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INTRODUCTION

Piezoceramic transducers are widely used in visual-
ization, ultrasonic therapy, nondestructive testing, and
acoustic microscopy. To theoretically predict the acous-
tic fields they emit, it is necessary to know the normal
velocity and acoustic pressure distributions on the radi-
ating surface. The Rayleigh integral approximation [1],
which represents the acoustic pressure at a given point
in space as a superposition of spherical waves whose
amplitudes are proportional to the normal velocity
component at the corresponding points of the trans-
ducer, is most commonly used. For simplicity, it is usu-
ally assumed that the vibrations of a piezoceramic plate
are determined by the thickness mode, i.e., that they are
uniform over the radiating surface. However, the accu-
racy of this approximation is not very high, because the
thickness vibrations of piezoceramic transducers are
accompanied by other modes that are difficult to con-
trol, in particular, by the Lamb waves [2, 3]. Therefore,
the distribution of the normal velocity over the trans-
ducer surface is nonuniform. It is difficult to theoreti-
cally predict the structure of the elastic vibrations of a
piezoceramic plate, because the boundary conditions,
which depend on the manner the plate is fixed to the
body, and the electromechanical parameters of the
piezoceramic material are known with a limited accu-
racy. At first sight, the optical interferometry method

can be used to directly measure the normal velocity of
the transducer surface vibrations. However, such mea-
surements are only possible for a source operated in air.
If the transducer operates in water, the acoustooptical
interaction in the liquid plays a significant role. As a
result, the signal from the interferometer cannot be
explicitly related to the displacement of the surface [2].
Thus, the normal velocity (and, all the more so, the
acoustic pressure) distribution over the piezoelectric
transducer is actually unknown.

In this paper, we propose a method for reconstruct-
ing the normal velocity and the acoustic pressure on the
surface of a transducer. The idea of the method is to use
the time reversibility of the wave process [4]. The
reconstruction procedure consists of two stages. First,
the amplitude and phase of the wave is measured over a
certain reference surface in front of the transducer. Sec-
ond, the phase of the wave is reversed and the acoustic
field is calculated numerically on the surface of the
transducer by using the Rayleigh integral over the ref-
erence surface. Similar approaches were proposed ear-
lier for calculating the acoustic fields produced by
transducers. One of them represents the transducer as a
multielement antenna array. The acoustic pressure mea-
sured experimentally at a number of points on the ref-
erence surface is expressed as a superposition of spher-
ical waves produced by individual array elements and,
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then, the resultant system of linear algebraic equations
is solved for the particle velocity on these elements [5].
The method has a clear limitation associated with the
necessity to numerically solve systems of complex lin-
ear equations of a very high order. For example, if the
pressure is measured over a 

 

100 

 

× 

 

100

 

 grid, the number
of equations is 10000, which makes the solution of the
problem by a personal computer actually impossible.
The other method relies on the angular spectrum calcu-
lated from the parameters of the wave measured over
the reference surface perpendicular to the acoustic axis.
Theoretically, the field at other points in space can be
calculated exactly from the angular spectrum and, in
particular, the source distribution over an emitting sur-
face can be reconstructed. In the practical realization,
the accuracy of reconstructing the spatial source distri-
bution can be limited by irregularities greater than the
wavelength, because small-scale features of the distri-
bution correspond to exponentially decaying (inhomo-
geneous) components of the angular spectrum. If the
inhomogeneous waves are taken into account, the accu-
racy proves to be rather high. Such an approach is the
basis of the so-called near-field acoustic holography
[6–8]. Unfortunately, it is only applicable to compara-
tively low-frequency waves, for which the field can be
measured at distances from the transducer that are
smaller than or comparable to the wavelength. In the
megahertz frequency range (medical applications and
nondestructive testing), the distance between the mea-
surement plane and the transducer is, as a rule, much
longer than the wavelength. Therefore, the information
on the high-frequency components of the angular spec-
trum is lost and, for the reconstruction algorithm to be
stable, the inhomogeneous components of the spectrum
must be set equal to zero [9–11]. As we noted above,
this leads to a certain smoothing of the reconstructed
distribution, as compared to the true one. A similar lim-
itation is also inherent in the method considered in this
paper. However, it should be noted that, unlike the
angular spectrum method, the approach proposed
below calculates a two-dimensional integral only once
(the angular spectrum method performs the two-dimen-
sional integration twice). In addition, in the phase
reversal method, the surface over which the wave
parameters are measured can be nonplanar. This advan-
tage may be very useful in the studies of transducers
that generate strongly divergent acoustic beams.

