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Abstract—Soniс boom propagation in the atmospheric turbulent layer, represented by a model of homoge-
neous isotropic turbulence, is investigated numerically in two-dimensional geometry using a KZK-type non-
linear parabolic equation for an inhomogeneous moving medium with relaxation. The mean value, standard
deviation, and cumulative probabilities of the sonic boom amplitude, shock front steepness, and the Per-
ceived Loudness Mark VII metric of subjective loudness of an impulse noise are analyzed at different propa-
gation distances traveled by the sonic boom wave in the turbulent layer and for different initial amplitudes of
the wave.
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1. INTRODUCTION

Research on the sonic boom problem dates back to
more than 60 years ago [1]. Sonic boom is a pulsed
acoustic perturbation with a shock front generated by
supersonic aircraft that propagates as a Mach cone to
the Earth’s surface [2]. The classic waveform of the
sonic boom wave resembles the letter N and is conven-
tionally called an N-wave [3]. Such a shock wave is
perceived by people as an extremely sharp and annoy-
ing impulse noise [4]. This is the main reason why
supersonic f lights of civil aircrafts are prohibited over
populated areas [5]. In the last decade, sonic boom
research activity has been associated with plans to cre-
ate supersonic business-class passenger aircrafts, that
are approximately two times smaller in size than the
Concorde [5–7]. Currently, the main efforts are
aimed at optimizing fuselage shape to modify the
resulting waveform and minimize the impact of its
generated impulse noise [8–10]. Although there have
been efforts to minimize the impact of sonic boom
since the earliest development of supersonic f lights [1,
5], significant progress in this area is related to the
evolution of computational aerodynamics methods
and increase in computer processing power [11].

The resulting pressure wave signature of the sonic
boom at the Earth’s surface is governed not only by the
aerodynamic processes by which an aircraft generates
a shock wave. In the final segment of the propagation
trajectory from the aircraft’s altitude to the ground, a
sonic boom wave passes through the surface turbulent
layer of the thickness that can reach 1–2 km [12]. Due
to the oblique incidence of the wave in the form of a
Mach cone on the ground and due to refraction in a
stratified atmosphere, the path traversed by the shock
wave in the surface turbulent layer can be several times
longer than its thickness [13]. Acoustic inhomogene-
ities caused by random fluctuations in wind speed and
temperature in an unstable atmosphere lead to ran-
dom focusing and defocusing of the acoustic field [14,
15]. As a result, the acoustic field acquires a complex
random spatiotemporal structure. The effects related
to propagation through a turbulent layer have been
observed many times under natural conditions [13, 16,
17] and have also been widely studied in model exper-
iments under laboratory conditions [18–20]. It has
been shown that with an increase in the thickness of
the turbulent layer and an increase in f luctuations in
the sound speed, the standard deviation of the shock
wave amplitude increases up to a certain limit. In this
26
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case, the rise time of the shock front also increases on
average in comparison with the values obtained in a
homogeneous medium.

For a finer analysis of the processes occurring
during propagation of a shock wave through a turbu-
lent layer, numerical experiments were carried out
with various theoretical models [10, 21–32]. Previ-
ously, methods involving the geometric acoustics of
inhomogeneous media were widely used [10, 21–25].
To account for diffraction effects, various one-way
wave equations have been applied. Among these equa-
tions, a nonlinear parabolic KZK (Khokhlov–Zabo-
lotskaya–Kuznetsov) type equation that takes into
account the vector and scalar inhomogeneities of the
propagation medium and the relaxation mechanism of
absorption, has been broadly used [26–30]. More
complex wide-angle parabolic models have also been
developed [31, 32] but remain unpopularized. The
theoretical studies covered the statistics of the wave
amplitude, the rise time of the shock front, as well as
its steepness, as a function of the initial sonic boom
parameters and the distance traveled in the turbulent
layer. It has been shown that the wave amplitude can,
with a probability of several percent, increase by a fac-
tor of two or more with respect to the nominal level
[27–30]. Scattering by turbulent inhomogeneities
mainly leads to blurring of the shock front, which can
be partially compensated by nonlinear effects [30].

