used [19]. The representation (17)
for the propagator admits an iterative solution proce-
dure at each step Δz in the form
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The iterative procedure (18) was realized here in
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values for coefficients  and . The phase error (in
radians) between the exact propagator, Eq. (15), and
its approximate representation, Eq. (18), for the first
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propagating at 1an angle of 65° to the source axis. Each
of the Eqs. (18) contains only the first power of the
second-order differential operator , which makes it
possible to use simple finite-difference schemes to
construct a numerical solution. The wide-angle para-
bolic equation thus can be represented as the Padé
approximation (16) of the exact propagator (15) of the
one-way wave equation (11).

C. Boundary Conditions in the Source Plane

To solve the evolutionary equations (2, 3, 11, a
boundary condition should be set as a pressure field
distribution in some initial plane perpendicular to the
source axis. As an example, consider the field gener-
ated by a single-element strongly focused source in the
form of a spherical segment with the radius of
a = 5 cm, focal distance of F = 9 cm, and operating
frequency of f = 1 MHz (Fig. 1) [9, 20]. The half-
angle of focusing for such a source is θ = 33.7°, and
the coefficient of linear pressure amplification at the
focus in comparison to the pressure at the source sur-
face is 64 [9]. If the source surface oscillates in a piston
mode with vibrational velocity amplitude  then the
characteristic pressure amplitude at the source surface
can be determined in the plane wave approximation
as

The boundary condition for the standard parabolic
equation (3) is usually set in the plane z = 0 as the
pressure amplitude distribution at the source operat-
ing frequency and is described by the expression

(19)

Here,  is the circular frequency,
 is the wavenumber, а is the radius of the

source in the plane that coincides with radius of the
real source (solid lines in Figs. 1a, 1b). However, it is
well known that with an increase in the convergence
angle of the source, the solution to the standard para-
bolic model starts to deviate from the exact solution to
the diffraction problem in the form of the Rayleigh
integral [21]. To extend the applicability limits of the
parabolic approximation, it has been proposed to use
a modified boundary condition in the form of an
equivalent source [9, 12]. The parameters of the equiv-
alent source in the boundary condition (19) were cho-
sen by matching the pressure amplitudes at the focus
and the positions of the first diffraction zeros of the
main focal maximum at the beam axis for solutions
obtained with the parabolic model and with the
Rayleigh integral. Analytic expressions were obtained
for the radius , focal distance , and initial pres-
sure amplitude  of the equivalent source as func-
tions of а, F, and  of the spherically focused source
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Fig. 1. Illustration of methods for setting a boundary condition in various models of ultrasound beam generated by a single-ele-
ment focused transducer of 1 MHz operating frequency, 5 cm radius of aperture, and 9 cm focal length. For parabolic equation
(a, b): uniform distribution of the pressure amplitude is given in the plane A passing through the transducer center while for an
equivalent source the boundary condition is set in the plane M. For wide-angle parabolic equation (c, d): the field is transferred
first from the transducer surface to the plane Φ using the Rayleigh integral, then to the plane A using the angular spectrum
method. 
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for different values of the dimensionless parameter
. It was also demonstrated that the values of  and
 (dashed lines in Fig. 1a, 1b) always exceeded the

corresponding values of F and a, and the difference
between them increased with an increase in the con-
vergence angle of the source. Below, both the standard
formulation (19) and the equivalent source model are
used for setting a boundary condition to the KZK
equation.

For the Westervelt equation (2) and the wide-angle
parabolic model (11), the boundary condition was set
in two steps. First, the Rayleigh integral [20]
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was used to calculate the acoustic pressure distribution
in the focal plane (see Fig. 1c). Here,  in the com-
plex pressure amplitude at the observation point with
the radius vector  and  is the radius vector of an ele-
ment at the source surface . The value of the nor-
mal component of the oscillation velocity  at the
surface of the source was assumed to be uniform. Inte-
gration in the Eq. (20) was performed along the sur-
face S, which is the segment of a sphere bounded by a
polar angle θ (Fig. 1). Then, the obtained pressure
amplitude distribution was transferred to the plane
z = 0 using the angular spectrum method [10]. As
shown in Fig. 1d, the resultant pressure amplitude distri-
bution at z = 0 has a nonuniform structure along the ra-

'( )p r

r 'r
dS

( ')u r
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dial coordinate and is notable different from the rectan-
gular distributions of the parabolic models in Fig. 1b.

