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Abstract—When using elastic spherical scatterers in acoustic problems, it is necessary to know their main elas-
tic parameters that characterize the internal resonances. In this study, it has been shown that the velocities of
longitudinal and transverse waves in a solid sphere can be determined from the scattering characteristics of an
ultrasound beam. Millimeter-sized steel, glass, and nylon spheres that were immersed in water were consid-
ered as scatterers. In experiments an acoustic field was created by a f lat piezoelectric source operating in the
megahertz frequency range in a pulsed mode. By comparing the experimental data and numerical calcula-
tions for the scattered-field amplitude, the velocities of elastic waves in the materials of spheres were deter-
mined and their absorption coefficients were estimated.
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1. INTRODUCTION

When a wave field interacts with a body of a finite
size, the characteristics of a scattered wave are deter-
mined not only by the dimensions and shape of this
body but also by its acoustic parameters [1–5]. In
practice, these parameters are often unknown or spec-
ified with a low accuracy, thus making it impossible to
quantitatively analyze the phenomena that depend on
spatiotemporal characteristics of scattered waves.
Such phenomena include, e.g., the effect of the acous-
tic radiation force [6].

The theoretical analysis of the acoustic radiation
force that acts on an elastic body is based on the solu-
tion of the scattering problem. For this purpose, it is
important to know the main parameters of the scat-
terer used in experiments, which characterize the
internal resonances, such as the size, density, and the
velocities of longitudinal and transverse waves. When
considering an elastic scatterer, its geometric charac-
teristics can be measured directly, the density can be
calculated, if the volume and mass, which is found via
weighing, are known, while the velocities of elastic
waves in a small scatterer cannot be measured easily.
These velocities depend not only on the chemical
composition but also on the internal structure, which
is defined by the manufacturing technique and pro-
cessing procedures; therefore, these values may vary
for objects having the same composition but taken
from different batches [7, 8]. As a result, the values of
the elastic moduli specified by a manufacturer (which

actually determine the wave velocities) may be incon-
sistent with actual values.

Elastic objects are transparent to sound to a certain
degree. In particular, acoustic waves incident on a
spherical scatterer (sphere) excite internal vibrations in
it, which make an significant contribution to the form
of the scattered field. This can be observed in the
angular distribution of the amplitude and total dissi-
pated energy [9, 10]. These vibrations are related to the
resonance phenomena inside the scatterer caused by
both bulk and surface waves (Franz and Rayleigh
waves and whispering-gallery modes) [11–20]. Since
these phenomena depend on the physical properties of
the scatterer, studying the features of scattering can be
used to experimentally determine the unknown elastic
velocities.

There exist many methods for calculating the
acoustic scattering by an elastic sphere. In the approx-
imation of incidence of a plane wave on a nonabsorb-
ing sphere, there is an exact solution in the form of an
infinite series of waves diverging from a scatterer and
described by spherical harmonics. The features of the
solution for this description were studied and con-
firmed experimentally in a number of papers [9, 10,
16, 21]. This approach can be used for calculating the
scattering by spherical objects of relatively small
dimensions, for ka < 100, where k is the wave number,
and a is the radius of the sphere. Since rounding errors
in the calculation of special functions become signifi-
cant for large values of ka and the required number of
terms of the corresponding series becomes large, the
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accuracy decreases and the time spent on calculations
increases significantly. In addition, although this
approach makes it fairly easy to describe scattering, it
does not provide a physical interpretation of the fea-
tures of the resulting scattered field. This interpreta-
tion is provided by other calculation methods, e.g., the
approach based on the Watson–Sommerfeld trans-
form, which allows one to calculate scattering of waves
at ka > 30 [12, 22], or the method based on the theory
of resonant acoustic scattering [11, 13, 15].

Previously, methods were proposed for determin-
ing unknown velocities of elastic waves in spheres
immersed in a f luid based on the results of measuring
the backscattering of a plane wave [8, 23–27]. Basi-
cally, these methods were designed to determine the
elastic parameters of spheres used for calibration of
hydroacoustic equipment; therefore, in the above
studies, their diameters ranged from 20 to 90 mm for
frequencies of up to 300 kHz. A sphere was placed in
the far field of a source, and calculations were per-
formed in the approximation of a plane wave incident
on the scatterer. The use of this approximation was
stated as one of the reasons for some amplitude devia-
tions of the experiment from the theory. The measured
scattered-field signal was much higher than the noise
level, thus making it possible to analyze fine details of
the scattered-wave spectrum. However, as the size of
the scatterer decreases, the scattered-field signal will
inevitably become weaker; therefore, for millimeter-
sized spheres of practical interest, such methods may
be inaccurate.

In [28], the possibility of studying the scattered
field in the propagation direction of an incident wave
was shown. This approach is used in our study to
determine the velocities of elastic waves inside scatter-
ers. The use of this method is convenient for the for-
mulated purposes due to the relatively simple manipu-
lations from the standpoint of alignment (for placing
the scatterer on the acoustic axis of the source) and the
ability to measure the acoustic field near a scatterer
without introducing distortions into the structure of
the incident wave.

As mentioned above, calculating the parameters in
the plane wave approximation reduces the accuracy of
determining the velocities of elastic waves in the scat-
terer material. This is caused by the fact that when
actual sources are used, the acoustic field incident on
the scatterer significantly differs from a plane wave in
most cases. To increase the calculation accuracy, it is
necessary to take the inhomogeneous spatial structure
of the incident wave into account; this can be done
proceeding either from the model assumption on the
structure of surface vibrations of the used source (e.g.,
the assumption of the piston character of source vibra-
tions), which also limits the accuracy, or, if possible,
by using the acoustic holography method [29].

