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INTRODUCTION

Wave beams with a Gaussian transverse intensity
structure (Gaussian beams) are important objects in
wave physics. They are of particular use in optics,
where the corresponding solution represents the zero�
order transverse mode of a laser resonator [1]. Owing
to the simple properties of Gaussian beams, they are
often used in the theoretical analysis of waves of other
origins, e.g., acoustic waves [2]. Gaussian beams arise
in the diffraction theory as the solution to the para�
bolic equation, which describes the true field in the
paraxial approximation only. In practical applications
concerned with the use of strongly focused fields, such
an approach proves to be inexact and it becomes nec�
essary to use simple solutions in the form of beams,
which, instead of the parabolic equation, satisfy the
Helmholtz equation

(1)

Here, p is the complex sound pressure amplitude, k =
ω/c is the wave number, and c is the velocity of sound.
In [3, 4], Eq. (1) was shown to have an exact solution
representing an almost�Gaussian beam in the vicinity
of the axis. The solution had the form of the field of a
point source whose axial coordinate was purely imag�
inary [5]. In the general case, the field of a point source
has the form

(2)
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Here, the time dependence is assumed to be 
A is an arbitrary constant, R =

 is the distance to the
source, and (x0, y0, z0) are the source coordinates. Let
us choose x0 = y0 = 0 and  where zd is a real
constant length. Then, in the region where R ≠ 0, for�
mula (2) represents an exact solution to the Helmholtz

equation. Denoting , we reduce
solution (2) to the form

(3)

This solution represents a Gaussian beam when 

 Indeed, in this case,

(4)

Note that, formally, both signs before the square root
are permissible, yielding exact solutions to Eq. (1).
However, to provide unidirectional wave propagation,
it is necessary to choose the proper sign. Assuming that
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upper sign and represent solution (3) in the following
approximate form:

(5)

where   and  Solution (5) is
nothing but a Gaussian beam with the initial
wave amplitude p0 at the axis and with the transverse
radius a. The length zd introduced above is expressed
through a as

(6)
and has the meaning of the diffraction convergence
length of the beam.

It may seem that solution (3) generalizes the parax�
ial Gaussian beam (5) to the general case and can
therefore be used for describing beams with arbitrary
divergence. However, this is not the case. Solution (3)
possesses a singularity, which makes it inapplicable to
the rigorous description of freely propagating beams.
Primarily, it should be noted that, at the point

, the singularity p → ∞ occurs. At the
same time, in Eq. (2), R → 0; therefore the corre�
sponding equation is not the homogeneous Helmholtz
equation (1), but an equation with a source on the right�
hand side. A closer analysis shows that solution (3),
which has the form of a directional Gaussian beam in
the near�axis region, requires the introduction of a cut
along the line  to guarantee the choice

of the necessary branch of the function 
[6, 7]. The wave is actually transmitted through a cir�
cular hole with the radius  in a screen positioned at
z = 0. The beam can be considered as a freely propa�
gating one only under the condition that the diameter
of the hole is much greater than the beam diameter;
i.e., the singularity should be at a large distance from
the axis: zd  a. In view of Eq. (6), this requirement is
equivalent to the condition ka  2, such that the beam
diameter should greatly exceed the wavelength. Still,
under these conditions, the paraxial approximation is
valid. Hence, exact solution (3) shows no advantage
over approximate solution (5).