For noise level standards, it is not the physical
characteristics of the shock pulse on the Earth’s sur-
face that are of importance, but its subjective percep-
tion [17, 33]. From psychoacoustic studies, it is known
that the amplitude and rise time of the shock front of
a sonic boom wave are primarily responsible for the
perceived noise level [34]. To estimate this level, vari-
ous metrics can be used, most of which are calculated
from the spectral power of the waveform [35]. One of
the commonly used metrics of the perceived noise
level of sonic boom is the Perceived Loudness Mark
VII (abbreviated PL) [36–38], which correlates well
with the subjective loudness rating level [35] and has
become the de facto standard in this research [38].

There have been relatively few studies evaluating
the effect of turbulence on the perceived noise level of
sonic boom [29, 39], and much remains uncertain in
this field. On the other hand, it is extremely important
for regulators to estimate the noise level spread [4].
Therefore, the aim of this work was a theoretical study
of the PL statistics of an N-wave after propagation
through a turbulent layer and its comparison with sta-
tistics of the wave amplitude and shock front steepness
that have been studied in more details. For this pur-
pose, a theoretical model based on a nonlinear para-
bolic equation for an inhomogeneous moving medium
was used [26–30]. As a result of solving this equation
using numerical modeling methods, the N-wave
waveforms randomly distorted due to refraction by
wind speed inhomogeneities in homogeneous isotro-
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pic turbulence, were obtained. The PL, amplitude,
and shock front steepness values calculated for each
waveform were analyzed statistically for N-waves of
different amplitudes and at different propagation dis-
tances in depth of the turbulent layer.

2. THEORETICAL METHOD
2.1. Nonlinear Parabolic Equation in an Inhomogeneous 

Moving Medium
To calculate the sound field as an N-wave propa-

gates through the turbulent layer, a nonlinear para-
bolic KZK-type equation for an inhomogeneous
moving medium was used in a two-dimensional
geometry [26]:

(1)

Here p is the acoustic pressure, z is the longitudinal
coordinate along the main direction of wave propaga-
tion, x is the transverse coordinate, t is time, c0 and ρ0 are
the ambient sound speed and air density, τ = z – t/c0 is
the time in the retarded time coordinate system, τ' is
an auxiliary integration variable, u0z and u0x are the
longitudinal and transverse components of the wind
speed vector u, δ and ε are the coefficients of thermo-
viscous absorption and nonlinearity in air, respec-
tively, and n = c0/c is the refractive index for scalar
inhomogeneities.

The terms on the right-hand side of the equation (1)
sequentially describe the physical effects related to dif-
fraction, scalar inhomogeneities, wave convection
along the longitudinal and transverse directions,
acoustic nonlinearity, and thermoviscous absorption.
The last term in the equation, which is the integro-dif-
ferential operator

(2)

takes into account absorption and dispersion caused
by relaxation processes due to excitation of the vibra-
tional degrees of freedom of nitrogen and oxygen mol-
ecules (J = 2) [40]. The relaxation process with the
subscript j is characterized by the difference between
the sound speed in nonequilibrium and equilibrium
states  and the relaxation time τj. To simplify
the equation, the terms related to inhomogeneities of
the density of the medium are omitted, since they have
a weak effect on the acoustic field against the refrac-
tive effects of an inhomogeneous medium. The equa-
tion is obtained with first-order accuracy in the Mach
number for wind speed M = |u|/c0, which is about 10–2

for the planetary turbulent layer. The acoustic Mach
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Fig. 1. Initial waveform of symmetrical N-wave with shock
front structure characteristic to a medium with thermovis-
cous absorption (dashed curve), and the waveform after its
propagation over distance of 6 km in homogeneous atmo-
sphere with account of relaxation and nonlinear effects
(solid curve). Pressure waveforms are normalized to initial
amplitude p0 = 20 Pa. Inset: differences in structure of
shock fronts between the two waveforms. 
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number is also assumed to be small and for sonic boom
waves is usually less than 10–3. The equation is valid
when the diffraction angles are small with respect to
the initial direction of wave propagation (usually no
more than 15°) and when fluctuations in the parame-
ters of inhomogeneities are smooth and small.