THEORY

Consider an acoustic transducer built into a planar
screen. Let the surface of the transducer with the screen
be 
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 (Fig. 1), and let the acoustic pressure 
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measured on a plane surface 
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 that is parallel to the
screen. The question arises of whether it is possible to
reconstruct the acoustic field 
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 over the surface 
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from the known distribution 
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. An affirmative

answer to this question follows from the time revers-
ibility of the wave process. In fact, the wave equation in
a lossless medium, 
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 = 0, does not change
under the substitution 

 

t

 

  –

 

t

 

. If the transducer is
enclosed in a surface that is a perfect time-reversing (or,
to put it differently, wave-front-reversing) mirror, the
wave propagating to the transducer after the reflection
from such a mirror completely reproduces its original
parameters. As such a closed surface, we may take the
surface consisting of 

 

Σ

 

1

 

, 

 

Σ

 

2

 

, and a side surface 

 

∆Σ

 

removed to infinity (see Fig. 1). However, the contribu-
tion due to 

 

∆Σ

 

 vanishes, because the solid angle sub-
tended by this surface tends to zero. The contribution of
the surface 

 

Σ

 

1

 

 can also be neglected, because the radia-
tion in this direction is small. Hence, we can assume
that, if the acoustic pressure on the plane 

 

Σ

 

2

 

 is known,
this data is sufficient to reconstruct the field on the
transducer surface. The accuracy of the method is lim-
ited to about a wavelength; i.e., finer features are
smoothed out. Indeed, the field reconstruction at a cer-
tain point on the transducer surface can be thought of as
focusing of the phase-reversed field, so that the well-
known diffraction limitation on the size of the focal
spot necessarily manifests itself.

We restrict our analysis to a monochromatic source.
In this case, the acoustic pressure can be represented as
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, where 
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 are the wave amplitude and phase and 
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 is the
circular frequency, so that 
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 is the complex
wave amplitude. We assume that the acoustic pressure
on the reference plane 

 

Σ

 

2

 

 is known from the measure-
ments. If we mentally place a time-reversing mirror on
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, the acoustic pressure in the reflected wave will have
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 Geometry of the problem.
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the form 
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; i.e., the amplitude of the time-reversed
wave will be a complex conjugate of that of the incident
wave: 

 

A

 

rev

 

 = 

 

A

 

*

 

. To calculate the reflected wave on the
left of 

 

Σ

 

2

 

, we can use the Kirchhoff–Helmholtz integral,
which represents the amplitude of the acoustic field
emitted by a surface in terms of the normal velocity and
acoustic pressure distributions over this surface. As is
known, if the emitting surface is planar, the Kirchhoff–
Helmholtz integral can be reduced to integrals that con-
tain the distribution of either normal velocity or acous-
tic pressure alone [12]. In particular, if we use the
acoustic pressure distribution, the Kirchhoff–Helm-
holtz integral has the form

 

(1)

 

where 
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 – r'|/4π|r – r'| is the Green’s function
of free space, k is the wave number, n2(r') is the unit
outer normal to the surface Σ2, and dS ' is the element of
this surface (Fig. 1). Since Arev = A*, we arrive at the
expression for the original wave on the left of the plane
Σ2 in terms of the known wave amplitude distribution
on Σ2:

(2)

With the position vector r placed on the surface Σ1, this
formula yields the unknown amplitude of the acoustic
pressure on the transducer and the screen. To find the
normal velocity component, we use the equation of
motion. Let Vn(r) be the complex amplitude of the nor-
mal component of the particle velocity v. The equation of
motion ρ0∂v/∂t = –∇ p yields Vn(r) = –(i/ωρ0)∂A/∂n1,
where ρ0 is the density of the medium and n1 is the unit
normal to the surface Σ1. With Eq. (2), we have

(3)

Expressions (2) and (3) constitute the theoretical basis
of the method. As we can see, the acoustic pressure and
the normal velocity component on the emitting surface
can rather easily be reconstructed from the measured
amplitude and phase distributions of the acoustic pres-
sure over a certain reference surface Σ2. Theoretically,
the distance between the plane Σ2 and the transducer
can be arbitrary.

Note that formula (3) is derived under the assump-
tion that the transducer is planar. For nonplanar trans-
ducers, an error associated with multiple reflections
from the curved emitting surface takes place. However,
for transducers with a small curvature and large wave
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dimensions of their surfaces, which are of interest in
most applications, the error should be insignificant.

