
ISSN 1063-7710, Acoustical Physics, 2018, Vol. 64, No. 3, pp. 299–308. © Pleiades Publishing, Ltd., 2018.
Original Russian Text © O.A. Sapozhnikov, E.A. Annenkova, 2018, published in Akusticheskii Zhurnal, 2018, Vol. 64, No. 3, pp. 308–317.

NONLINEAR ACOUSTICS
Nonlinear Spherical Standing Waves
in an Acoustically Excited Liquid Drop

O. A. Sapozhnikova, b and E. A. Annenkovaa, *
aFaculty of Physics, Moscow State University, Moscow, 119991, Russia

bCenter for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington,
WA 98105 Seattle, USA

*e-mail: a-a-annenkova@yandex.ru
Received September 14, 2017

Abstract—Nonlinear evolution of a standing acoustic wave in a spherical resonator with a perfectly soft sur-
face is analyzed. Quadratic approximation of nonlinear acoustics is used to analyze oscillations in the reso-
nator by the slowly varying amplitude method for the standing wave harmonics and slowly varying profile
method for the standing wave profile. It is demonstrated that nonlinear effects may lead to considerable
increase in peak pressure at the center of the resonator. The proposed theoretical model is used to analyze the
acoustic field in liquid drops of an acoustic fountain. It is shown that, as a result of nonlinear evolution, the
peak negative pressure may exceed the mechanical strength of the liquid, which may account for the explosive
instability of drops observed in experiments.
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1. INTRODUCTION
Finite-amplitude standing acoustic waves attract

the attention of researchers in connection with the
possibility to obtain noticeable nonlinear effects in
small volumes of liquid or gas. Most of the studies are
devoted to plane waves in closed straight tubes with
constant cross sections [1–9]. In theoretical descrip-
tions given in the cited publications, acoustic field was
represented by two noninteracting Riemann-type
plane waves propagating in opposite directions, and
the attention of the authors was mainly focused on the
regimes with discontinuous (shock) wave profile for-
mation. As a rule, the authors considered wave pro-
cesses in a gaseous medium, and, therefore, the reso-
nator walls were assumed to be rigid. This caused
favorable conditions for manifestations of acoustic
nonlinearity, because, at reflection from the resonator
mirrors, waves did not change their form and, in the
course of their subsequent counterpropagation,
underwent further nonlinear distortions. To study the
possibility of obtaining intense standing waves with
continuous profiles, some of the authors considered
standing waves in tubes with varying cross sections
[10–12] and in resonators with concentric spherical
and cylindrical walls [13–15].

In this paper, we consider a nonlinear acoustic res-
onator that fundamentally differs from the devices
considered earlier. The resonator is represented by a
fluid sphere with a perfectly soft boundary. At the

beginning, the sphere is assumed to be acoustically
excited at its fundamental or any other low-frequency
resonance. We analyze the evolution of a spherically
symmetric sound field. We assume that no external
sources are present; i.e., we study attenuation of free
oscillations.

This kind of problem statement attracted our atten-
tion in connection with observation of the behavior of
liquid drops in an acoustic fountain, which is an
acoustic hydrodynamic phenomenon used in, e.g.,
ultrasonic humidifiers and inhalers. High-speed pho-
tography of acoustic fountains shows that, within
some time after the source of ultrasound is turned on,
a jet emerges from the liquid and breaks down into a
chain of drops of the same size [16]. Then, within a
certain time interval, the drops (usually beginning with
the upper one) loose their stability for the reason yet
unknown and explode leading to atomization of the liq-
uid. Recent experimental studies of drop behavior in an
acoustic fountain show that, immediately before the sta-
bility loss, a dark point appears at the center of a transpar-
ent drop [17, 18]. This indicates a possible disruption of
the liquid, i.e., appearance of cavitation. Since, accord-
ing to estimates, the initial sound pressure level in a drop
is below the cavitation threshold, one can expect that, in
the course of nonlinear oscillations of an excited drop,
acoustic energy concentration occurs at its center. This
possibility is analyzed below.
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2. THEORETICAL MODEL FOR DESRIBING 
THE EVOLUTION OF ACOUSTIC FIELD

IN AN EXCITED DROP
2.1. Initial Equations

Unlike the commonly studied case of plane waves,
nonlinear acoustic fields formed under spherically
symmetric conditions cannot be described by solu-
tions in the form of superposition of counterpropagat-
ing waves (Riemann invariants). Therefore, we cannot
seek the solution in the form of a nonlinear wave mul-
tiply reflected from the resonator boundary with a
wave profile slowly varying in the course of propaga-
tion. However, it is possible to use another description
of acoustic field by considering it as a standing wave
with its structure only slightly varying from period to
period. To analyze the laws governing the nonlinear
wave process, it is necessary to separate fast variations
from slow ones in explicit form. For this purpose, we
use a basis consisting of weakly interacting standing
waves with different frequencies.

