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INTRODUCTION

The growing interest in wave processes in cubically
nonlinear media is caused by the opportunity to use
nonlinear effects for medical diagnostics of soft tissues
[1]. Tissue elasticity in an affected region changes
drastically, which provides an opportunity to reveal
pathology by measuring the local velocity and attenu�
ation of shear waves. The methods for noninvasive
excitation and detection of shear waves that were pro�
posed by different authors demonstrated the possibil�
ity of localization and determination of inhomogene�
ities in the shear modulus both in phantoms of biolog�
ical tissues [2] and clinically [3, 4]. The nonlinearity of
the shear modulus is also an informative parameter
providing an opportunity to specify the diagnostic
information obtained with linear measurements [5].
The nonlinear parameter of a medium can be obtained
from both static measurements and measurements of
parameters for nonlinear wave processes. A special
feature of media with an inversion center (soft biolog�
ical tissues may be also ascribed to them with good
precision) is the absence of quadratic nonlinearity in
the case of shear deformations. In these media the
main contribution to development of nonlinear pro�
cesses belongs to cubic nonlinearity.

Traveling waves of finite amplitude in media with
cubic nonlinearity have been investigated in sufficient
detail [6–8]. It is has been shown that, in a cubically
nonlinear medium, the profile of a wave harmonic at
the input is distorted symmetrically in the process of
propagation and acquires, at a certain distance, a trap�
ezoidal shape with steep fronts. Analytical expressions
were obtained in [9] for spectral characteristics of a
simple wave in a cubically nonlinear medium both at
the stage of its transformation from a sinusoidal form
to formation of profile discontinuity and for an
asymptotically self�similar profile in the form of a
“trapezoidal saw.” The results of experimental obser�
vation for dynamics of nonlinear transformation for
the profile of a harmonic wave in a gel�like medium
are described in [10], where both the wave profiles at
different distances from the source of shear waves and
their harmonic composition are given. The authors of
[10] proposed to use the acousto�elastic effect, i.e., the
dependence of elastic wave velocity on the static
deformation of a medium, to measure the nonlinear
elasticity moduli of gel�like media with a small value of
the shear modulus. Theoretical fundamentals for
determination of a limited number of nonlinear con�
stants in incompressible media are described in [7, 11,
12]. The results of measuring nonlinear constants in
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samples made of a gelatin–agar composition are given
in [13, 14].

Standing waves in cubically nonlinear media are
analyzed now in less detail, although they are not less
interesting both as an object for fundamental research
and from the point of view of practical applications.
The theoretical analysis of standing wave behavior in a
cubically nonlinear medium is conducted in [15],
where solutions for waves with shock fronts are
obtained. Review [16] considers in detail the models
and approximate methods for analyzing standing
waves in resonators in conditions of strongly pro�
nounced nonlinearity. Wave analysis is performed for
media with quadratic and cubic nonlinearity and for
the nonlinearity arising due to boundary mobility.

To excite standing waves with finite amplitudes, it is
convenient to use a resonator in the form of a plane�
parallel layer of a rubber�like material with a rigid plate
fixed at its upper boundary. The resonator thickness is
selected in such a way that about a quarter wavelength
would fit it. It is demonstrated in [17] that standing
waves arise in this resonator. Their amplitudes are one
order of magnitude or more larger than the amplitude
of displacements applied to the lower boundary of the
resonator even in the case of use of a polymer material
with a large shear viscosity. A plastisol polymer mate�
rial (its manufacturer is the company M�F Manufac�
turing, United States) is used as a medium with cubi�
cal nonlinearity. Its nonlinear parameter was deter�
mined from the static dependence of shear
deformation on stress [18]. This work is devoted to
experimental investigation of standing shear waves
excited in a resonator filled with a medium with cubic
nonlinearity. Waves of moderate amplitude are ana�
lyzed in which shock fronts are not yet formed. In this
case an approach based on the model of a one�dimen�
sional resonator is developed [17, 19].