2.2. Parameters of the Medium and Homogeneous 
Isotropic Turbulence Model

The acoustic parameters of air were calculated for a
temperature of 20°C, a relative humidity of 25%, and
a pressure of 105 Pa and yielded c0 = 343.8 m/s, ρ0 =
1.18 kg/m3, ε = 1.2, δ = 3.85 × 10–5 m2/s. The param-
eters of relaxation processes for nitrogen and oxygen
molecules were Δc1 = 0.1204 m/s, τ1 = 9.6 μs (oxy-
gen), Δc2 = 0.0219 m/s, τ2 = 753.7 μs (nitrogen) [40].

Inhomogeneities of the atmospheric boundary
layer were created using a model of two-dimensional
homogeneous isotropic kinematic turbulence with a
von Karman-type energy spectrum [41]:

(3)

Here,  is the modulus of the spatial
wavenumber, Kx and Kz are the transverse and longitu-
dinal spatial wavenumbers, respectively; L0 = 100 m is
the outer turbulence scale, corresponding to the larg-
est-scale turbulence fluctuations, K0 = 1 /L0; l0 = 0.01 m
is the inner scale; and Km is the Kolmogorov scale

related to the inner scale l0 (Km= 5.92 /l0),  is the
RMS velocity of turbulent pulsations of the longitudi-

nal wind component. The  value was chosen
equal to 1.7 m/s, which corresponds to the conditions
of strong turbulence characteristic to hot deserts in the
warm season [29]. In this case the RMS value of f luc-

tuations of effective refractive index  is
0.5%. Near the boundaries of the computational
domain, the field of inhomogeneities was gradually
zeroed in 200-m-long segments on each side to avoid
scattering of the field towards the boundaries and sub-
sequent reflections. The turbulence field changes
much more slowly than the characteristic wave travel
time; therefore, the wind fluctuation field is consid-
ered “frozen,” i.e., invariable over time.

Random realizations of the longitudinal and trans-
verse wind speed components uz and ux were generated
by the method of random Fourier modes [27]. The
number of modes was chosen equal to 10000, and their
spatial wavenumbers were distributed in the range
from 0.314 × 10–4 up to 94.2 m–1 in accordance with a
logarithmic law [30].
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Scalar inhomogeneities related to temperature fluctua-
tions were not taken into account, and in Eq. (1), the
refractive index n was assumed to be equal to 1.

2.3. Initial Wave Field

As the initial acoustic field at the entrance to the
turbulent layer, a plane wave with a classical waveform
of a symmetric N-wave was chosen (Fig. 1). The dura-
tion of the wave from the leading to the trailing shock
front was 2T0 = 200 ms. To study the influence of non-
linear effects, three wave amplitude levels p0 were con-
sidered: 10, 20, and 40 Pa. The first level corresponds
to a small business-class aircraft [5], the last is closer
to the sonic boom level from full-size Concorde and
Tu-144 aircrafts [42]. In this paper, the acoustic pres-
sure is given neglecting reflection from the Earth’s
surface, which usually doubles the amplitude.

The initial rise time of the shock front τsh, which is
usually defined as a time needed to rise the pressure at
the shock front from 10 to 90% of the peak pressure
[17, 18, 34], has a large influence on the change in the
quantitative parameters of the shock wave as it propa-
gates in a turbulent medium. More specifically, for lin-
ear wave focusing, its amplitude in caustics is propor-
tional to the time derivative of the incident waveform.
Therefore, the smaller the rise time of the shock front
is, the larger the derivative and the greater the increase
in the wave amplitude at the focus are [15, 27].