We proceed from the general form of wave equation
for particle velocity potential  of acoustic field in liq-
uid or gas with allowance for quadratically nonlinear
terms. This equation derived in [19] has often been
called Kuznetsov’s equation [8, 20]:

(1)

Here,  is the velocity of sound,  is the equilibrium
density of the medium,  is the dissipative
factor,  and  are the bulk and shear viscosity coeffi-
cients, and  is the acoustic nonlinearity parameter of
the medium. Potential  completely characterizes the
acoustic field. In particular, particle velocity v and
sound pressure p are expressed through the potential as
follows:

(2)

(3)

To describe the nonlinear field in an acoustically
excited liquid drop, we consider a spherically symmet-
ric solution to Eq. (1) in a spherical volume with an
acoustically soft boundary. Let r be the distance from
the center of the drop and a be its radius in nonexcited
state. We denote the potential at the unperturbed drop
surface as  and consider the function

 At the surface , we have  In
addition, at , condition  is
satisfied, because, by virtue of symmetry, the liquid at
the center of the drop is immobile. Under aforemen-
tioned boundary conditions, function  within
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 where  Each of the func-

tions describes a standing wave. The aforementioned
basis is full and orthogonal if a scalar product of two
basis functions is interpreted as the integral of their
product over the drop volume. Thus, in the general
case, the particle velocity potential can be represented
as a superposition of standing waves:

(4)

where  are weighting factors depending on time
alone. Note that function  is not independent: it
can be expressed through the remaining weighting fac-
tors  because of the condition that sound pressure at
the drop boundary is zero (see below). In the course of
oscillations, the boundary moves, and, therefore, in
solving the nonlinear problem, it is necessary to take
into account that sound pressure is zero at

 where  is the surface displacement.
From condition , in quadratic approxi-
mation, we obtain  which,
with allowance for the equation of motion, yields
boundary condition  where

 is the radial component of particle velocity.
Note that , and, therefore, from
Eqs. (2)–(4), in quadratic approximation, we derive
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where  is the antiderivative of function 

2.2. Solution of the Problem by the Slowly Varying 
Amplitude Method
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Eq. (5), ignore the terms of third and higher orders of
smallness:
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simple transformations to obtain a system of coupled
equations in factors 

(7)

Here, coefficients  have the meaning of
resonance frequencies and  have the
meaning of mode damping decrements. In addition,
on the right-hand side, the following notation is used:

(8)

where coefficients  are discrete values of integral
sine:

(9)

One can see that each of the equations of system (7)
has the form of a classical oscillator equation with its
right-hand side describing a quadratically nonlinear,
i.e., weak, source.

The solution can be analyzed using the slowly vary-
ing amplitude method. In an ideal linear medium,
solutions to Eqs. (7) have the form of constant-ampli-
tude harmonic oscillations:

(10)

Effect of dissipation and nonlinearity leads to slow
variation of amplitudes  with time. In this case,
accurate to the terms of second order of smallness, the
derivative of the potential at the drop boundary can be
represented in the form
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Ignoring small terms related to time derivatives of
slowly varying quantities, from Eqs. (7) we obtain a sys-
tem of reduced equations in complex amplitudes 

(11)

It should be noted that nonlinear effects are not
completely determined by acoustic nonlinearity
parameter β of the medium: the first terms involved in
the two bracketed expressions do not depend on this
parameter. These terms allow for the fact that, in the
nonlinear case, the potential at the drop boundary has
a small nonzero value.

However, in cases of practical interest, the second
terms appearing in the bracketed expressions on the
right-hand side of Eq. (11) far exceed the correspond-
ing first terms. For example, for water ( ), the
second terms exceed the first terms several times even
for  and, for large values of n , the difference is
still greater. Therefore, by ignoring the aforemen-
tioned small terms, we obtain a fairly adequate
approximation:

(12)
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according to Eqs. (4) and (10), we have
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whereas, for , it remains constant (see also Fig. 5).
Thus, in the absence of viscosity, both system of equa-
tions (11) and its approximate version (12) satisfy the
energy conservation law.