CALCULATION OF STANDING WAVES 
IN A ONE�DIMENSIONAL RESONATOR 

WITH CUBIC NONLINEARITY

Let us consider a resonator in a form of a rubber�
like sample shaped as a rectangular parallelepiped with
the height L and horizontal facets with the area S. The
lower facet of the sample is fixed to a rigid horizontal
plate oscillating harmonically under the action of a
driving force in the horizontal direction along the
x axis. Another rigid plate with the mass M and an area
equal to the area of the upper facet S is fixed at the
upper facet (y = L). There is no slipping between the
plates and the horizontal facets of the sample. It is
assumed that the resonator thickness L is much
smaller than the transverse dimensions. This assump�
tion provides the opportunity to consider that particle
motion depends only on the vertical coordinate; i.e., it
is possible to use a one�dimensional approximation. It
is demonstrated in [20] that this model of a one�
dimensional resonator describes sufficiently exactly
the behavior of a resonator with finite dimensions if
the resonator thickness does not exceed the quarter of
the length in the direction x.

A model taking into account dissipative processes
in the simplest approximation, in which mechanical
stress is represented in the form of an elastic addend
directly proportional to deformation and a viscous
addend directly proportional to the deformation rate
(the Kelvin�Voigt rheological model), is used in [17] to
investigate theoretically linear oscillations in the above
resonator. It turned out that, in the case of the corre�
sponding selection of parameters, the model provided
an opportunity to describe well the observed resonance
curves, but, in the case of proceeding to the resonances
of higher orders, one has to decrease the model viscos�
ity and increase the elastic modulus. In the linear case,
this fitting of parameters in the vicinity of the investi�
gated resonance is unnecessary, but in the nonlinear
case higher harmonics arise; i.e., the process becomes
wide�band and, therefore, the Kelvin�Voigt rheologi�
cal equation of state is inapplicable and modification
of it is necessary that takes into account the viscosity
decrease and the increase of medium rigidity with the
frequency growth. The simplest approach here is con�
nected with introduction of relaxation processes [21,
22]. It is necessary also to modify the elastic element in
the rheological model while considering nonlinear
oscillations.

Let us consider a model medium in which a
mechanical stress consists of a relaxation stress and an
elastic stress directly proportional to deformation. The
mechanical model of a medium is presented by a par�
allel connection of an elastic element with the nonlin�

ear modulus  and the Maxwell vis�
coelastic element with the viscosity η1 and the shear
modulus μ1 = η1/τ (see Fig. 1). Here ε = ∂u/∂y is shear
deformation, u is the spring displacement, τ is the
relaxation time, µ00 is the linear static shear modulus,

2
0 00(1 )μ = μ + βε

μ0 μ1

η1

Fig. 1. A mechanical model for a rubber�like medium with
a single relaxation time.
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and β is the nonlinear parameter. In the case of defor�
mation of the whole system for the value , a mechan�
ical stress arises in it,

(1)
which consists of the spring stress

(2)

and the stress of the Maxwell scheme . Let us express
the Maxwell scheme stress through the deformation of
a spring  and a damper εB, where

. To do this we differentiate over time
the expression for εA and add the result of differentia�
tion to the expression for ∂εB/∂t. In this case we take
into account that the sum εA + εB = ε is equal to the
deformation of the whole Maxwell scheme, which is
also equal to the spring deformation ε = σ

∞
/μ0. Then

we can write down the following equation:

(3)

where τ = η1/μ1 is the characteristic time of stress
relaxation. It is necessary to note that, multiplying
both parts of Eq. (3) by τ and performing a limiting
transition at τ → 0, we obtain ; i.e., the
considered model transforms into the Kelvin�Voigt
model that we used in [17].