In this study, we have proposed a method for deter-
mining the velocities and absorption coefficients of
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longitudinal and transverse waves in millimeter-sized
solid-state spherical objects based on measuring the
scattering characteristics of an ultrasound beam, i.e.,
the frequency dependence of the forward-scattering
amplitude and the angular scattered-field distribution.
An experimental setup for observing scattering by spheres
is described. The unknown velocities and absorption
coefficients are determined by comparing the experi-
mental results and results of a numerical simulation,
which was maximally close to the experimental condi-
tions.

2. THEORETICAL METHODS
2.1. Description of Scattering of a Plane Wave

by an Elastic Sphere
Before considering the case of a complex actual

field structure of a wave incident on a scatterer, let us
analyze the scattering process of an idealized plane
acoustic wave. An isotropic elastic sphere, inside
which both longitudinal and transverse waves are gen-
erally excited and which is immersed in an ideal f luid,
is considered as the scatterer. A solution of such a
problem was first presented in [9]. Let us present the
statement and results of solving the scattering prob-
lem, which are necessary for the further consideration,
using the designations introduced in [30].

Let a monochromatic plane wave be incident on an
elastic sphere with radius a:

(1)
where p0 is the complex amplitude of the incident
wave;  is the wave number; c is the
sound velocity in the immersion f luid; z is the distance
along the propagation direction of the incident wave;
r, θ, and ϕ are the spherical coordinates (due to the
symmetry of the problem, there is no dependence on
the azimuthal angle ϕ), the origin coincides with the cen-
ter of the sphere; the angle  corresponds to the
wave propagation direction; and  (Fig. 1).

The wave field on the scatterer surface is described
using the following appropriate boundary conditions:
(1) the pressure in the f luid taken with an opposite sign
is equal to the normal components of the stress in the
scatterer; (2) the tangential components of transverse
stresses in the scatterer are equal to zero; (3) the nor-
mal component of the vibrational velocity does not
change upon a transition through the boundary.

Taking into account that the incident plane wave
can be represented as an expansion into an infinite
series with separation of the functions of the angular
and radial variables [31]:

(2)
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Fig. 1. Incidence of plane wave on sphere. Coordinate system.

pi

r

zθ
O

2a
in the form of a similar expansion. The choice of a
spherical function describing the dependence of the
solution on the distance is determined by the radiation
condition with selection of only diverging waves from
the scatterer:

(3)

Here,  are the Legendre polynomials and

 is the spherical Hankel func-
tion of the first kind, where  and  are Bessel
and Neumann spherical functions, respectively. The
terms of the series that were found from the above
boundary conditions have the following coefficients:

(4)

where the prime means the derivative with respect to
the full argument of the corresponding functions. The
values of cn characterize the scattering and depend on
the known properties of the immersion fluid and the
material of the sphere, namely, on the velocity of
sound c and density of the f luid, the sphere material
density, as well as on the combinations kta, kla, where

, , and cl and ct are the velocities of
the longitudinal and transverse waves in the scatterer,
respectively. The coefficients  depend only on the
combinations kta, kla, and the densities of the sphere

 and fluid ρ:
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the Hankel spherical function at large values of the
argument , using the optical the-
orem [21], and taking the expression for the scattered
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The dependence of the scattering cross-section on
the frequency  or parameter 
reflects the general character of the scattered-field
behavior with an increase in the frequency, while the
presence of peaks and dips in the dependence indi-
cates the presence of resonance phenomena inside the
sphere, which affect the form of the scattered field.
The scattering cross-section depends on the density of
the sphere material, the velocity of sound in water, and
the velocities of longitudinal cl and transverse ct waves.

Numerical calculations of the scattered field and
scattering cross-section for estimates of the scatterers
used in the experiments were performed using formu-
las (3)–(6) in the MATLAB environment, which con-
tains a large number of built-in functions, in particu-
lar, those for calculating Legendre polynomials and
Bessel and Neumann functions. The spherical Bessel
and Neumann functions  and , respectively,
were calculated according to the definitions

, ,
where ,  are the Bessel and Neumann
functions, respectively. The number of terms of the
infinite series that was used in the calculations with
formulas (3) and (6) was Nmax = (3–5)ka, which was
sufficient for the convergence [32].

2.2. Accounting for Absorption in the Scatterer Material

It is known that when acoustic waves are scattered
by metal spheres, the absorption at low frequencies is
negligible and, therefore, it can be disregarded in cal-
culations. However, this is not always the case for
other materials. It is convenient to take the absorption
in the scatterer material into account by introducing
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imaginary parts into the wave numbers for longitudi-
nal and transverse waves [33–35]:

(7)

where αl, αt are the absorption coefficients, and ,
 are the loss tangents for longitudinal and trans-

verse waves, respectively.
The wave numbers kl and kt are included in the

arguments of the spherical Bessel functions and their
derivatives, which appear in the definition of the coef-
ficients . With the above modification of the wave
numbers, these arguments become complex. Since
MATLAB allows finding the values of the Bessel func-
tions (through which spherical Bessel functions are
expressed) for complex arguments, it is easy to calcu-
late scattering with consideration for the absorption.

2.3. Scattering of an Ultrasound Beam 
by an Elastic Sphere

There are no infinitely extended sound sources able
to generate a plane wave. All physically realizable
acoustic sources produce limited sound beams.
Therefore, in practice, the amplitude of a wave inci-
dent on the surface of a scatterer is different at different
points, and the wave front differs from a plane front. If
the wave incident on the scatterer does not differ much
from a plane wave, it is then possible to continue using
the plane-wave theory to calculate the scattered field
with certain reservations; however, as the wave inho-
mogeneity increases, this approximation becomes less
efficient, thus leading to a loss of some information
about the parameters of the scatterer, which could be
determined from the measured amplitude. In connec-
tion with this, it becomes necessary to take the spatial
structure of the beam incident on the scatterer into
account in order to increase the accuracy of determin-
ing the unknown parameters of the scatterer in theo-
retical calculations.

In this study, a numerical calculation of the scat-
tered field caused by the incidence of an acoustic beam
on an elastic sphere was performed on the basis of the
theoretical approach described in [30].