NUMERICAL MODELING OF A FOCUSED 
TRANSDUCER

In view of the experiment described in the following
section, we consider an acoustic transducer in the form
of a spherical bowl (surface S in Fig. 1). Such concave
piezoelectric plates are widely used to produce focused
ultrasonic beams in medical applications and in nonde-
structive testing. Due to the axial symmetry of the
transducer, there is no need in measuring the amplitude
and phase over the entire plane Σ2. It is sufficient to per-
form one-dimensional measurements along the radius.

We consider only the normal velocity component on
the transducer surface. Introducing the notation

(4)

we represent Eq. (3) in the form

(5)

Here, A is the measured complex amplitude of the sinu-
soidal wave in the plane Σ2. Let us make use of the axial
symmetry of the problem. We characterize the position
of the observation point on the spherical surface of the
transducer by the angle θ between the symmetry axis
and the straight line that passes through the observation
point and the center of curvature of the transducer sur-
face. To calculate integral (5), we introduce the polar coor-
dinates (ξ, ψ) on the Σ2 plane: r' = (ξcosψ, ξsinψ, z0). Cal-
culating the derivatives that enter into Eq. (4) along the
normals by taking into account their directions (Fig. 1),
we arrive at the following expression for kernel (4):

(6)

where

 

is the distance between the observation point r and the
point r' on the surface and γ = [F(1 – cosθ) – z0][F –
ξ sinθcosψ – (F – z0)cosθ]/R2. The reference plane Σ2
is at the distance z0 from the center of the transducer,

K r r',( ) 2i
ωρ0
--------- ∂2G* r r',( )

∂n1 r( )∂n2 r'( )
----------------------------------,–=

Vn r( ) A r'( )K r r',( ) S '.d

Σ2

∫=

K r r',( ) K̃ ξ ψ θ, ,( )=

=  –
i

ωρ0
---------e ikR–

2π
---------- 3γ θcos+( ) 1

R3
----- ik

R2
-----+ 

  γk2

R
----–

 
 
 

,

R F2 ξ2 F z0–( )2+ +{=

2Fξ θ ψcossin– 2F F z0–( ) θcos– } 1/2



ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003

RECONSTRUCTION OF THE NORMAL VELOCITY DISTRIBUTION 357

and the center of curvature of the emitting surface, at
the distance F (Fig. 1). Integral (5) takes the form

(5‡)

where Vn(θ) is the amplitude of the normal velocity on
the transducer surface at the points corresponding to the
angle θ, A(ξ) is the pressure amplitude on the reference
plane at the distance ξ from the symmetry axis, and ξmax
is the radius of the measurement region. The functions
Vn and A depend on one variable each because of the
axial symmetry. Integral (5a) can be calculated approx-
imately as a sum over small surface elements of nearly
the same area into which the circular measurement
region of radius ξmax is divided.

When implementing this method in practice, a num-
ber of questions arise, in particular, the questions of
where is the best place for the reference plane; how
wide the limits should be, where the field is measured
on the reference plane, and what the step size should be;
how does the error in the sound velocity affect the
reconstruction accuracy; etc. To answer these ques-
tions, we used mathematical simulations. We studied a
focused monochromatic transducer. Using the Rayleigh
integral [13]

(7)

we numerically calculated the acoustic pressure ampli-
tude A(r') at different points of the reference plane. The
initial normal velocity distribution was taken to be uni-
form: Vn(r) = 1. Assuming that the calculated data A(r')
represent some experiment, we used formula (5) to
reconstruct the normal velocity distribution on the
transducer surface. The result was compared with the
initial (uniform) distribution Vn(r).

Figure 2 shows the amplitude and phase of the
velocity Vn(r) on the transducer surface that were
reconstructed for different positions of the reference
plane. The horizontal axis represents the angle θ at
which the points on the transducer surface are seen (θ =
0° corresponds to the center of the transducer, and θ =
14°, to its edge). The calculations were performed
with the same parameters as the experiment described
in the next section: the ultrasonic frequency was f =
1.1 MHz, the velocity of sound was c0 = 1476 m/s, the
radius of the measurement region was ξmax = 6 cm, the
transducer diameter was 10 cm, the transducer surface
curvature radius was F = 22 cm, and the measurement
step was 0.3 mm. As we see from this figure, the posi-
tion of the reference plane, in which the acoustic pres-
sure is measured, actually does not affect the recon-
structed normal velocity.
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Another source of error in the reconstructed distri-
bution Vn(r) may be an error in the value of the sound
velocity. We estimated this effect on the accuracy of the
method through the appropriate numerical modeling.
As we described above, we calculated the field distribu-
tion in the reference plane from the Rayleigh integral
under the assumption that the particle velocity distribu-
tion over the transducer surface is uniform. This “mea-
sured” distribution of the complex pressure amplitude
was used to reconstruct the velocity at the transducer
surface from formula (5) with another, perturbed,
sound velocity value. Figure 3 presents the normal
velocity reconstructed with the error ∆Ò = 25 m/s intro-
duced into the velocity of sound, which corresponds to
a 10°C variation in the water temperature. For the sake
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105