Usually, the waveform of a symmetrical N-wave is
defined by introducing a function:
ACOUSTICAL PHYSICS  Vol. 67  No. 1  2021



NUMERICAL SIMULATION OF A NONLINEAR PARABOLIC EQUATION 29
(4)

in which a hyperbolic tangent is used to yield a speci-
fied rise time τsh0 of the shock front [28]. In this case,
positive and negative peak pressures of an N-wave are
the same, and the leading and trailing shock fronts
also have the same structure, which is characteristic
for media with a thermoviscous absorption mecha-
nism (Fig. 1, dashed line). In a medium with relax-
ation, the shock front has a more complex structure
[43]; therefore, the following procedure was used to
provide a realistic initial waveform. First, for the given
parameters of the medium, the propagation of a single
shock front of a plane wave was modeled in the form of
a pressure step with a given amplitude p0, to obtain the
steady-state value of the rise time of the shock front
[44]. For this, a one-dimensional model employing
the generalized Burgers equation with relaxation was
applied. Such model has been previously used when
considering shock pulses from a spark source [45].
Then, the obtained rise time values of the steady shock
front were used to determine the waveform of the
N-wave by the equation (4).

At the final stage, the waveform of the N-wave was
simulated at a distance of 6 km using the same one-
dimensional model, so that the initial structure of the
front, a hyperbolic tangent, was transformed to a more
realistic form determined by the relaxation effects
(Fig. 1, solid line). In this case, the amplitude and the
duration of the N-wave were selected by an iterative
procedure, so that the final initial waveform, which
then propagated in the turbulent layer, had the given
values of p0 and T0. Note that the changes in amplitude
and duration of the wave, mainly due to absorption,
were less than 3%, and two iterations were sufficient to
obtain the final initial values.

The inset to Fig. 1 shows the difference in the
structure of the shock front between the waveform
determined according to the equation (4) and the
waveform obtained in the medium with relaxation for
the initial N-wave amplitude of p0 = 20 Pa. The above
procedure yielded the following rise time values of the
shock front: τsh = 3.80 ms for p0 = 10 Pa, τsh = 1.89 ms
for p0 = 20 Pa, and τsh = 0.92 ms for p0 = 40 Pa. The
average steepness of the front, calculated between the
points from which its rise time was computed, for the
indicated three cases were 2.1 Pa/ms for p0 = 10 Pa,
8.5 Pa/ms for p0 = 20 Pa, and 35 Pa/ms for p0 = 40 Pa.
It is seen, that in the chosen pressure range p0, the rise
time of the shock front is nearly inversely proportional
to the amplitude and its steepness is proportional to
the amplitude squared [30], although in the general
case, when considering a wide range of amplitudes up
to several hundred Pa, this is not always the case [44].
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2.4. Numerical Algorithm
Equation (1) was solved by the splitting method

based on physical factors according to which at each
step along the z coordinate, simplified equations are
successively solved, on the right-hand sides of which
one or more operators of the original equation are
taken into account. In this study, the operators were
identified as follows:

(5)

(6)

(7)

(8)

(9)

Diffraction in the parabolic approximation (5) was
calculated in the time domain using the Crank–Nich-
olson scheme [28–30]. At the boundaries of the
numerical domain, boundary conditions in the form
of a rigid wall were applied. The convection of the
acoustic field in the longitudinal direction (6) was cal-
culated in the frequency domain using the exact ana-
lytical solution for each of the temporal harmonics of
the waveform. The transverse convection of the acous-
tic field (7) was calculated using the Lax–Wendroff
scheme [26]. Nonlinear effects (8) were calculated
using a Godunov-type scheme in the time domain
[28]. Thermoviscous absorption and relaxation effects
(9) were calculated using the exact analytical solution
in the frequency domain. Transition between the tem-
poral and spectral representations of the pressure field
was performed using fast discrete Fourier transform
(FFT) implemented in the FFTW library.