To eliminate the aforementioned drawback of solu�
tion (3), the introduction of a sink in addition to the
point source was proposed in [8], the sink being iden�
tical in strength to the source and opposite in sign:
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This function has no singularities and, hence, is
more suitable for describing a freely propagating beam
[6, 9]. Its disadvantage in comparison with the field
represented by Eq. (3) is the presence of opposite�
traveling waves, which only vanish in the wide�aper�
ture approximation: 

A QUASI�GAUSSIAN BEAM 
AS THE SUPERPOSITION OF THE FIELDS 
OF TWO COMPLEX SOURCES AND SINKS

The purpose of the present study is to describe a
more physical exact solution to the Helmholtz equa�
tion for a quasi�Gaussian beam. As such a solution,
the following expression can be used:

 (8)

One can see that Eq. (8) represents a superposition of
four solutions of type (3), namely, two source–sink
pairs. The factor appearing before the square brackets
is adjusted so as to obtain p = p0 at  It is
important to note that, in Eq. (8), the functions

 where  have no singu�
larities and no branch points; hence, solution (8) is
free of the drawbacks inherent in solution (3). Unlike
the previously proposed solution (7), Eq. (8) contains
the second source–sink pair, which enables the
absence of the wave propagating in the opposite (–z)
direction (see below). Note that, when

 all three representations given by
Eqs. (3), (7), and (8) take the form of solution (5) for
a Gaussian beam. The distinctions only manifest
themselves for ka < ~1. However, precisely this range
of values is of interest in describing strongly focused
(or strongly divergent) beams. From this point of view,
solution (8) seems to be the most attractive one.

Figure 1 shows the distribution of the total sound

pressure  at the
instant t = 0 (i.e., Re p) for different values of the
parameter ka. In this representation, one can observe
the geometry of the wave fronts and the relative char�
acteristic scales of the beam (the wavelength and the
waist radius). One can see that, at ka = 1, the wave
structure barely resembles a directional beam. How�
ever, as soon as at ka = 2, the directionality is clearly
pronounced, although the waist diameter is smaller
than the wavelength. As ka increases, the divergence of
the beam decreases.

Solution (8) still has a certain disadvantage: strictly
speaking, it does not satisfy the condition that the
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entire wave must propagate from left to right, which is
the radiation condition (a similar feature is intrinsic to
solution (7)). Indeed, let us consider Eq. (8) at a large
distance. Changing to the spherical coordinate system

 , we obtain 
 which yields

(9)

Normalizing the amplitudes of the convergent and
divergent waves to the amplitude of the divergent wave
at θ = 0, we obtain the following directional patterns

for the waves 

(10)

These dependences are shown in Fig. 2 for different
values of ka. For z > 0 (0 ≤ θ < 90°)  exceeds

; for z < 0 (90° < θ ≤ 180°), the opposite situation
takes place. This ensures the directionality of the
beam. Along the beam axis, we have

, so that, the opposite wave is
absent. Thus, in terms of solution (8), the directional�
ity of the beam near the beam axis is guaranteed for
any ka.

Strictly speaking, the wave field can be considered
a directional beam exclusively in case where, for z < 0,

only the wave of the type  arriving from infinity
is present for any direction while, for z > 0, only the

receding wave of the type  is present. As one can
see, for ka < 3, this condition fails: a parasitic opposite
wave appears. The physical reason for its appearance is
evident: if we consider the beam as the radiation of a
source in the form of a large spherical bowl, a small
beam waist a can only be achieved by increasing the
opening angle of the source (i.e., the depth of the
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bowl) up to complete envelopment of the focusing
point.

When ka increases, as soon as it reaches the values
ka ≥ 3, directionality sets in: the parasitic opposite
wave almost vanishes. In this case, the function 
becomes bell�shaped (i.e., almost Gaussian). Note
that the value ka ≈ 3, which marks the beginning of the
region where the parasitic opposite wave is negligibly
small, corresponds to the beam radius . In this
case, the beam waist is close to the diffraction limit.
Thus, solution (8) represents a directional beam up to
the point where the wave diameter is identical to the
wavelength.