To use Eq. (3) conveniently in a numeric form we
write it down as follows:

(4)

It follows from Eq. (2) that the elastic part of stress

(5)

In Eqs. (4) and (5), we introduced the vibrational
velocity  and took into account that

.
The equation of motion for medium particles has

the form

. (6)

Equations (4)–(6) must be complemented with
boundary conditions. The first condition is a preset
value of acceleration for the lower resonator plate, and
the second one is determined from the law of motion
for the upper plate,

(7)

(8)

The obtained system of relationships (1) and (4)–(8)
was simulated by the finite difference method at
shifted grids [23]. The operability of the numeric
scheme written down was verified by comparing the
calculated results with an analytical solution for a lin�
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ear resonator (β = 0) that was obtained in [17]. In this
case the relation of stress and deformation used in [17]
was modified taking into account a model of a medium
with a single relaxation time.

DESCRIPTION OF EXPERIMENTAL SETUP 
AND MEASURING TECHNIQUE

Measurements were conducted with two resonators
shaped as rectangular parallelepipeds made of a poly�
mer material called plastisol. A rigid plate with the
mass М was fixed at the upper facet of the parallelepi�
ped. The resonator thickness was the same for both
resonators and constituted 15 mm. The length and
width were 67 and 40 mm for resonator I and 70 and
40 mm for the resonator II. The masses of the upper
plates were approximately equal (12 g for resonator I
and 11.55 g for resonator II).

Measurements of the shear modulus for plastisol μ0
were conducted in both resonators in the case of their
static deformation [18]. To do this the lower boundary
of a resonator was fixed and a certain force was applied
to the upper plate, which produced shear stress in the
layer. According to the approximation of a measured
dependence of shear deformation on the applied stress
by a cubic parabola, the linear shear modulus
μ00 = 9.9 ± 0.6 kPa and the nonlinear parameter β =
1.34 ± 0.23 for resonator I and μ00 = 6.7 ± 0.4 kPa and
β = 0.76 ± 0.13 for resonator II were determined.

The relaxation time and shear viscosity for the res�
onator material were determined from the frequency
dependence of the upper plate acceleration measured
in a linear mode in the frequency range 20–400 Hz.
Oscillations of the lower resonator plate were excited
by a Brüel&Kjær 4810 vibrator. An electrical signal was
fed to the vibrator from a Tektronix 3021B signal gen�
erator through an MF LV 103 power amplifier. The
accelerations of the upper and lower resonator plates
were measured by Brüel&Kjær 4374 miniature uniaxial
accelerometers. The mass of accelerometers was 1 g;
i.e., their effect on the process of resonator oscillations
was ignorable. Accelerometer signals were detected by
a Tektronix 3032B digital oscilloscope and transmitted
through a GPIB interface to a computer. Experimen�
tal setup control and data acquisition were performed
using a computer code written in the LabView envi�
ronment. In the process of measuring resonance
curves, the acceleration of the lower resonator bound�
ary was the same at each frequency and constituted
1 m/s2 that corresponded to a linear mode of measure�
ments. Measurements were conducted with the fre�
quency step of 0.1 Hz that provided sufficient preci�
sion for determination of plastisol viscoelastic param�
eters. To provide constancy for the amplitude of the
lower plate acceleration within the indicated fre�
quency range, we used the following algorithm. At a
preset frequency at the generator output, we set the
voltage for the amplitude of the lower plate accelera�
tion to be slightly smaller than the necessary value.
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This voltage increased up to the value, when the accel�
eration amplitude achieved the necessary value with
an error no larger than 2%. Stationary oscillations
developed in a resonator for 2–3 s; after that measure�
ments and recording of the acceleration of the lower
resonator plate were performed. Then the next fre�
quency value was set and the measurements were
repeated according to the described algorithm.