The steps of the numerical grid along the longitu-
dinal and transverse directions were Δz = 1 m and
Δx = 0.2 m, respectively. Since the splitting method by
physical factors of the second-order of accuracy was
used [46], the actual step of the diffraction, convec-
tion, and absorption operators was Δz/ 2 = 0.5 m. The
chosen time grid step Δτ = 0.016 ms made it possible
to have more than 60 points per shock front for an ini-
tial wave with the maximum amplitude considered in
the paper. Such a margin in the signal sampling fre-
quency was necessary because of the possible twofold
increase in the wave amplitude in the caustics with a
corresponding decrease in the rise time of the shock
front. The length of the time window was 800 ms,
which is equal to four durations of the initial waveform
of the N-wave. A transverse size of the spatial region of
12800 m was chosen to provide sufficiently long reali-
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zations of the acoustic field parameters suitable for
statistical analysis. Along the longitudinal coordinate
z, calculation was carried out up to a distance of zmax =
2000 m, which corresponds to the length of the vertical
trajectory from the aircraft to the Earth’s surface with
the largest possible width of the surface turbulent
layer.

2.5. Calculation of PL Mark VII and the Steepness
of the Shock Front

PL of the sonic boom wave noise level was calcu-
lated by the simplified algorithm presented in [37, 38].
The initial data for the algorithm is the signal spectral
power in 42 standard one-third octave bands from 1 to
12600 Hz. To obtain the spectral power, a signal with
a duration of 800 ms obtained in the calculations was
padded with zeros up to the duration of 1625 ms,
which made it possible to increase the spectral resolu-
tion to 0.8602 Hz. Then, within the boundaries of each
one-third octave band, the spectral power was inte-
grated by the trapezoidal method. If the boundaries of
one-third octave bands did not coincide with the dis-
crete FFT frequencies, then the spectral power values
at these points were obtained by linear interpolation.
Then, over the corresponding 42 spectral powers  in
one-third octave bands, the sound pressure levels were
calculated by the equation [37]:

(10)

where ph = 20 μPa. These pressure levels were further
reduced to equivalent loudness levels in dB for a fre-
quency of 3150 Hz using equal loudness curves,
according to which the highest hearing sensitivity falls
in the interval from 1 to 5 kHz [36–38]. From the
equivalent loudness levels in decibels, the loudness in
sones was calculated and the maximum loudness
among all one-third octave bands was found. Next,
the algorithm calculates the resulting integral loudness
parameter in sones, simulating the masking features of
human hearing: the maximum loudness over all one-
third octave bands is taken into account with a weight
equal of 1; the summed loudness over all the remain-
ing bands, with a weight that depends on the maxi-
mum loudness; and in the case of sonic boom, ~0.2.
At the final step, the resulting loudness in sones is con-
verted to decibels. The PL calculation algorithm was
tested by comparing the results for a waveform digi-
tized from a printed figure from [38]. The comparison
showed that the results differ by less than 0.2 dB.

For the initial N-wave waveforms used in this work,
the PL values were: 76.8 dB for p0 = 10 Pa, 89.5 dB for
p0 = 20 Pa, and 101 dB for p0 = 40 Pa. Clearly, with
doubling of the N-wave amplitude, the subjective
loudness does not increase by 6 dB, as it would in the
case of a sinusoidal signal, but approximately twice as
much, by 12.6 dB between cases with p0 = 10 Pa and
p0 = 20 Pa, and by 11.5 dB between cases with p0 = 20 Pa

fE

( )= −210 log 0.07 3,p f hL E p
and p0 = 40 Pa. The 12 dB difference is explained by
the fourfold increase in the average steepness of the
shock front for doubling p0 [47].

The maximum steepness of the waveform was cal-
culated using the algorithm described in [30]. In this
algorithm, the time derivative of the waveform is cal-
culated first. Next, the maximum of the derivative is
searched over the entire waveform, which, as a rule,
corresponds to the strongest and steepest shock front
in the waveform. Then, to the left and to the right of
the maximum of the derivative are points lying at a
level of 0.3679 from the maximum. The points are
used to calculate the time interval, which is taken as
the rise time of the shock front, as well as the drop in
pressure at the front. The steepness of the shock front
is determined as the ratio of the drop in pressure across
the front to the rise time of the front.