Let a monochromatic wave beam be incident on an
elastic sphere of radius a. Since any wave beam can be
represented as a superposition of plane waves of differ-
ent directions and the solution of the scattering prob-
lem is known for each of these plane waves, the solu-
tion for the scattered wave is generally represented as a
superposition of expressions of the form of (3). This
solution is transformed to a more compact form when
using the addition theorem for spherical harmonics,
which makes it possible to represent the complex
amplitude of the acoustic pressure in the scattered
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field as the following expansion into a series in terms
of spherical harmonics [30]:

(8)

Here,  are spherical harmonics. The
expansion coefficients  are represented as

, where the expression for the coeffi-
cients  was determined earlier (formula (4)), while

 are the

coefficients that fully specify the incident field, which
is characterized by the angular spectrum .
The expressions for the angles  and  are presented
in [30]. The angular spectrum of the beam can be
found from the formula:

(9)

where  is the complex amplitude of the
acoustic pressure in the transverse plane that runs
through the sphere center at the distance  from the
source. This distribution can be found experimentally
or be calculated using the Rayleigh integral with the
known character of vibrations of the source surface
[29]:

(10)

where  is the particle velocity on the source
surface, , , and the integration
is performed over the source surface. In the case of a
circular piston source,  for

,  for , and 
is the source radius.

3. EXPERIMENT
3.1. Experimental Setup

Figure 2a schematically shows the experimental
setup. A flat piezoceramic broadband source with a
diameter of 38 mm (V392, Olympus, USA) with a cen-
ter frequency of 1 MHz was placed in a tank with
degassed water. A pulsed signal consisting of three
periods of a sinusoidal signal was fed to the source
from the generator. The center frequencies of the
pulses used in the experiments for different scatterers
are shown in Table 1. Due to the short duration of the
emitted signal, it was possible to study the scattered
field in a quite wide frequency band. The acoustic sig-
nal was measured using a capsule-type hydrophone
(Onda HGL-0200, USA) with a sensing element
diameter of 200 μm. During the acoustic field scan-
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Fig. 2. (а) Diagram of experimental setup: (1) generator,
(2) preamplifier, (3) oscilloscope, (4) water-filled tank, (5)
source, (6) hydrophone, (7) metal frame with stretched
fishing lines; (b) attachment of scatterer with a system of
stretched fishing lines. 
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ning, the hydrophone was moved by a microposition-
ing system (UMS-3, Precision Acoustics, UK) along
three mutually perpendicular axes. The scatterer was
mounted using a system of stretched fishing lines,
which fixed the sphere at a certain distance from the
source during measurements (Fig. 2b), and the small
diameter of the lines (35.7 μm) allowed us not to take
their influence on the acoustic field into account.
Berkley NanoFil (Pure Fishing, Inc., USA) fishing
lines were used, which are a hybrid of a braided cord
and a monofilament fishing line.

The experiments used spheres made of grade AISI
440-C stainless steel with diameters of d = 2.8–6 mm,
glass (sodium–calcium–silicate glass, i.e., crystal
glass) with diameters of d = 4–8 mm and nylon (poly-
amide 6.6) with diameters of d = 4–8 mm, which were
placed at a distance of 350 mm from the source on its
acoustic axis. The diameters were measured with a
micrometer with a division value of 0.01 mm. The
mass of a sphere was measured with an electronic bal-
ance with an accuracy of 0.001 g. Knowledge of the
mass and diameter of the sphere allowed calculation of
its density. The density measurement error in the end
was 0.2–1.8% (see Table 1). The variation of the den-
sities within the specified errors did not affect the
value of the scattered field. Table 1 also shows the val-
ues of the steel, glass, and nylon densities based on the
reference data [36–39].

The metal frame has a U-shaped structure consist-
ing of two 20-cm-long vertical rods of circular cross
section, which were spaced 20 cm apart and attached
with their upper ends to a horizontally positioned rect-
angular rod (see Fig. 2a). Near the lower ends of the
rods, there were drilled holes into which small inserts
were placed that contained holes with a smaller diam-
eter for threading and securing fishing lines. Four fish-
ing lines were used, which were stretched in the gap
between the rods. These lines were spaced so that due
to the produced tension, it was possible to fix a sphere
steadily between them (see Fig. 2b).

When waves were scattered by a sphere that was
fixed between the fishing lines, the metal frame was
beyond the region of the probing acoustic beam, thus
making it possible to avoid parasitic scattering of the
incident field by the frame.

At a certain distance from the center of the sphere,
at which, according to calculations, the scattered field
was comparable in magnitude to the incident field, the
acoustic-pressure profiles were measured along the
vertical y axis that passed through the acoustic axis,
from which the amplitude and phase were determined.
The distance was selected so that the signal from the
scattered field was strong enough to minimize the
influence of noise. The distance from the center of the
sphere to the hydrophone at the central measurement
point, which lies on the acoustic axis of the source, as
well as other parameters, are shown in Table 1. During
the experiment, a thermometer was used to measure
the water temperature, which was 22.0 ± 0.1°C and did
not change during the measurements.

3.2. Measurement and Experimental Data

Processing Methods

The experimental data processing and numerical
calculations of the scattered field were carried out in
the MATLAB environment.