2.3. Solution of the Problem
by the Slowly Varying Profile Method

Spherical standing waves in a drop can be repre-
sented as a superposition of two traveling waves: con-
verging and diverging ones or, still simpler, a single
wave periodically reflected from the drop surface and
alternately diverging and converging. In this represen-
tation, variation of acoustic field in the drop under the
effect of dissipation and nonlinearity can be analyzed
in the form of a slow evolution of the aforementioned
converging–diverging wave profile. In our consider-
ation, slow evolution is interpreted not as waveform
behavior in the course of wave propagation in space
(spatial inhomogeneity of acoustic field in the drop is
significant) but as small variation of the periodically
repeated temporal sound pressure profile at every spa-
tial point with time sequentially passing from period to
period.

We represent the desired solution for the potential
in the form

(15)

From Eq. (1), we obtain a classical one-dimen-
sional equation for :

(16)

Here, the right-hand side describes the sources
determined by nonlinear dissipative processes:
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mate condition of zero potential value at the drop sur-
face, we obtain zero boundary conditions at both ends
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Solution to the wave equation with zero right-hand
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Let us consider the corresponding solution at the
center of the drop, i.e., 
From Eqs. (23) and (24), we obtain

(25)

Variation within one period with allowance for
periodicity of  is as follows:
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Let  be the potential at the center of the
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tinuous “slow” time τ and approximate the derivative
by a finite difference:

(27)

Substituting the expression for q (see Eq. (17)) on
the right-hand side of Eq. (27) and taking into account
expression  =  – 
after some transformation, we arrive at the following
nonlinear evolution equation for describing the poten-
tial at the center of the drop:

(28)

Note that potential  = =  –
 outside the center is expressed

through the potential at the center, because  =
 Thus, functional equation (28)

describes the nonlinear dissipative evolution of acous-
tic field in the drop, i.e., completely solves the prob-
lem under study.

According to Eq. (13), we have

(29)

( ) ( )( )0lim , .q r qt F r t r→ϕ =

( )
0

0

0

0 00

1 ' 1 'ˆ ˆ' ', ' ', .
2 2

c t

q
c t

r rt dr q r t dr q r t
c c−

⎛ ⎞ ⎛ ⎞ϕ = + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫

q̂

( ) ( )⎛ ⎞δϕ = ϕ + − ϕ⎜ ⎟
⎝ ⎠

⎡ ⎛ ⎞ ⎛ ⎞⎤= − − − +⎜ ⎟ ⎜ ⎟⎢ ⎥
⎣ ⎝ ⎠ ⎝ ⎠⎦∫

0

0 00

2

' '' ', ', .

q q q

a

at t t
c

r rdr q r t q r t
c c

( )ϕ τ0 ,t

02 .a cδτ =

( ) ( )δϕ∂ϕ τ ≈
∂τ δτ

⎡ ⎛ ⎞ ⎛ ⎞⎤= − − − +⎜ ⎟ ⎜ ⎟⎢ ⎥
⎣ ⎝ ⎠ ⎝ ⎠⎦∫

0

0

0 00

,

' '' ', ', .
2

q

a

tt

c r rdr q r t q r t
a c c

( ), ,F r tτ ( )0,t r cψ τ − ( )0, ,t r cψ τ +

( ) ( )

( )

∂ϕ τ ∂ ϕ τ−
∂τ ρ ∂

⎡ ⎛ ⎞ ⎛ ⎞⎤β ∂= − ϕ τ − − ϕ τ +⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ⎣ ⎝ ⎠ ⎝ ⎠⎦

⎡ ⎛ ⎞ ⎛ ⎞ ⎤× ϕ τ − + ϕ τ + − ϕ τ⎜ ⎟ ⎜ ⎟⎢ ⎥
⎣ ⎝ ⎠ ⎝ ⎠ ⎦

∫

2
0 0

2 2
0 0

0 0
0 0 00

0 0 0
0 0

, ,
2

' 2 ' 2 ', ,
8 '

2 ' 2 ', , 2 , .

a

t tb
c t

dr r rt t
ac t r c c

r rt t t
c c

( ), ,r tϕ τ ( )0[ ,t r cψ τ −
( )0, ]t r c rψ τ +

( )0 ,tϕ τ
( ) ( )02 , .c t t− ∂ψ τ ∂

( ) ( ) ( )
0

1
, .