D. Boundary Conditions over the Radial Coordinate

To decrease the effect of the spatial window in sim-

ulations along the radial coordinate in the standard

and wide-angle parabolic equations, nonreflecting

boundary condition of a perfectly matched layer

(PML) were used close to the edge of the spatial win-

dow of the radial coordinate r [22]. A small near-

boundary layer with thickness  was in-

troduced, in which the radial coordinate r was trans-

formed to the complex value 

(21)

where  is a function of the coordinates that deter-

mines attenuation in the PML,  is the origin of the

PML, and  is the coordinate for the boundary of

the simulation domain chosen equal to . As a

result, differential operator  within the layer is trans-
formed to

(22)

where two functions are introduced,

(23)

 and  denote their derivatives over the coordi-
nate r. These functions differ from unity only within
the PML; outside the PML, the differential operator

 has its initial form (5).

The attenuation function  was chosen follow-
ing a power law as

(24)

The value of the coefficient  and the PML thick-
ness are usually chosen experimentally by minimizing

the amplitude of the reflected waves. In this study, 

was chosen exceeding the circular frequency  by a
factor of 10, and the layer width W was chosen equal to
5 mm. The amplitude of the reflected waves was eval-
uated and shown to be less than –80 dB of the incident
wave amplitude.
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E. Numerical Algorithms

Numerical solutions to the Eqs. (2) and (3) were

calculated following the method of fractional steps

with an operator splitting procedure of second-order

accuracy over the propagation distance z [23] and a

combined time-domain and frequency-domain

approach to describe different physical effects at each

step of the grid along the beam axis from z to z + Δz [6,

10]. The acoustic pressure  at the distance z
was represented at each spatial point r either as a tem-

poral pressure waveform or in the form of a finite Fou-

rier series expansion of harmonic components. An

adaptive algorithm with varying number of harmonics

included in simulations was used at each step over the

coordinate z. The number of harmonics increased

with increasing distortion of the waveform and corre-

sponding broadening of its spectrum. If the amplitude

of the last currently used harmonic exceeded  of

the source amplitude, then another  harmonics

were added to the calculation. The maximum number

of harmonics was 800.

Since the nonlinear and absorption operators in

the Eqs. (2), (3), and (11) are the same, identical

methods to calculate them were used. To calculate the

nonlinear operator at small distances from the source,

a set of coupled equations for the harmonic ampli-

tudes was solved using the fourth-order accuracy

Runge–Kutta method. When the amplitude of the

tenth harmonic exceeded the amplitude of the funda-

mental harmonic by 1%, a conservative Godunov-

type scheme was applied [10]. The absorption term

was calculated using an exact analytic solution for each

of the harmonics.

The diffraction operator was calculated in the fre-

quency domain independently for each harmonic

component. Due to specific features of the diffraction

terms in each model, different numerical methods

were applied to calculate them. For the Westervelt

equation, analytic solution for the angular spectrum

was used; the amplitudes of harmonics were calculated

using two-dimensional fast Fourier transform (FFT)

in spatial coordinates [10]. Spatial grid steps in the

plane xy were , and the step along

the axis z, , was the same as the step in

the operator splitting procedure.

To calculate the diffraction operator of the stan-

dard parabolic approximation, an implicit scheme was

used first at distances up to 5% of the focal distance,

then, at larger distances, the Crank–Nicolson scheme

was applied. The diffraction operator of the wide-

angle approximation (18) was calculated using a
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scheme similar in structure to the Crank–Nicolson
scheme:

(25)

where j is the index of the spatial grid node in the radial
direction. This system of linear equations for the pres-

sure values at the grid point  has a tridiagonal

matrix and was solved by the standard Thomas algo-
rithm.

Within the PML layer, the finite-difference
schemes presented above were modified following the

transformation of the operator  (22). As a result, the
coefficients of the tridiagonal matrix varied. The grid
steps of finite-difference schemes were 0.0025 mm
along the radial coordinate and 0.025 mm along the z
coordinate aligned with the beam axis. For the step
over the z coordinate and the wavenumber

k = 4230 m–1 that corresponds to the fundamental fre-

quency, n = 1, the values of the coefficients  and 

were as follows: 

 

 

 

All of the algorithms were adapted for parallel com-
puting using an OpenMP technology, which resulted
in shortening the calculation time in accordance with
the number of processor cores involved in calculations
(usually from four to eight). Note that in the finite-dif-
ference schemes for calculating the diffraction opera-
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putational time from several hours to several days; for
the KZK and wide-angle parabolic equations, calcu-
lations required computational time from tens of min-
utes to several hours.