The frequency dependences of the scattering cross-
sections were calculated according to formula (6) for
the spheres that were used in the experiment; the fol-
lowing values of the velocities of the longitudinal cl and
transverse ct waves in the scatterer were taken in the
calculation: for steel, cl = 5900 m/s and ct = 3340 m/s;
for glass, cl = 5920 m/s and ct = 3420 m/s; for nylon,
cl = 2620 m/s and ct = 1080 m/s (these values were
ACOUSTICAL PHYSICS  Vol. 67  No. 4  2021
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Table 1. Characteristics of scatterers and the input parameters

Sphere 
material

Sphere diameter
d, mm Density ρ, kg/m3

Density
from reference

data, kg/m3

Distance from the sphere 
center to the hydrophone 

x, mm

Center 
frequency

of a pulse, MHz

Steel 2.763 ± 0.005 7480 ± 60
7500–8200

20.2 1.0
4.744 ± 0.005 7490 ± 24 35.3 0.85
5.989 ± 0.005 7710 ± 18 59.7 1.1

Glass 3.967 ± 0.006 2552 ± 23
2240–2800

23.1 1.0
6.10 ± 0.02 2653 ± 26 34.4 0.9

7.981 ± 0.006 2477 ± 6 49.2 1.1

Nylon 3.945 ± 0.005 1104 ± 20

1020–1130

19.5 1.1
5.930 ± 0.007 1088 ± 7 39.1 1.0
5.958 ± 0.007 1074 ± 6 39.1 1.0
7.990 ± 0.007 1119 ± 6 58.69 1.0
provided by the manufacturer of spheres, RGPBALLS
SRL, Italy). To refine the specified values of cl and ct,
proceeding from the obtained frequency dependences
of the scattering cross-section, a frequency range was
selected for each sphere that contained resonance
regions sensitive to small changes in the elastic veloci-
ties. For the experiment, a short-duration pulse was
used, whose spectrum covered the frequency range
selected for this sphere, while the pulse carrier fre-
quency corresponded to the central point of the range
(see Table 1).

At a distance of 350 mm from the source, the cen-
tral point of the recorded axially symmetric two-
dimensional distribution of the wave amplitude was
found by scanning the field in the transverse plane. It
was considered as the point of the acoustic axis into
which the center of the studied scatterer should be
placed. For this purpose, after the end of scanning, the
hydrophone was first moved to the found axial point
of the scan segment and then moved several millime-
ters away from the source. Next, the frame with a
sphere fixed between the stretched fishing lines was
immersed into the tank so that the center of the sphere
was directly in front of the sensitive area of the hydro-
phone. In this way, the sphere was placed on the
acoustic axis of the source at a specified distance from
it with an accuracy better than 1 mm. As follows from
the calculations, the amplitude of the scattered field
upon a displacement of the sphere by 1 mm in the
transverse direction from the acoustic axis changes in
magnitude at the point of the signal maximum by at
most 2% (depending on the chosen sphere and fre-
quency) relative to the amplitude for the symmetric
arrangement of the sphere in the source field. It can
also be assumed that the positions of the characteristic
minima and maxima in the frequency response are not
affected by such a shift. In this case, the accuracy of
placing the source on the acoustic axis was better than
1 mm; thus, it can be assumed that a small possible
ACOUSTICAL PHYSICS  Vol. 67  No. 4  2021
deviation of the sphere from the axis did not affect the
measurement result.

The distance from the sphere to the source x1 was
found by measuring the time within which a signal
passed the distance from the source to the sphere and
back after its reflection from the sphere surface that
was closer to the source.

After the sphere was fixed in the desired position,
in the presence of the sphere, a point with the maxi-
mum amplitude, where it was planned to measure the
scattered field, was found (for a symmetrical position
of the scatterer in the source field, this point lies on the
acoustic axis) by scanning the field in the transverse
plane at some distance from its center. The found
point became the central point in the subsequent mea-
surements of the scattered field on the y axis. The dis-
tance from this point to the source x2 was determined
later, after the removal of the sphere, by measuring the
delay time of the arrival of the emitted signal at the
hydrophone. The distance x from the center of the
sphere to the hydrophone was found from the formula
x = x2 – x1 – d/2 (see Table 1).

For each sphere at a fixed distance x2 from the
source along the vertical y axis (across the acoustic axis
of the source), the acoustic field was measured in the
presence of the sphere (the full field) and in its absence
(the incident field). By subtracting the complex
amplitudes of the full and incident fields, the complex
amplitude of the scattered wave was found, which,
after being normalized to the amplitude of the incident
field at the center of the sphere, was used for theoreti-
cal analysis. The amplitude of the incident field at the
center of the sphere, on the one hand, can be mea-
sured with a hydrophone. On the other hand, knowl-
edge of the incident-field amplitude at the central
point of measurements (for convenience), the fre-
quency corresponding to this amplitude, and the
source diameter allows one to calculate the amplitude
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of the source field at the sphere location, using the
Rayleigh integral. A comparison of the amplitudes
calculated in this way at the sphere location with the
experimentally measured amplitudes shows a good
coincidence. The relative discrepancy at the consid-
ered frequencies did not exceed 1%; therefore, this
method for finding the field amplitude at the sphere
location can be used to reduce the number of measure-
ments and the time of the experiment, which is
important to ensure the constancy of the external con-
ditions for the experiment.

To test the effect of temperature variations during
measurements, the incident-field signals were mea-
sured at the same point at different instants of time,
which were separated by a time interval of 10–15 min,
which corresponded to the time between successive
measurements of the full and incident fields. There
were no signal-phase shifts during this interval, thus
indicating the constancy of the velocity of sound in
water with time and, consequently, the temperature
constancy.

It was checked independently that the attachment
does not affect the resulting scattered field. The inci-
dent field of the source was measured in the presence
of the metal frame and the system of fishing lines with-
out a sphere and in the absence of a frame. It has been
shown that the above signals, as well as their spectral
amplitudes and phases, coincide; that is, the frame
and fishing lines do not contribute to the scattered
field and their presence can be disregarded. Another
effect that could be caused by the fasteners is the
damping of the scatterer vibrations (attenuation of sur-
face waves) at the point of the contact between the
spheres and fixing lines, which might cause a change
in the shapes of the experimental resonance curves in
comparison to those calculated theoretically. How-
ever, such an effect of the fishing lines was not
observed in the analysis of the results of scattering; i.e.,
the lines were quite thin and, therefore, their contact
area with the scatterer was too small to significantly
affect it.