2

n ni t i t
n n

n

C e C e
t

∞ − ω ω

=

∗τ + τϕ τ = ∑
ACOUSTICAL PHYSICS  Vol. 64  No. 3  2018
Unlike the previous section, here, the argument of
 is denoted by τ (instead of t) to distinguish slow

variation from fast one. Substituting expansion (29) in
Eq. (28), for slowly varying mode amplitudes ,
we obtain Eqs. (12). Thus, descriptions by the two
aforementioned methods, namely, the slowly varying
amplitude method and the slowly varying profile
method, are in full agreement with each other.

2.4. Relation between the Equation for Acoustic Field 
Dynamics in a Drop and the Burgers Equation

To analyze the system of reduced equations (11)
and functional equation (28) related to it, it is convenient
to use dimensionless variables. Let  be the sound pres-
sure amplitude in the drop initially excited at its lowest
resonance frequency  so that acoustic field
in the drop is  =  We
introduce characteristic times of manifestation for
nonlinear and dissipative effects:
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and a dimensionless parameter characterizing the
competition of these phenomena:
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Fig. 1. Time dependences of sound pressure harmonic am-
plitudes at the center of a spherical resonator for Γ = 0.01.
Amplitudes are normalized by initial pressure amplitude

 and time by characteristic nonlinear scale . Num-
bers of harmonics are indicated near the corresponding
curves.
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i.e.,  Ignoring small coefficients  and 
which corresponds to passage from Eqs. (11) to
Eqs. (12), from Eqs. (36) we obtain

(37)

Introducing auxiliary quantities  we rep-
resent Eq. (37) in the form

(38)

One can see that the system of equations (38) is
nothing but a system of equations for harmonics of a
nonlinear plane wave described by the Burgers equa-
tion [22]:

(39)

(40)

Here,  is the dimensionless “fast” time and
function  describes the wave profile. Note that
expression  means that functions  and

 are related to each other through
the Hilbert transform:

(41)

Owing to this relation, many known periodic solu-
tions to Burgers equation (39) can be used to construct
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approximate solutions in describing the acoustic field
in a drop.

3. NUMERICAL SIMULATION
OF THE EVOLUTION OF ACOUSTIC FIELD

IN A DROP INITIALLY EXCITED
AT THE FUNDAMENTAL RESONANCE

3.1. Spectrum and Time Profile of Sound Pressure
at the Center of the Drop

Spectral amplitudes of the potential at the center of
the drop are described by an infinite system of coupled
equations (11). In the case of numerical integration,
the number of retained harmonics should be
restricted. To achieve a negligibly small effect of spec-
trum truncation on the calculation accuracy, it is nec-
essary to choose a sufficiently large number of har-
monics N, so that higher harmonic amplitudes be
strongly suppressed by dissipative processes. A reason-
able estimate follows from the solution to Burgers
equation (39) in the form of a Fay series [22]:

 In practice, to refine the aforementioned
estimate, the number of harmonics was increased until
the results of calculations ceased depending on it. Cal-
culations were performed by the finite-difference
method in Fortran language using Runge–Kutta
method of order 4.

The quantity of practical interest is not potential 
but the sound pressure at the center of the drop. The
corresponding relation in linear approximation has the
form  which yields the relation between
pressure harmonic amplitudes and potential:

 It is convenient to normalize the pressure
harmonic amplitudes by the initial first harmonic
amplitude  i.e., to introduce 

Figure 1 shows the results of calculating some of
harmonic amplitudes  as functions of dimension-
less slow time z for . Here and below, we
assume that  (water). One can see that active
growth of higher harmonics begins at  With
further increase in time z , as a result of interaction,
different harmonic amplitudes become close in mag-
nitude and then decrease because of viscous absorp-
tion.