0.5

0.2

0
θ, deg105
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z = 5 cm
10
15
23
30

–0.1

–0.2
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Fig. 2. Reconstruction of the normalized amplitude |Vn|/V0
and phase ϕV (in radians) of the normal velocity on the
transducer surface for different distances between the refer-
ence plane and the transducer: z0 = 5, 10, 15, 23, and 30 cm;
the horizontal axis represents the angle at which the points
of the transducer surface are seen from the focal point: θ =
0° corresponds to the center of the transducer, and θ = 14°,
to its edge.
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of comparison, the dotted line shows the result of
reconstruction for the unperturbed velocity of sound
c0 = 1476 m/s. Since the velocity of sound has changed,
the phase acquires a certain shift. However, the initial
uniform velocity amplitude distribution proves to be
almost insensitive to the variation in the velocity of
sound and is reconstructed with a sufficiently high
accuracy.

EXPERIMENT

A concave piezoceramic transducer with a curvature
radius F = 22 cm, a diameter of 10 cm, and a resonance
frequency of 1.1 MHz was placed into a 60 × 24 × 30-cm
dish filled with settled tap water. The acoustic pressure
was measured with a PVDFZ44-0400 SEA needle
hydrophone with a sensitive region of 0.4 mm in diam-
eter. After a preamplification, the hydrophone signal
was recorded with a 520A Textronix digital oscillo-
scope. The hydrophone could be moved in three
orthogonal directions with an accuracy of 0.01 mm by
a Velmex-Unislide micropositioning system. A com-
puter, which ran programs from the National Instru-
ments (Austin, Tex.) in LabView language, was used to
control the micropositioner and to read the signals from
the oscilloscope. To avoid the effect of reverberation,
the measurements used the pulsed operating mode. A

rectangular high-frequency electric pulse was supplied
to the transducer from an HP 33120A signal source. To
model the operation in the CW mode, the pulse dura-
tion and the measurement time window were chosen so
that the transient processes in the transducer and the
hydrophone would be terminated while the signals
reflected from the hydrophone body, the walls of the
dish, etc. would not yet be received.

The experiment was conducted as follows. At first,
we found the position of the symmetry axis (the 0z axis
in Fig. 1), whose direction generally coincided with
none of the micropositioner axes. To this end, the
acoustic pressure amplitude distribution was measured
at a certain distance from the transducer in a plane that
was approximately orthogonal to the transducer axis.
Based on these measurements, the program plotted the
equiamplitude lines on the computer screen. They had
the form of concentric circles with the center assum-
ably lying on the symmetry axis of the transducer.
Then, the hydrophone was placed at this point (center),
and the time delay in the signal arrival was measured.
After that, the hydrophone was moved a certain dis-
tance away from the transducer and the measurement
procedure was repeated to determine the second point
lying on the axis and to measure the delay in the signal
arrival. The coordinates of the two points uniquely
determined the symmetry axis, while the velocity of
sound in water was calculated from the two delays and
the distance between the points. Subsequently, special
programs were used to measure the field in the plane
orthogonal to the symmetry axis determined above.
One of the resulting amplitude and phase distributions
of acoustic pressure is shown in Fig. 4. The two-dimen-
sional (upper) images illustrate the amplitude (on the
left) and phase (on the right) distributions of acoustic
pressure. The phase was measured relative to the signal
fed to the transducer from the oscillator. As we see from
these distributions, the axial symmetry of the acoustic
field is quite pronounced. This means that the time
taken to perform the experiment can be considerably
reduced using the one-dimensional scan in any direc-
tion orthogonal to the symmetry axis instead of the two-
dimensional scan. The corresponding one-dimensional
amplitude and phase distributions are presented in the
lower part of Fig. 4.