The sampling period of hydrophone signals was 8
ns, while the time window width was 100 μs. The
absence of waves that were rereflected from the walls
of the tank or source was checked by increasing the
pulse repetition frequency until rereflected signals
began to appear on the oscilloscope screen; after this,
the pulse repetition frequency was reduced to elimi-
nate such overlaps. When processing within the 100-μs
window, a narrower window was selected for localizing
the main pulse. This made it possible to eliminate the
contribution from rereflections between the sphere
and hydrophone and inside the hydrophone, as well as
to reduce the noise that occurs during measurements.
At the same time, the selected window was long
enough to register a scattered-field signal for as long
time as possible, whose tail stretches behind the main
signal for some time and contains contributions from
the waves excited in the scatterer and reemitted into
the f luid. This tail of the scattered signal is important
for the appearance of resonant dips and peaks in the
spectrum of the scattered signal, which determine the
characteristics of the scatterer. The described decrease
in the width of the initial time window during process-
ing reduces the actual frequency resolution, discard-
ing some of the scattered weak signals, and therefore
smooths out the real resonant features. Therefore, a
time window was also introduced into the theoretical
calculations, which was used in the experimental data
processing, to approximate the results of theoretical
calculations to the conditions in which the experimen-
tal curves were obtained.

For the selected part of a signal, the signal spec-
trum was calculated using the Fourier transform. The
frequency range that was used for the analysis was lim-
ited to the frequencies at which the modulus of the
spectral amplitude of the incident field decreased by a
factor of 10 relative to the maximum of the given pulse.

Measurements along the y axis gave the angular
distribution of the scattered-field amplitude; sepa-
rately, a measurement at the central point of this dis-
tribution, which lay on the acoustic axis, was taken for
the analysis in order to obtain the frequency depen-
dence of the forward-scattering amplitude. When ana-
lyzing the scattering, it was revealed that the frequency
dependence of the forward-scattering amplitude is
more sensitive to changes in cl and ct compared to the
angular distribution; therefore, just this dependence
was used to find the unknown velocities. In addition,
the scattered-field minima are the characteristic fea-
tures in the angular distribution; their positions are
determined with a larger error because of a signal
decay at these angles virtually to zero and an increase
in the role of noise, which introduces errors in the
determination of these minima.

The following functional was used to determine the
velocities of longitudinal cl and transverse ct waves:

(11)

Here,  is the experimentally measured amplitude,
 is the amplitude numerically calculated using

formula (8) (or formula (3) in the approximation of
the incidence of a plane wave on the sphere), N is the
number of different frequencies at which forward scat-
tering was considered or the number of different spa-
tial points, at which the angular distribution of the
scattered field was measured. By varying the values of
cl and ct and minimizing the functional (11), these
velocities were determined. It is possible to consider
other sets of arguments of the functional: e.g., the
dependences on only one variable .

If the measurement results showed that the absorp-
tion played an appreciable role (in the case of nylon
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Fig. 3. Scattering cross-section normalized to cross-sectional area of sphere as function of dimensionless parameter ka with vari-
ations of velocities of (а) transverse ct and (b) longitudinal waves cl for nylon sphere. 
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spheres), the loss tangents, which were introduced
according to formula (7), were preliminarily assessed
by the degree of smoothness of the experimental
dependence of the forward-scattering amplitude, tak-
ing into account that the absorption of longitudinal
waves is much weaker than that of transverse waves.

The errors in the velocities of the found longitudi-
nal and transverse waves due to the proposed method
and some asphericity of the spheres were estimated.

For indirect verification of the obtained values, the
results of experimental measurements on the y axis
were compared to numerical calculations. The best
match of the two curves occurred when substituting
the above-determined velocities.

4. RESULTS
4.1. Analysis of the Influence of Various Parameters

of Spheres on the Characteristics of the Scattered Field
The theoretical study of the influence of various

parameters on the scattered field was performed by
calculating the scattering cross-section for steel, glass,
and nylon spheres that were used in the experiments.
The study of the degree and nature of the influence of
each of the parameters on the scattering cross-section
was of interest. According to calculations, a change in
the density of the sphere material by 5% (this value
exceeds the maximum density-measurement error in
this study) affects the cross-section so slightly that it
can be considered independent of the sphere density
within the permissible error. The effect of the velocity
of sound in water on the scattering cross-section was
more noticeable: the positions of the peaks and dips
were shifted, and their shape and maximum values
changed. For more accurate calculations, it is also
important to measure the velocity of sound in water at
the time of the experiments.

In contrast to the sphere density and the velocity of
sound in water, the influence of the velocities of longi-
ACOUSTICAL PHYSICS  Vol. 67  No. 4  2021
tudinal cl and transverse ct waves on the frequency
dependence of the scattering cross-section was quite
strong. Figure 3 shows the dependences of the normal-
ized scattering cross-section on the dimensionless
parameter ka under variations in the values of the
transverse ct (Fig. 3a) and longitudinal cl velocities
(Fig. 3b) for the nylon sphere. As is seen, the positions
and shapes of the peaks and dips strongly depend on
the values of the elastic velocities. However, at low fre-
quencies, the resonances are mainly determined by
transverse waves: variations in the velocity of longitu-
dinal waves cause only small changes in the frequency
and amplitude imperceptible in comparison with
analogous changes introduced by variations in the
velocity of transverse waves. A dependence of the scat-
tering cross-section on the velocity of longitudinal
waves appears at higher frequencies.

Similar frequency dependences can be constructed
for the forward-scattering amplitude and qualitatively
the same results can be obtained. Thus, in the fre-
quency ranges that contain resonant peaks or dips, the
scattered field is sensitive to small changes in the
velocities of longitudinal and transverse waves. At the
same time, the scattered field changes slightly under
changes in the other parameters that determine scat-
tering. This makes it possible to use the frequency or
angular dependences of the scattered-field amplitude
in these frequency ranges to determine the velocities of
elastic waves.