Harmonic amplitudes allow us to calculate the
sound pressure profile at the center of the drop. Figure 2
shows normalized pressure profiles within one oscilla-
tion period for Γ = 0.01. The initial sine-shaped profile
is considerably distorted, so that both negative and
positive peak pressure values (they are equal in magni-
tude) increase while the waveform taken within one
period acquires the form of a short bipolar pulse. Cal-
culations show that the peak pressure as a function of
slow time exhibits a characteristic behavior: first, it
increases under the effect of nonlinearity, then reaches
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Fig. 2. Temporal profile of a single period of sound pressure at the center of a spherical resonator for Γ = 0.01 and different in-
stants of slow time τ: = (a) 0, (b) 1, (c) 2, and (d) 20. Pressure  is normalized by initial amplitude
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its maximum  and then decreases because of vis-
cous absorption.

The value of maximum peak pressure  reached
at the center of the drop depends on parameter . Fig-
ure 3 shows the results of calculating quantity

 as a function of  One can see that,
after a small increase in region , the curve
reaches saturation, which allows us to conclude that
the amplification coefficient is adequately approxi-
mated by the following simple dependence:

(42)

This suggests that the maximum peak pressure
reached at the center of the drop in the course of its
oscillations depends on the initial amplitude accord-
ing to square law .

3.2. Characteristics of Acoustic Field in the Drop

Above, in describing the wave process in the drop
by the slowly varying profile method, we showed that,

max,p
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by introducing auxiliary function  on the basis
of equality  =  it is possible
to represent the spatiotemporal profile of particle

( )ψ τ,t
( )0 ,tϕ τ ( ) ( )02 , ,c t t− ∂ψ τ ∂
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Fig. 4. Dependence of normalized sound pressure in the
drop on radial coordinate r at sequential instants of fast
time t for Γ = 0.01 and normalized slow time  = 5.
Different wave profiles correspond to normalized instants
of time : (а) −0.8, (b) −0.6, (c) −0.4, (d) −0.2,
(e) −0.05, (f) 0.05, (g) 0.2, (h) 0.4 , (i) 0.6 , and (j) 0.8. The
pressure in the drop becomes zero twice during the period:
at  and at .
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velocity potential in the drop by the formula  =
 The quantity of

practical interest is the sound pressure profile. Using
the linear relation between pressure and potential

 we obtain

(43)

Thus, the problem of determining the acoustic
field within the entire drop volume is reduced to the
above-described problem of calculating the potential
at the center of the drop. Figure 4 shows the spatial
profiles of sound pressure for different instants of fast
time at fixed slow time  for 

Unlike the case of linear excitation of the drop at
fundamental frequency, where the pressure distribu-
tion in the standing wave within the interval

 retains its cosine form, in the nonlinear
case, we obtain a clearly defined pulse with a sharp
peak, which alternately propagates to the right and to
the left being reflected from the boundaries of the
interval. At reflection from each of the ends, the wave
form is inverted, and, as the wave approaches the cen-
ter of the drop , a considerable increase in peak
pressure takes place because of the focusing of the
pulsed spherical wave. Note that, unlike the behavior
of the finite-amplitude plane wave profile, where the
initial sine-shaped profile acquires a saw-tooth shape
with shock fronts in the course of propagation, the

( ), ,r tϕ τ
( ) ( )[ ]0 0, , .t r c t r c rψ τ − − ψ τ +

0 ,p t= −ρ ∂ϕ ∂

( ) ( ) ( )0 0 0 00 0 , ,
, , .

2
t r c t r ccp r t

r
ϕ τ − − ϕ τ +ρτ =

= 5z 0.01.Γ =

≤ ≤0 1r a

= 0r
nonlinear wave distortion in the drop manifests itself
in the broken profile at the sharp peak of the pulse.

Earlier, it was noted that the total acoustic energy
in the drop is expressed by Eq. (14); i.e., after normal-
ization by the initial energy value , we obtain

 Figure 5 shows the dependences of
this quantity on dimensionless slow time z for several
values of Γ. One can see that, at the initial stage, the
energy varies only weakly despite harmonic genera-
tion. A decrease begins only for  This kind of
energy behavior resembles the corresponding depen-
dence for nonlinear plane waves described by the
Burgers equation.