This algorithm has a fundamental value while
studying resonance characteristics in a nonlinear
mode when it is necessary to provide constancy for the
external effect upon a resonator. However, in a nonlin�
ear mode, the acceleration profile for the lower plate
gets distorted because of generation of higher harmon�
ics in a resonator. Therefore, in a nonlinear mode, a
constant acceleration amplitude was maintained at the
principal frequency that required modification of the
above algorithm for measuring the resonance charac�
teristics. A realization containing about 50 oscillation
periods for the lower plate acceleration was recorded,
and the amplitude of the principal harmonic was con�

ducted by the FFT method. Then such an acceleration
of the lower plate was selected by regulating the output
voltage of the driving generator, when the preset level
of amplitude at the principal frequency was attained
with an error not exceeding 3%.

RESULTS OF MEASUREMENTS AND THEIR 
COMPARISON WITH NUMERICAL 

CALCULATION

An experimental dependence for the acceleration
ratio for the upper and lower resonator plates that cor�
responds to the linear mode of oscillations in resona�
tor I is given in Fig. 2 by dots. Numerical calculation
for the linear mode was conducted using the model of
a medium with a single relaxation time and at zero
nonlinear coefficient. The values of the relaxation
time and the coefficient of shear viscosity varied in the
process of calculation so as to obtain the best (in the
sense of the minimal root�mean�square deviation)
coincidence of experimental and calculated depen�
dences (demonstrated by a solid line in Fig. 2) in the
range 20–200 Hz. Thus the values τ = 0.7 ms and η1 =
4.7 Pa · s were determined. It is necessary to note that,
in the frequency range 10–300 Hz, where the three
first resonance frequencies of the investigated resona�
tor lie, plastisol has strongly pronounced dispersion
properties. This can be seen well from comparison of
experimental results with the form of the resonance
curve (a dashed line) calculated according to the
Kelvin�Voigt model, where the parameters of plastisol
μ = 9.88 kPa and η = 4.7 Pa · s do not depend on fre�
quency. This curve coincides with the experimental
one in the region of the first resonance, but, at high
frequencies, the experimental dependence differs
strongly: the frequencies of the measured second and
third resonances lie higher, which is evidence of
increase of plastisol elasticity with the growth of fre�
quency, while the amplitude of the measured reso�
nances is higher, which is connected with decrease of
viscosity with the frequency growth. The values of
relaxation time τ = 1.2 ms and the coefficient of shear
viscosity η1 = 2.8 Pa · s were obtained for resonator II
in an analogous way. The resonator parameters used
for calculation are given in the table.

Figure 3 gives the results of calculation for reso�
nance curves for resonator I near the first resonance
frequency at different values of the acceleration ampli�
tude for the lower plate W0. At each value of W0 a res�
onance curve was calculated first at a slow increase of
frequency and then, at its slow decrease. At the initial
time moment the value of the amplitude W0 and the
minimal frequency were set. Then the frequency was
increased at the rate 0.1 Hz/s. In this case the acceler�
ation of the upper plate WL was recorded each second
and the amplitude of the first harmonic was calcu�
lated. Calculation of a resonance curve at decreasing
frequency was conducted analogously. The difference
was only the fact that at the initial time moment the

10
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Fig. 2. Resonance curves obtained for resonator I. The
basic plot represents resonance curves in a linear mode of
oscillations (W0 = 1 m/s2). Dots indicate measured values,
and the solid line is for the results calculated using the
model of a medium with a single relaxation time. The
dashed line shows the dependence calculated for a
medium without relaxation. The insert shows the reso�
nance curves in the region of the first resonance at the
acceleration amplitude at the lower resonator boundary
W0 = 15 m/s2. Symbols correspond to measured values,
and calculated results are shown by a thick solid line.
A thin line is for calculation for linear oscillations W0 =
1 m/s2).