Along with the wave velocities and density, the loss
tangents for different types of waves in the scatterer are
important parameters. Figure 4 shows the frequency
dependences of the normalized scattering cross-sec-
tion when nonzero loss tangents appear in the calcula-
tions. Since low-frequency resonances are mainly
caused by transverse waves, no broadening of such a
resonance occurs with an increase in the loss tangent
of longitudinal waves. As the loss tangent of transverse
waves tanδt increases, the resonance amplitude
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Fig. 4. Scattering cross-section normalized to cross-sectional area of sphere as function of parameter ka under variations of loss
tangents for longitudinal waves tanδl and transverse waves tanδt in various ka ranges. 

8

6

4

2

10

(а)

1.81.3 1.4 1.5 1.6 1.71.2
0

ka

tanδl = 0

  tanδt = 0
  tanδt = 0.001
  tanδt = 0.01
  tanδt = 0.02

Σ/
(π

a2 )

3.5

3.0

2.5

4.0

(b)

14.011.5 12.0 12.5 13.0 13.511.0
2.0

ka

  tanδl = 0, tanδt = 0.005
  tanδl = 0, tanδt = 0

  tanδl = 0.02, tanδt = 0
  tanδl = 0, tanδt = 0.02

Σ/
(π

a2 )

decreases and the width increases (Fig. 4a). Thus, the
resonance curve caused by transverse waves broadens
when the effect of transverse-wave absorption occurs
in the scatterer material. High-frequency resonances
are caused by both types of elastic waves; however, the
degree of dependence on the transverse-wave velocity
is still greater. Figure 4b shows the smoothing of the
resonances with an increase in the loss tangent of both
longitudinal and transverse waves. The dependence of
the resonances mainly on the transverse wave velocity
manifests itself in a stronger broadening of the reso-
nances with increasing tanδt. The broadening of the
resonance curves also occurs with increasing tanδl but
much more slowly. Thus, the main contribution of
accounting the absorption is that the resonance curves
become smoother, while at some frequencies, e.g.,
between the resonant peaks, the amplitude may even
increase in comparison to the case without absorption.

4.2. Determination of Unknown Parameters of Solid 
Spheres Based on Experimental Investigation 

of the Scattering Characteristics

4.2.1. Investigation of the properties of steel
spheres. The experiments were carried out for three
steel spheres of different sizes (see Table 1). The sound
absorption in steel at the considered frequencies is low
and can be neglected. The smallest of the steel spheres
presented has a diameter of 2.8 mm. It was found that
the discrepancy between the amplitudes of the scat-
tered field calculated at the considered frequencies for
the cases of an ultrasound beam and a plane wave inci-
dent on this sphere is less than 1%. Therefore, to deter-
mine the unknown parameters of the scatterer, it is
sufficient to use the plane-wave approximation.

When calculating the scattering for this sphere in
the megahertz frequency range, resonances sensitive
to the velocity of the longitudinal waves are not
detected. Therefore, only the transverse-wave velocity
can be determined in this frequency range. By com-
paring the experimental frequency dependence of the
forward-scattering amplitude with that numerically
calculated from formula (3) and minimizing the sum
of the squared deviations of the points of these depen-
dences from one another by varying the transverse
wave velocity ct at  (Fig. 5а), the unknown
velocity  m/s was determined. Figure 5b
shows the experimental dependence of the forward-
scattering amplitude, as well as the numerically calcu-
lated dependences for three transverse-wave veloci-
ties, one of which (ct = 3340 m/s) approximates well
the numerical calculations to the experimental depen-
dence. The lack of smoothness in the experimental
dependence may be due to the occurrence of rere-
flected signals between the sphere and the hydro-
phone in the recorded signal due to the small distance
between them, which had to be used to reduce the
influence of noise, since the scattering from a small
object is weak, and the scattered field rapidly
decreases with the distance from the scatterer.

Since a drop of the incident field at the edges of the
sphere becomes noticeable for steel spheres with
diameters of 4.75 and 6 mm, the numerical calculation
should be performed taking the spatial structure of the
beam into account. The complex amplitude of the
acoustic pressure created by the source in the trans-
verse plane, which runs through the center of the
sphere, was calculated using the Rayleigh integral.
Subsequently, using two-dimensional Fourier trans-
form (9), the angular spectrum  was found,
which is used in the calculations of the scattering-
determining coefficients.

For a steel sphere with a diameter of 4.75 mm, the
situation is similar to that considered above: in the
selected frequency range, the scattering cross-section

= constlc
= ±3340 15tc

( , )x yS k k
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Fig. 5. Results for steel sphere with diameter of 2.8 mm. (а) Sum of squared deviations between points of experimental and numer-

ically calculated frequency dependences of forward-scattering amplitudes as function of velocity of transverse waves . Min-
imum in this dependence corresponds to desired velocity of transverse waves in scatterer. (b) Frequency dependence of forward-
scattering amplitude (points) experimentally measured values and (solid curves) numerically calculated values for indicated
velocities of transverse waves ct. Scattered-wave amplitude is normalized to incident-field amplitude at the center of the sphere.
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almost does not change when the velocity of longitu-
dinal waves changes within the permissible values; as a
result, only the velocity of transverse waves can be
determined (see Table 2). The results of experimental
measurements and numerical calculations are shown
in Fig. 6 (upper row).

The weak dependence of the scattering cross-sec-
tion on cl indicates a weak influence of this physical
quantity on the scattering in the given frequency range
for this sphere. Thus, it can be assumed that all the
parameters that determine the character of scattering
and related phenomena have been determined.