RESULTS AND DISCUSSION

А. Comparison of the Results
from Linear Beam Simulations

At the first step, the Eqs. (2), (3), and (11) were
simulated with nonlinear and absorption operators
being switched off. In this way, the differences in the
solutions resulting from the differences in diffraction
operators of the corresponding wave models were
tested. The solution (11) in the form of the Rayleigh
integral (20) was considered as a reference.

Figure 2 shows the pressure amplitude distribu-
tions along the beam axis z and the transverse coordi-
nate r in the focal plane that were simulated using dif-
ferent models: the Rayleigh integral, the parabolic
equation with the standard boundary condition (PE)
and the modified boundary condition in the form of
an equivalent source (PEE), and the wide-angle para-
bolic equation (WAPE) with the boundary condition
calculated in the initial plane z = 0 using the focal
plane as an intermediate surface (Fig. 1). Clearly, in
the region of several diffraction maxima around the
focus, the solutions to the parabolic model with the
modified boundary condition and to the wide-angle
model are practically indistinguishable from the refer-
ence. The solution to the standard parabolic equation
notably differs from the reference one both in the pres-
sure amplitude at the focus and in the structure of the
diffraction lobes close to the focus, which demon-
strates its limited applicability for describing fields
generated by highly focused sources.

The differences between the solutions of various

models are depicted in more detail in Fig. 3. Two-

dimensional distributions are presented in the axial

plane zr for the absolute values of the difference

between the pressure amplitudes in the reference solu-

tion and in the solutions calculated by the above-men-

tioned methods. The distributions are normalized to

the value of the pressure amplitude at the focus in the

reference solution. In simulations based on the stan-

dard parabolic model, the error in determining the

pressure amplitude reaches about 8% at certain indi-

vidual points not only near the focus, but at some

other points close to the beam axis. These differences

are mainly related to the inaccuracy of the position of

the field maxima and minima with respect to the ref-

erence solution. Modification to the boundary condi-

tion allows to achieve coincidence of the parabolic and

reference solutions within the focal diffraction lobe

and good agreement between the solutions over several

diffraction lobes around the focus [6, 12]. However,

the error in pressure amplitude can reach 6% in the
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Fig. 2. Pressure amplitude distributions on the transducer

axis (a) and in the focal plane (b) normalized by the pres-
sure amplitude on its surface. Notations: Rayleigh, refer-
ence solution to diffraction problem in a form of the
Rayleigh integral; PEE, solution to the parabolic equation
with modified boundary conditions in the form of an
equivalent source; WAPE, solution to the wide-angle par-
abolic equation; PE, solution to the parabolic equation

with standard boundary condition. 
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Fig. 3. Two-dimensional distributions of a difference in

pressure amplitudes between the reference and approxi-
mate solutions in the axial plane of the beam normalized
by the pressure amplitude in the reference solution at the
focus. (a) Parabolic equation with standard boundary con-
dition, (b) parabolic equation with modified boundary

condition, (c) wide-angle parabolic equation. 
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near field of the source close the beam axis and at the

edges of the beam in the radial direction. These differ-

ences are mainly related to the difference in the posi-

tions of the maxima and minima of the diffraction

field. The most precise agreement with the reference

solution is observed for the wide-angle approximation:

the error at the focus is less than 0.07%; it is less than

0.5% in the area around the focus; the maximum error

does not exceed 2.5% and is observed on the beam axis

in the near field of the source. The figure also demon-

strates that the pressure amplitude, as well as the posi-

tions of the field maxima and minima in the solutions

to the wide-angle parabolic equation and the Rayleigh

integral correspond well to each other already at dis-

tances of z > 0.5F.
B. Comparison of the Simulation Results
for Nonlinear Beams

At the next step, the accuracy of the solutions to the
KZK equation with modified boundary condition and
to the nonlinear wide-angle parabolic equation was
estimated in simulations of nonlinear beams with
account for weak thermoviscous absorption. The
results were compared to the reference numerical
solution to the Westervelt equation. The solution to
the KZK equation with standard boundary condition
was not considered, since the accuracy of simulating a
linear beam already did not seem satisfactory.