Measured properties of the resonators that were used for
calculations

Resonator μ00, kPa β τ, ms η1, Pa ⋅ s

I 9.9 ± 0.6 1.34 ± 0.23 0.7 ± 0.2 4.7 ± 0.3

II 6.7 ± 0.4 0.76 ± 0.13 1.2 ± 0.3 2.8 ± 0.2
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value of the maximum frequency was set. In the linear
oscillation mode (W0 ≤ 5 m/s2) the acceleration ampli�
tude for the upper resonator boundary increases by
10.5 times in comparison with the amplitude at the
lower boundary that was set by the vibrator. At the
lower plate acceleration of 30 m/s2, the velocity ampli�
tude at the upper resonator boundary attains VL =
1.2 m/s, which constitutes 39% of the shear wave
velocity. At these particle velocities in a resonator,
nonlinear effects manifest themselves. The resonance
becomes asymmetrical, and the resonance frequency
increases. The acceleration gain factor also increases
in comparison with the linear case and attains 11.6 at
W0 = 50 m/s2. At the amplitudes W0 > 40 m/s2, the res�
onance curves obtained for increasing frequency and
its decrease (indicated by arrows) do not coincide; i.e.,
a bistability region arises. As the oscillation amplitude
in a resonator grows, the bistability region widens. The
effect of asymmetry for a resonance curve and the shift
of the resonance frequency were observed experimen�
tally. Crosses in the insert in Fig. 2 show the results of
measuring a resonance curve at W0 = 15 m/s2. The
results of resonance curve calculation in the linear case
and for W0 = 15 m/s2 are given there also. An increase
of the first resonance frequency for 0.4 Hz is observed
that is smaller than the calculated value almost two
times (0.7 Hz). Amplification of the oscillation ampli�
tude at the upper resonator boundary in the resonance
was 11.7 in the experiment that exceeded the calcu�
lated value of 10.6 almost for 10%.

Nonlinear effects are stronger in resonator II made
of the polymer with a smaller coefficient of shear vis�
cosity. In the mode of linear oscillations, the accelera�
tion amplitude for the upper boundary of the resonator II
increases by 13.7 times in comparison with the ampli�
tude at the vibrator (see Fig. 4). A comparatively small
viscosity is the reason that nonlinear effects in resona�
tor II to manifest themselves already at the accelera�
tion amplitudes at the lower plate exceeding 5 m/s2.

The bistability region in calculated curves arises at
W0 = 20 m/s2. Measured resonance curves at different
accelerations of the lower resonator (II) plate are indi�
cated in Fig. 4 by various symbols. One can see that the
resonance curves become asymmetrical and the reso�
nance frequency grows with the increase of oscillation
amplitude in the resonator. The results of more
detailed measurements for increasing resonance fre�
quency with growth of the acceleration amplitude at
the lower boundary W0 are demonstrated in Fig. 5.
Here the solid line gives the results for the nonlinear
parameter value β = 0.76 obtained from static mea�
surements. According to the calculation, the reso�
nance frequency must increase almost twice as fast as
it was measured in the experiment. The dashed line
shows the calculation results for the value β = 0.35,
when the deviation from experimental data was mini�
mal.

The stabilization time for a stationary mode of
oscillations in the bistability region may exceed signif�
icantly the characteristic times in the mode of linear
oscillations. The acceleration profiles near the reso�
nance frequency were calculated for 30 s after switch�
ing on of the acceleration constant in the amplitude at
the lower plate of resonator II. Calculation was con�
ducted at different amplitudes of the lower plate accel�
eration. At acceleration amplitudes smaller than
15 m/s2, the stabilization time of oscillations does not
depend on the amplitude and constitutes about ten
periods at frequencies near the resonance (32–34 Hz).
At the amplitudes of 20 and 25 m/s2, the stabilization
time for a stationary mode increases and, in this case,

|WL/W0|

f, Hz

14
12

8

4
2
0

48424036 38 44
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6

46

5 20 30 40 50

Fig. 3. Resonance curves near the first resonance fre�
quency that are calculated at different amplitude values for
the acceleration of the lower plate W0 in resonator I. Num�
bers by the curves correspond to the amplitude W0 in
meters per second squared. Arrows indicate the direction
of frequency variation in the process of calculation.
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4
35333230 31 34
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3
10 15