The scattering cross-section of a steel sphere with a
diameter of 6 mm in the megahertz frequency range
depends on the velocities of both longitudinal and
transverse waves; therefore, both velocities can be
determined from the results of scattered-field mea-
surements. By varying the velocities of longitudinal
and transverse waves (Fig. 6d) and minimizing the
departure of the experimental frequency dependence
of the forward-scattering amplitude on the numeri-
cally calculated one, the velocities of the longitudinal
and transverse waves were determined (see Fig. 6,
lower part, and Table 2).
ACOUSTICAL PHYSICS  Vol. 67  No. 4  2021

Table 2. Determination of parameters of steel spheres

Experimental results

diameter d, mm designation, mm ct, m

2.763 ± 0.005 2.8 3340 ±
4.744 ± 0.005 4.75 3190 ±
5.989 ± 0.005 6 3245 ±
The results of the experimental measurements were
compared to the numerical calculations for the found
elastic velocities. Figures 6b and 6e show the experi-
mental and numerically calculated curves that corre-
spond to the frequency dependences of the forward-
scattering amplitude, for which the minimization was
performed. Figures 6c and 6f show the results of the
experimental measurements on the y axis and numer-
ical calculations; no minimization for these experi-
mental points was performed because of the lower sen-
sitivity of the axial distribution to changes in the elastic
velocities.

For the velocities cl that could not be determined
because of the weak dependence of the scattered field
on them, the values that were specified by the manu-
facturer were used for calculations, and variations of
the velocity values within the limits of the reference
data (Table 2) did not influence the calculation results.

It should be noted that the frequency ranges within
which scattering depends only on the velocity ct of
transverse waves can be initially selected for rigid
materials, and proceeding from the experimental data,
ct in this region can be determined. Measurements can
then be performed in the frequency region where there
Reference data [36, 37]
/s cl, m/s

 15 –
ct = 3180–3340 m/s
cl = 5680–6100 m/s 15 –

 10 5930 ± 50
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Fig. 6. Results for steel spheres with diameters of 4.75 (upper row) and 6 mm (bottom row). Sum of squared deviations of points
between experimental and numerically calculated frequency dependences of forward-scattering amplitudes for (а) sphere with

diameter of 4.75 mm as function of velocities ct of transverse waves  and (d) sphere with diameter of 6 mm as function of

velocities of transverse ct and longitudinal cl waves ; (b, e) frequency dependence of forward-scattering amplitude;
(c, f) amplitude of scattered field as function of y coordinate at frequencies of 0.83 ( top) and 1.04 MHz (bottom). Points are
experimentally measured values; curves were numerically calculated for found velocities ct and cl (given in Table 2). Scattered-
wave amplitude is normalized to incident-field amplitude at the center of the sphere. 
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is a dependence on the velocity cl of longitudinal
waves, and knowledge of the velocity ct, which is deter-
mined from the previous operation, allows finding cl.

4.2.2. Investigation of the properties of glass
spheres. In the case of glass spheres, the scattering
analysis did not reveal noticeable sound-absorption
effects in the sphere material; therefore, the method
described above for steel spheres was used, taking the
spatial structure of the beam into account. The deter-
mined velocities are presented in Table. 3. The results
of measurements and numerical calculations are
shown in Fig. 7.

Since the value of the scattered field in this fre-
quency range depends more on the velocity of trans-
verse waves, the error in their determination is much
Table 3. Determination of parameters of glass spheres

Experimental results

diameter d, mm designation, mm ct, m/s

3.967 ± 0.006 4 3300 ± 15
6.104 ± 0.019 6.1 3420 ± 30
7.981 ± 0.006 8 3425 ± 15
lower than for the velocity of longitudinal waves. For a
sphere with a diameter of 6.1 mm, the cl value could
not be determined because of its weak effect on the
form of the scattered field (the second line in Fig. 7),
while for the other two spheres, cl is determined with a
large error.

4.2.3. Investigation of the properties of nylon
spheres. Unlike steel and glass spheres, in which the
sound absorption is so small that it can be disregarded,
the presence of absorption in nylon spheres signifi-
cantly and strongly modifies the scattered field; there-
fore, it must be taken into account in the calculations.
Experiments were performed with nylon spheres with
diameters of 4, 6, and 8 mm to assess the absorption
effect.
ACOUSTICAL PHYSICS  Vol. 67  No. 4  2021

Reference data [36–38]
cl, m/s

5950 ± 50
ct = 3400–3740 m/s
cl = 5570–6000 m/s–

5740 ± 100
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Fig. 7. Results for glass spheres with diameters of 4, 6.1, and 8 mm (downward). (а) Sum of squared deviations of points between
experimental and numerically calculated frequency dependences of forward-scattering amplitudes as function of velocities of

transverse ct and longitudinal cl waves ( ); (b) frequency dependence of forward-scattering amplitude; (c) scattered-field
amplitude as function of y coordinate at frequencies of 0.91, 0.9, and 1.1 MHz (downwards). Points are experimentally measured
values; curves correspond to numerically calculated values for found velocities ct and cl (see Table 3). Scattered-wave amplitude
is normalized to incident-field amplitude at the center of the sphere. 
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Good results were achieved in an experiment with
a 4-mm-diameter sphere. The loss tangents that were
introduced according to formula (7) were prelimi-
narily evaluated by the degree of smoothness of the
experimental dependence of the forward-scattering
amplitude. Subsequently, using the obtained approxi-
mate values of the loss tangents, the elastic wave veloc-
ities were determined by minimizing the deviation of
the experimental frequency dependence of the for-
ward-scattering amplitude from the corresponding
theoretical dependence. After that, the loss tangents of
the transverse and longitudinal waves were refined. It
is known that longitudinal waves in nylon are absorbed
to a much smaller degree than transverse waves. How-
ever, the resonances in nylon depend on the trans-
verse-wave velocity to a higher degree. As a result, the
accuracy of determining the loss tangent of longitudi-
nal waves is much lower, but the determined value
ACOUSTICAL PHYSICS  Vol. 67  No. 4  2021
itself is an order of magnitude smaller and also has a
weak effect on scattering. These results are shown in
Fig. 8, and the found values are listed in Table 4.