The relative contribution of the parasitic wave can
be characterized by the ratio of its power to the power
of the principal wave. For definiteness, let us consider
the region z > 0. Then, according to Eq. (9), in the far
zone, the intensities of the principal and parasitic

( )D
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Fig. 1. Instantaneous sound pressure distribution in a quasi�Gaussian beam for a fixed waist radius a and different values of the
parameter ka (indicated above the plots). The complex wave amplitude is described by Eq. (8). The z axis is directed from left to
right. The shades of grey vary linearly within ±0.2 of the pressure amplitude at the center of the beam waist.
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waves are expressed as  ×

 The full powers of these waves

 are as follows:

. (11)

Then, the ratio of the powers is

(12)

Figure 3 shows the dependence of  on the

wave size of the waist  One can see that the
fraction of the parasitic power is only noticeable for
ka < 2. At ka = 2, the fraction of the parasitic power is
about 1.5%; for ka ≥ 3, it is less than 0.01%.

The properties of the beam can also be analyzed on
the basis of the velocity and pressure distributions at
the beam waist, at z = 0. The complex amplitude of the
axial component of particle velocity is determined

from the equation of motion:   where ρ is

the density of the medium. According to solution (8),
we have
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Here, two possible forms of expressions are presented:
the first is convenient for  and the second for

 One can see that the sound pressure and the
axial velocity component are described by real func�
tions so  that the plane z = 0 coincides with the plane
of the phase front. The acoustic power W transmitted
through the cross section z = 0 is identical to the inte�

gral of the intensity  over the cross sec�

tion area. Using Eqs. (13) and (14), we obtain
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From Eqs. (11) and (15), we derive

(16)
which should be expected according to the law of con�
servation of energy.

How much is the term “quasi�Gaussian beam” jus�
tified in application to the beam described by Eq. (8)?
The answer to this question is given by Fig. 4, where
the transverse distribution of the wave amplitude is
shown at the beam waist (at z = 0) and at the distance
identical to the diffraction length (z = zd). One can see
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that, for ka = 3, a small deviation from the exact Gaus�
sian distribution is noticeable, whereas, for large val�
ues of ka, the beam profile is barely distinguishable
from the Gaussian one.

As it was noticed above, for ka < 3, the beam
ceases being directional. In the limit ka → 0, Eq. (8)
takes the form

. (17)

From this form, the wave field represents a superposi�
tion of monopole and dipole standing waves. The
dipole component imparts a certain directionality to
the wave but is insufficient to eliminate the standing�
wave property. Note that the wave structure described
by Eq. (17) does not depend on a. The characteristic
size of the waist proves to be on the order of the wave�
length and is therefore determined by the diffraction
limit.

REPRESENTATION OF THE BEAM 
AS A SUPERPOSITION OF PLANE WAVES

In calculations, it is sometimes convenient to
describe the beam by expanding the solution in plane
waves. Any solution to the Helmholtz equation (1) can
be represented in the form of a superposition of plane
waves with different propagation directions:

(18)

where  characterizes the wave amplitudes and
the wave vectors k are defined by the angles θ and ϕ of
the spherical coordinate system: k = k(sinθcosϕ,
sinθsinϕ, cosθ).  Let the radius vector of the observa�
tion point be also determined in the spherical coordi�
nate system: r = 
Then, calculating the integral in the limit r → ∞ by the
stationary phase method, we obtain the relation
between  and the behavior of the wave at long
distances:
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Comparing this equation with asymptotics (9), we
obtain
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expansion takes the form
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Let us also consider the field representation in
terms of the angular spectrum determined in the plane
z = 0. With respect to this plane, beams with two prop�
agation directions are present: beams propagating to
the right and to the left. Hence, the angular spectrum
expansion has two components:

(22)

where  and  are the spectral amplitudes
of the direct and opposite beams, respectively. To
determine these amplitudes, we rearrange Eq. (21) by
separating the integration interval in two parts and
introducing the integration variable 
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REPRESENTATION OF THE BEAM 
AS A SUPERPOSITION OF SPHERICAL 

HARMONICS

In addition to the above expansion of beam (8) in
plane waves with different propagation directions, in
some cases it may be useful to represent the beam in
the form of an expansion in spherical harmonics. To
determine the corresponding expansion, let us use the
addition theorem for the Bessel functions [10]:

(26)

where  and all the variables
are assumed to be complex in the general case; the sign
before the root is chosen so that, for ς→ 0 the root is
positive. In terms of the spherical Bessel functions

 , Eq. (26) takes the form
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quasi�Gaussian beam (8) under study in the form of a
spherical harmonic expansion:

(29)

where

(30)

(31)

Note that series (29) converges everywhere. The
Infeld functions of a half�integer argument are
expressed through an exponential function [10]. In
particular, for subscripts of the function , we have

 =    Other
functions can be expressed using the recurrence rela�
tion   However,
with an increase in , this algorithm becomes unsta�
ble; therefore, in numerical calculations, it is more
convenient to use the inverse recurrence algorithm:

The dependence of the relative harmonic ampli�
tudes gn on their number is shown in Fig. 5 for different
values of ka. The coefficients gn decrease with increas�
ing n by varying from g0 = 1 to approximately zero for
n > 5ka. This means that, at ka ~ 1, in expansion (29)
it is sufficient to take into account a relatively small
number of series terms, which is convenient for calcu�
lations. For wide beams ( ), with allowance for

the asymptotics   at
, we obtain  → 1, which should be

expected in the case of a plane wave [10].

Let us consider the behavior of the solution in the
form of series (29) in the limit ka → 0. For this pur�
pose, we use the fact that, for small argument values,
the Infeld function is expressed as 

 where Γ(…) is the gamma function
[10]. This suggests that 

  Therefore, according to
Eq. (30), g0(0) = 1, g1(0) = 1/6,  = 0, and in the
limit ka → 0, series (29) contains only two terms and,
as one would expect, takes the form of Eq. (17).

It is also of interest to study the behavior of series
(29) in the far field. Note that, since the series coeffi�
cients  tend to zero when n → ∞, the
series actually contains a finite number of terms (see
Fig. 5). This means that, when r → ∞, for all the Bessel
functions  involved in the series, one can assume
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Fig. 5. Normalized spherical harmonic amplitudes gn (cir�
cles) vs. the harmonic number n for different values of ka.
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that  which allows the use of the asymptotics

 Hence,

 (32)

Comparing the resulting formula with Eq. (19), we
obtain the relation of the plane wave amplitudes

 =  appearing in expansion (18) to the
coefficients gn involved in spherical harmonic expan�
sion (29):

(33)

Since this relation is derived without using the explicit
expression for gn, it is valid for an axisymmetric beam
of an arbitrary form. Using the orthogonality of the

Legendre polynomials  =

 it is possible to invert Eq. (33), to express
the coefficients gn through the directionality function

(34)

For example, if  is preset in the form of
Eq. (20), the coefficients gn will be determined by
Eqs. (30) and (31). This can be easily verified by using

the tabulated integral  =  ×

 [11].
In a similar way, it is possible to construct other

beams. In particular, for the class of directional beams,
one obtains G(x) ≡ 0 for –1 ≤ x < 0. In this case,

; all the possible plane waves propagate to
the right and are described by the angular wave spec�
trum  Using Eq. (24), we obtain the expression
that relates the spherical harmonic expansion coeffi�
cients gn appearing in Eq. (29) to the angular spectrum

(35)

Equation (29) with coefficients (35) may be conve�
nient in solving a number of problems, for example, in
analyzing the scattering from spherically symmetric
objects [12].

CONCLUSIONS

The proposed exact solution to the Helmholtz
equation (8) describes quasi�Gaussian beams for
which the waist diameter is comparable to the wave�
length. The solution represents the superposition of
two point sources and two point sinks with complex
coordinates. It is shown that, in such a beam, the com�
ponent propagating against the principal direction is
always absent; in addition, when the diameter of the
beam waist exceeds the wavelength, the beam becomes
directional in the broad sense: the power fraction of
the parasitic opposite wave becomes negligibly small.
Expressions for the angular spectrum and the spherical
harmonic expansion coefficients are derived for the
beam under study.
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