Fig. 4. Resonance curves near the first resonance fre�
quency that are obtained for resonator II at different
amplitude values for the acceleration of the lower plateW0..
The results of measurements are indicated by symbols (� is
for W0 = 3 m/s2, � is for W0 = 10 m/s2, and × is for W0 =
15 m/s2) and the calculated dependences by lines. Num�
bers by the curves correspond to the amplitude W0 in
meters per second squared.
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its value depends on frequency. At the resonance fre�
quency and the acceleration amplitude at the lower
plate W0 = 25 m/s2, the stationary mode stabilizes dur�
ing 15 periods. In the bistability region, stabilization of
a stationary mode at the indicated amplitude W0 needs
more time. The longest stabilization time (120 peri�
ods) for a stationary mode is at the frequency of
35.5 Hz corresponding to the middle of the bistability
region. At the frequency of 35.7 Hz, the stabilization
time is already three times shorter and constitutes
about 1 s (40 periods).

Propagation of a harmonic wave with a finite
amplitude in a medium with cubic nonlinearity leads
to generation of harmonics and distortion of the initial
sinusoidal profile. Figure 6 shows measured and cal�

culated acceleration profiles at the upper plate of res�
onator I at the resonance frequency and the amplitude
W0 = 15 m/s2. The profiles almost coincide and differ
little from the profile of a harmonic wave that is con�
nected with a large attenuation for both the wave at the
principal frequency and the wave of the third har�
monic. It is possible to determine from linear mea�
surements (Fig. 2) that the ratio WL/W0 at the fre�
quency of the third harmonic (123 Hz) is smaller than
1 and constitutes 0.7 (measured) and 0.94 (calcu�
lated). Thus, there is no resonance amplification of
the third harmonic in this resonator. If we reduce the
viscosity, nonlinear effects become more strongly pro�
nounced. Figure 6 demonstrates the profile calculated
for the case of small viscosity (η = 1.6 Pa · s). One can
see well the distortions of this profile that are associ�
ated with generation of the third harmonic.

Figure 7 gives the results of harmonic analysis for
the time profiles demonstrated in Fig. 6. When the vis�
cosity of a medium is sufficiently large (η = 4.7 Pa · s),
the level of the third harmonic in a resonator is small
and constitutes –32 dB with respect to main har�
monic, which corresponds to the results of measure�
ments. If the viscosity coefficient decreases to 1.6 Pa · s,
the level of the third harmonic grows for 16 dB and
constitutes –15 dB with respect to the fundamental
harmonic. This efficiency increase for generation of
the third harmonic is explained by both the growth of
the fundamental harmonic amplitude for 10 dB and
the resonance amplification of the third harmonic in a

W0, m/s2

f1, Hz

33.5

33.0

32.0
16862 4 10

32.5

12 14

Fig. 5. Dependence of the first resonance frequency on the
acceleration amplitude at the lower plate of resonator II.
Symbols correspond to measured values, and solid and
dashed lines show the results of calculation for β = 0.76
and β = 0.35, respectively.
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Fig. 6. Time profile of acceleration at the upper plate of
resonator I at the resonance frequency at W0 = 15 m/s2.
The measured and calculated profiles are indicated by dots
and a dashed line, respectively. The solid line shows the
calculated profile for a resonator with the coefficient of
shear viscosity η = 1.6 Pa · s.
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Fig. 7. The first three harmonics of acceleration at the
upper plate of resonator I at the acceleration amplitude at
the lower plate of 15 m/s2 at the resonance frequency.
Black and gray colors indicate the harmonics of measured
acceleration at the upper (WL) and lower (W0) plates of the
resonator. The shaded and white columns correspond to
the harmonics of the acceleration WL that are calculated
for resonators with the coefficients of shear viscosity η =
4.7 and 1.6 Pa · s, respectively.
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resonator (the ratio WL/W0 at the frequency of the
third harmonic is equal to 1.9). It is necessary to note
that, in the measured spectrum of acceleration at the
lower plate, the second and third harmonics are
present but their level is low (–23 and –26 dB, respec�
tively) in comparison with the level of the fundamental
harmonic.