After the transverse amplitude and phase distribu-
tions of acoustic pressure were measured, the corre-
sponding complex amplitude distribution of the field in
the reference plane was calculated. Following the
method proposed above, we used Eqs. (5a) and (6) to
numerically reconstruct the distribution of the complex
amplitude of the velocity over the transducer surface.
Figure 5 shows the result of the reconstruction in the
form of the dependences of the amplitude and phase of
the normal particle velocity component on the angle θ.
The acoustic pressure was measured at a distance z0 =

0.5

0

|Vn|/V0

ϕV

5 10 θ, deg

0.5

0
5 10

1.0

1.0

θ, deg

Fig. 3. Effect of the error ∆Ò = 25 m/s introduced into the
velocity of sound Ò0 = 1476 m/s (which corresponds to a
10°ë variation in the water temperature) on the normalized
amplitude |Vn|/V0 and phase ϕV (in radians) distributions of
the normal velocity over the transducer surface.
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214 mm from the transducer. One can see that the
reconstructed amplitude and phase distributions of the
particle velocity are nonuniform. They exhibit pro-
nounced maxima and minima associated with the Lamb
waves in the piezoceramic plate [2]. In particular, the
velocity amplitude maximum at the center of the trans-
ducer (θ = 0°) is almost twice as high as the average
amplitude of the particle velocity. For comparison, the
thin line illustrates the numerical simulation under the
assumption that the initial velocity distribution is uni-
form (see the previous section).

Note that the velocity reconstruction from the
acoustic pressure measured at different distances from
the transducer gives the same results. Figure 6 shows
the normal velocity distributions reconstructed from
the pressure measured at z0 = 136, 165, and 214 mm.
The plots demonstrate a qualitatively similar behavior;
in particular, the positions and amplitudes of their max-
ima and minima almost coincide. Minor differences
occur, because real transducers are not exactly axially
symmetric and, in the general case, the reconstruction
procedure should use the acoustic pressure measured
over the entire plane rather than along a single line.

Using Rayleigh integral (7) and the reconstructed
normal velocity on the transducer surface, one can cal-
culate the acoustic field at any point of space. The com-
parison of this field with the field measured experimen-
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Fig. 4. Measured distributions of the normalized amplitude  = |A|/A0 and phase ϕ of the acoustic pressure in the focal plane z =
220 mm. The upper panels show the two-dimensional distributions in the (x, y) coordinates represented as shades of gray with higher
values corresponding to lighter shades. The point (x, y) = (0, 0) corresponds to the hydrophone position on the transducer axis. The
lower panels show the one-dimensional amplitude and phase (in radians) distributions along the transverse x axis.
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Fig. 5. Reconstruction of the normalized amplitude |Vn|/V0
and phase ϕV distributions of the particle velocity over the
transducer surface from the acoustic pressure measured
along the transverse x axis at the distance z0 = 214 mm from
the transducer (curves a). The thin lines (curves b) show the
distributions reconstructed from the theoretical pressure
distributions created by a piston transducer at this distance.
The angle θ = 0° corresponds to the center of the transducer,
and the angle θ = 14°, to its edge.
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tally can serve as an implicit validity test for the curves
in Fig. 5. To this end, we performed additional mea-
surements of the wave amplitude. The upper panel in
Fig. 7 shows the acoustic pressure distribution mea-
sured along the transducer axis, and the lower panel, the
pressure distribution measured along the normal to the

axis at the distance z0 = 165 mm from the transducer.
The thick solid lines are calculated from the recon-
structed particle velocity, and the oblique crosses show
the experimental results. Note that these calculations
used the distribution reconstructed from the pressure
measured at a different distance (z0 = 214 mm) from the
transducer. For the sake of comparison, the dotted lines
show the pressure reconstructed from the uniform dis-
tribution of the normal particle velocity over the trans-
ducer. One can see that the calculation based on the
reconstructed velocity distribution describes the true
field structure much better. Minor differences between
the calculations and the experiment can be attributed to
the violation of the axial symmetry of the field gener-
ated by the transducer (Fig. 4). As was noted above, this
effect was ignored in our calculations.

The proposed method of reconstructing the velocity
field was also applied to other transducers. The results
were similar, which allows us to conclude that the
method can be used to reconstruct the normal particle
velocity on the surfaces of different transducers.
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Fig. 6. Reconstruction of the velocity distributions over the
transducer surface from the pressure measured along the
normal to the acoustic axis at the distances z0 = 136, 165,
and 214 mm from the transducer.
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Fig. 7. Measured and calculated acoustic pressure. The

upper panel shows the normalized pressure amplitude  =
|A|/AF along the transducer axis. The lower panel shows the

normalized pressure amplitude  = |A|/A∗  versus x coor-
dinate for z = z∗  = 165 mm. Here, AF = A(z = F) and A∗  =
A(z = z∗ ) are the acoustic pressure amplitudes at the focus
and on the axis of the transducer at z = z∗ , respectively. The
measured values are indicated by oblique crosses. The solid
lines are calculated using the normal particle velocity distri-
bution over the transducer surface that was reconstructed
from the pressure measurements at z0 = 214 mm. The dotted
line represents the calculations for a piston transducer.
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