During similar processing of the experimental
results for nylon spheres with diameters of 6 and
8 mm, no set of elastic wave velocities was observed at
which the calculated curves of the frequency depen-
dences of the forward-scattering amplitudes would
approach the experimental curves. This mismatch of
the curves can be caused either by defects or inhomo-
geneities in the sphere material, or by the uncertainty
of its parameters, which depend on the manufacturing
process. To exclude cases of single defects in the mate-
rial, experiments were performed with several spheres
with 6-mm diameters. The results for two of them are
presented. It was noticed that in some frequency
ranges, the numerically calculated frequency depen-
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Fig. 8. Results for nylon sphere with diameter of 4 mm. (а) Sum of squared deviations of points between experimental and numer-
ically calculated frequency dependences of forward-scattering amplitudes as function of velocities of transverse ct and longitudi-

nal cl waves ( ); (b) frequency dependence of forward-scattering amplitude; (c) scattered-field amplitude as function of
y coordinate at frequency of 1 MHz. Points are experimentally measured values; solid curves correspond to numerically calcu-
lated values for found velocities ct and cl (see Table 4). Scattered-wave amplitude is normalized to incident-field amplitude at the
center of the sphere. 
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dences of the forward-scattering amplitude overlap
with the experimental dependences in the vicinity of
some of the cl and ct values indicated on the graphs (see
Fig. 9b). In view of this, the distribution of the scat-
tered field along the y axis was taken for analysis at
these frequencies, and by minimizing the sum of the
squared deviations between the points of the experi-
mentally obtained and calculated angular dependences
with varying values of cl and ct, the unknown velocities
were determined (see Figs. 9a, 9c and Table 4).

As a result of the above measurements for the nylon
sphere, several parameters were determined: the
velocities of the longitudinal and transverse waves and
the loss tangents. This can be done because different
parameters have qualitatively different effects on scat-
tering, and the other physical quantities that deter-
mine scattering are known with the necessary accu-
racy. Different contributions to the scattered field
from different parameters also lead to different relative
errors in determining these parameters.

Thus, the velocities of the longitudinal and trans-
verse waves were refined for the scatterers, and the loss
Table 4. Determination of parameters of nylon spheres

Experimen

diameter d, mm designation, mm ct, m/s

3.945 ± 0.005 4 1025 ± 5
5.930 ± 0.007 6 1100 ± 15
5.958 ± 0.007 6 1120 ± 15
7.990 ± 0.007 8 1100 ± 15

Reference data [36–39]
ct = 900–1100 m/s
tangents of the longitudinal and transverse waves were
estimated as well. The obtained values lie in the range
of the tabular velocity values for these materials.

5. CONCLUSIONS
Studying phenomena related to the effect of the

acoustic field on scatterers requires knowledge of the
scatterer characteristics with the highest possible
accuracy. The elastic constants of the scatterers avail-
able for experiments are not always precisely known,
since their values may vary depending on the produc-
tion process. As a result, the elastic parameters of a
sphere, i.e., the velocities of longitudinal and trans-
verse waves, are known with a large error and there are
no simple ways to determine these parameters.

Our study has demonstrated that experimental
measurements of the scattered field, namely, the fre-
quency dependences of the forward-scattering ampli-
tudes and the angular distribution, can be used to
determine the velocities of longitudinal and transverse
waves and estimate the absorption in elastic spherical
scatterers of millimeter size.
ACOUSTICAL PHYSICS  Vol. 67  No. 4  2021

tal results

cl, m/s

2580 ± 25 0.025 ± 0.002 ~0.005 ± 0.005
2510 ± 40 0.020 ± 0.005 –
2550 ± 30 0.020 ± 0.005 –
2700 ± 50 0.020 ± 0.005 –

cl = 1800–2650 m/s

tanδt tan δl
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Fig. 9. Results for nylon spheres with diameters of 6 (two upper rows) and 8 mm (bottom row). (а) Sum of squared deviations of
points between experimental and numerically calculated angular dependences of forward-scattering amplitudes as function of
velocities of transverse ct and longitudinal cl at frequencies of 1.12 and 1.1 MHz for spheres with diameter of 6 mm, and 1.05 MHz

for sphere with diameter of 8 mm (downwards) ( ); (b) frequency dependence of forward-scattering amplitude; (c) scat-
tered-field amplitude as function of y coordinate at same frequencies. Points are experimentally measured values; solid curves
were calculated numerically: (b) for ct and cl values indicated on graphs, (c) for found ct and cl values (see Table 4). Scattered-
wave amplitude is normalized to incident-field amplitude at the center of the sphere. 
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An experimental setup for observing scattering by
spheres of millimeter dimensions, which does not
introduce distortions into the scattered field, has been
created. Experiments with steel, glass, and nylon
spheres with diameters of 2.8–8 mm were performed.
The spatial beam structure was taken into account in
the scattered-field calculations, thus significantly
improving the coincidence of the experimental and
theoretical curves. Using the developed technique, the
velocities of longitudinal and elastic waves in scatterers
were refined, and the loss tangents in the case of nylon
spheres were estimated. The obtained values are in the
range of tabulated values for these materials.

Based on the experimental measurement results, it
was found that absorption in steel and glass spheres is
negligible and does not affect scattering, while in
nylon spheres, transverse waves are absorbed
intensely, and this must be taken into account when
ACOUSTICAL PHYSICS  Vol. 67  No. 4  2021
matching the theoretical calculations to the experi-
mental data.

The found errors of the obtained values of the elas-
tic wave velocities are in the range of 0.3–1.9%. The
error of the method can be reduced by increasing the
frequency resolution to register narrower peaks, which
are more sensitive to the values of the elastic velocities,
and to determine the velocities by several resonance
features by investigating several different frequency
ranges.
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