3.3.Example of Sound Pressure Calculation
for a Drop of an Acoustic Fountain

Now, we consider a practical example related to
previous experimental observation of drops in an
acoustic fountain [18]. We assume that the drop diam-
eter is = 1.5 mm and the parameters of the liquid
are as follows: sound velocity = 1500 m/s, density

= 1000 kg/m3, acoustic nonlinearity parameter
= 3.52, and effective viscosity coefficient = 3.9 ×

10−3 Pa s (water). We consider regimes with the initial
standing wave amplitude at the center of the drop,  ,
being on the order of one megapascal. In this case,
characteristic scales (30) and (31) are = 0.4 ms (for

= 1 MPa) and = 29 ms, which corresponds to
 Hence, nonlinear distortions are noticeable

( ) and develop within one millisecond or less.
Figure 6 shows the dependences of dimensional

peak pressure  on time for several values of the
initial pressure amplitude at the center of the drop.
The peak pressure at the drop center first increases,
reaches a certain maximum, and then decreases. One can
see that the increase begins earlier and the maximum
peak pressure is higher for higher initial pressure ampli-
tudes. This fact was mentioned above (see Eq. (42)).

4. DISCUSSION AND CONCLUSIONS

Our assumption concerning the slowness of har-
monic amplitude variation and the corresponding
pressure profile is in good agreement with the results
of the above analysis. Indeed, for , characteristic
amplitude variations occur on scale . From Eq. (30)
it follows that, within time interval , the number of
periods of sound pressure oscillation in the drop is

 For example, for a drop of
water at = 1 MPa, the latter estimate gives  400;
i.e., the characteristic amplitude variation occurs

0E
2

0 1
.nn

E E С
∞

=
= ∑

1.z >

2a
0с

ρ0
β b

0P

τnl

0P τdiss
0.014.Γ ≈
1Γ !

peakp

1Γ !

τnl

τnl

( )2
0 0 02 1.N c P= ρ πβ @

0P ≈N
ACOUSTICAL PHYSICS  Vol. 64  No. 3  2018



NONLINEAR SPHERICAL STANDING WAVES 307

Fig. 5. Acoustic energy in the drop, E normalized by its ini-
tial value  as a function of normalized slow time  for
different values of parameter Γ: (а) 0.1, (b) 0.05, (c) 0.01,
and (d) 0.001.
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Fig. 6. Dependence of peak pressure  on slow time τ
in a drop of water with a diameter of 1.5 mm for different
values of initial pressure amplitude  (MPa): (а) 0.5,
(b) 0.7, (c) 1, and (d) 1.3. 
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within several hundreds of oscillation periods, which is
definitely very slow.

From the analysis performed above, one can see
that evolution of a nonlinear standing wave in a spher-
ical f luid resonator with a perfectly soft boundary has
a number of pronounced specific features. Unlike the
cases of nonlinear acoustic resonators with rigid walls
considered earlier, nonlinear distortion does not lead
to formation of shock (step) regions (Fig. 4). The
physical reason underlying this feature in the behavior
of waves is the inversion of waves at reflection from the
resonator surface and at converging-to-diverging wave
transformation at the resonator center. Still, the afore-
mentioned inversion cannot suppress nonlinear dis-
ACOUSTICAL PHYSICS  Vol. 64  No. 3  2018
tortions: in the resonator under study, efficient har-
monic generation takes place (Fig. 1). In the course of
nonlinear evolution, a standing wave takes the form of
an alternately converging–diverging pulse with a sharp
peak and with the peak pressure at the resonator center
far exceeding the initial wave amplitude (Fig. 4). The
maximum amplification of peak pressure occurs at the
center of the drop where the time dependence of
sound pressure has the form of a periodic sequence of
short bipolar pulses. According to Eq. (41), this wave-
form represents a close approximation of the Hilbert
transform of the derivative of a saw-tooth wave
described by Burgers equation.

In practice, nonlinear amplification may lead to
considerable growth of peak pressure according to
estimate (42). For example, in the case of oscillations
of a drop in an acoustic fountain considered above, for

= 1.3 MPa, within time interval  0.6 ms, the
peak pressure reaches 30 MPa (Fig. 6). That
high level of negative sound pressure exceeds the ulti-
mate strength of water [23, 24]. This suggests that non-
linear phenomena considered above may be a factor of
the instability of drops in an acoustic fountain [18].

In closing, we note an important specific feature of
nonlinear evolution of acoustic field in the resonator
under study: in a spherical resonator, the energy redis-
tribution within the spectrum (between harmonics),
which is typical of nondispersive waves, leads to
energy redistribution in space as well. At the same
time, despite the total energy decrease, an extremely
high energy concentration may occur near the center
of the resonator within a certain time interval.
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