CONCLUSIONS

Manifestation of nonlinear effects and the process
of harmonics’ generation in a resonator filled with a
medium with cubic nonlinearity has several special
features. In a resonator tuned to the resonance fre�
quency of the fundamental harmonic, the waves of
higher harmonics arising due to cubic nonlinearity are
not resonant. This is caused by the dispersion of shear
wave velocity in the low�frequency range induced by
the finite relaxation times of viscoelastic parameters in
a medium. The presence of a rigid plate with a finite
mass at the upper boundary of a resonator also leads to
shifting resonance frequencies and desynchronizing
the waves of the fundamental frequency and their har�
monics [17]. Therefore, generation of the third and
higher harmonics does not occur in the resonance
mode. In particular, the amplitude of particle velocity
for the third harmonic can be estimated proceeding
from a relation obtained in [7] for the case of a travel�
ing wave,

(9)

where V0 is the amplitude of particle velocity for a wave
at the fundamental frequency ω, βZ = 1.5β is the non�
linear parameter of a medium, сt = (μ/ρ)1/2 is the

velocity of a shear wave), and  is the attenu�

ation coefficient for a wave at the fundamental fre�
quency. The acceleration amplitude for the third har�
monic at the upper resonator boundary that arises at a
single transmission through the resonator thickness L
can be written down in the form

(10)

Thus, the amplitude of the third acceleration har�
monic depends cubically on the acceleration ampli�
tude for a wave at the fundamental frequency. The
amplitude of the fundamental harmonic in a resonator
with small viscosity (η = 1.6 Pa · s) is three times
higher than that in a resonator with the viscosity η =
4.7 Pa · s (see Fig. 7), which, according to [7], must
lead to increasing the amplitude of the third harmonic
for 29 dB, which is very close to the result (26 dB)
obtained by simulation. The amplitude of the third
harmonic in resonators with different shear viscosities
is affected by the possibility of amplification due to
resonance. In a resonator with a small viscosity, the
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third harmonic can be amplified additionally due to
resonance 1.9 times, while for a resonator with a large
viscosity this amplification is absent (see Fig. 2). This
means that viscosity reduction in a medium is a deter�
mining factor for increase in efficiency for nonlinear
processes in the considered resonators.

Our results show that one can observe the effect of
resonance frequency increase with the growth of oscil�
lation amplitude in a resonator with a cubically non�
linear medium. According to calculation, nonsym�
metrical distortion of the resonance curve shape hap�
pens. However, there is no quantitative
correspondence for the effects observed in the experi�
ment and the results of calculations performed with
the parameters determined from static measurements.
For example, growth of the first resonance frequency
at a preset value for the coefficient of shear viscosity
corresponds to calculated values for the nonlinearity
coefficient β = 0.35, which is less than half the value
determined from static measurements. Our measure�
ments demonstrated that the linear static and dynamic
moduli of elasticity for a rubber�like polymer differ. As
frequency grows, the linear shear modulus increases,
which leads to nonequidistance of resonance frequen�
cies. It is possible to assume that the values of the static
and dynamic nonlinearity coefficients also differ. This
fact could be taken into account by a complication of
a rheological model (Fig. 1), for example, assuming a
spring in the Maxwell scheme to be nonlinear, being
softened with the growth of deformation,

. It is necessary to note that there is
now a rather agitated discussion in the literature with
respect to determining the elastic parameters of
incompressible materials, to which many polymers
and soft biological tissues belong. Both theoretical
models for describing these media with the help of a
limited number of nonlinear parameters [7, 11, 12]
and the techniques for measuring these parameters
[13] are proposed. The method of an interferometer
with its use in a nonlinear mode that is proposed here
can be useful for acquiring information on nonlinear
parameters of rubber�like media in the low�frequency
range.
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