Figure 4 shows the distributions of the positive and

negative peak pressures in acoustic waveforms along
ACOUSTICAL PHYSICS  Vol. 64  No. 3  2018
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Fig. 4. Distributions of the peak positive and peak negative pressure on the transducer axis (top row), in its focal plane (middle

row), and pressure waveforms at the focus (bottom row) for various values of the pressure amplitude at the transducer surface: (a)
0.025, (b) 0.25, (c) 0.45 MPa. Notations: WE, solution to the Westervelt equation; PEE, solution to the parabolic equation with

modified boundary condition; WAPE, solution to the wide-angle parabolic equation. 
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the source axis and in the focal plane, as well as the

waveforms at the source focus obtained using the three

different wave models for three different pressure

amplitudes at the source. For the peak negative pres-

sure, almost no discrepancy can be seen in the results

calculated with all three models. For the peak positive

pressure, in the case of a quasi-linear beam,

 (Fig. 4a), when nonlinear waveform

distortion and asymmetry in the peak pressure values

are small, the results given by all three methods are

very close to each other. With an increase in the initial

pressure amplitude, starting from , a

certain discrepancy occurs in the solution to the para-

bolic equation with modified boundary condition,

which reaches a maximum (18%) at an initial ampli-

tude of  (Fig. 4b), when a shock front

starts to form at the focus. At the amplitude

of  (Fig. 4c), a developed shock forms

=0 0.025 МPap

=0 0.15 МPap

=0 0.25 MPap

=0 0.45 MPap
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in the focal waveform; at this level of the waveform dis-

tortion, when the ratio of the shock amplitude to the

initial pressure at the source reaches its maximum [9],

the solutions for the peak positive pressures are again

in a good agreement.

Excess values of the peak positive pressure given by

the solution to the KZK equation with modified

boundary condition in comparison to the reference

solution to the Westervelt equation and nonlinear

wide-angle parabolic equation can be seen in Fig. 5,

where the peak pressures at the geometric focus

( ) are plotted against the pressure amplitude at

the source. The growth curve of the peak positive pres-

sure in the solution to the KZK equation clearly goes

higher than those in the other solutions. This discrep-

ancy can be explained by certain differences of the

numerical algorithms used here. Specifically, the lin-

ear beam configurations in different models are estab-

=z F
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Fig. 5. Dependences of the peak positive and peak negative

pressure at the focus on the pressure amplitude at the
transducer surface. Notation: WE, solution to the Wester-
velt equation; PEE, solution to the parabolic equation with
modified boundary condition; WAPE, solution to the

wide-angle parabolic equation. 
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lished so that they are very close near the focal maxi-

mum, whereas some differences are evident outside of

the focal lobe (Fig. 3). In the parabolic approximation

with modified boundary condition, the focal distance

is somewhat larger than for the initial spherically

shaped source; i.e., nonlinear effects accumulate over

larger distances. In addition, when solving the linear

wide-angle and Westervelt equations at small dis-

tances,  where  is the

depth of the spherical cup, nonlinear effects were

included in simulations only within the region

bounded by the spherical surface of the source. Thus,

it was taken into account that the field behind the

source did not contribute to nonlinear propagation

effects. In the algorithm simulating the KZK equa-

tion, nonlinear effects were included over the entire

domain of the propagation distances z. Thus, nonlin-

ear effects were slightly overestimated in the KZK

solution when calculating the prefocal region of the

beam. Rapid increase of the peak positive pressure

with the source amplitude when the shock front begins

to form at the focus may be the reason that the sharp

increase in the peak positive pressure at the focus in

the KZK model occurs at somewhat smaller pressure

levels at the source.

≤ ≤0 ,z D = − −2 2D F F R
CONCLUSIONS

A novel numerical algorithm is presented that
allows modeling of nonlinear ultrasound fields gener-
ated by axially symmetric focused transducers based
on the wide-angle parabolic approximation of the dif-
fraction effects. Validation simulations were con-
ducted for a single-element transducer in the form of a
spherical segment with 33.7° half-angle of conver-
gence. It was shown that the wide-angle parabolic
approximation makes it possible to calculate both lin-
ear and nonlinear fields generated by strongly focused
HIFU transducers with a high accuracy, sufficient for
practical application.
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