Note that the PL considered in the study was intro-
duced to mainly assess the influence of the high-fre-
quency components of the sonic boom wave spectrum
responsible for the perceived loudness level. It was
demonstrated that this metric is preferable for analysis
of sonic boom waves when a person is outdoors [34,
35]. The design of new generation of supersonic air-
craft is aimed at reducing the characteristic PL levels
by generating a modified sonic boom wave (low boom)
with larger shock front rise time and, accordingly, a
lower energy component in the high-frequency region.
At the same time, the need to introduce additional
metrics is also discussed in order to assess the percep-
tion of the low-frequency components of the modified
sonic boom by a person both out- and indoors,
including rumbling and vibrations from objects and
structural elements [35, 39].

2.6. Statistical Data Analysis
At each step of the algorithm along the z axis, all

the acoustic field parameters of interest were calcu-
lated over the entire width of the computational
domain along the transverse axis x, except for buffer
zones near its edges: positive peak pressure (ampli-
tude) pmax, steepness of the shock front smax, and PL.
All parameters were normalized to the values obtained
for the same initial data when calculating the propaga-
tion of an N-wave in a homogeneous medium: pref, sref,
and PLref, respectively. The obtained distributions of
the normalized parameters along the x axis were used
to calculate the mean value, standard deviation, and
histograms of probability distribution functions. The
histograms were used to find the values of the cumula-
tive probability of the parameter exceeding a given
threshold.

In total, for each numerical experiment with a
given amplitude of the initial N-wave waveform, two
independent random realizations of turbulence were
used, with a width of 11800 m each. This realization
size corresponds to a transverse length of the compu-
ACOUSTICAL PHYSICS  Vol. 67  No. 1  2021
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tational domain of 12800 m minus 1000 m of buffer
zones, 500 m on each side. Statistical data from each
realization from a set of two realizations were com-
bined.

3. RESULTS AND DISCUSSION

3.1. Spatial Distributions of N-wave Parameters

Figure 2 shows examples of the spatial distributions
of the wind speed modulus, amplitude, steepness of
the shock front, and PL in a domain of 2 × 2 km. The
wind speed is normalized to the sound speed (Fig. 2a);
the amplitude (Fig. 2b), steepness of the shock front
(Fig. 2c) and PL (Fig. 2d) are normalized to the cor-
responding values obtained during N-wave propaga-
tion in a homogeneous medium (pref, sref and PLref). All
distributions of the acoustic field parameters are gen-
erally similar to each other: they show the formation of
random caustics of various intensities and at different
distances deep in the turbulent layer. In the caustics, as
a rule, increased amplitude, steepness, and PL values
are observed. In regions between the caustics, there
are defocusing regions, where these parameters are
reduced with respect to the nominal values. However,
the distributions differ in detail. For example, on the
distributions of the steepness of the shock front and
PL, the focal maxima are found more frequently along
the transverse coordinate than on the distributions of
amplitude. It is also seen that the characteristic focus-
ing gain for the amplitude in the caustics is 2–3, and for
the steepness of the shock front, 3–4. The spread in PL
from –14 to +10 dB corresponds to the data obtained
in field experiments [17]. Exact quantitative relation-
ships can be derived from statistical analysis of the data
presented in the next two sections.

Figure 3 shows examples of typical sonic boom
waveforms normalized to pressure p0 after propagation
through a turbulent layer of 2 km thickness for differ-
ent initial N-wave amplitudes: the solid black curve
corresponds to p0 = 10 Pa; the blue dashed curve, to
p0 = 20 Pa; and the red dash–dot curve, to p0 = 40 Pa.
The same color scheme will be used below for results
obtained for different N-wave amplitudes. On the
waveforms, it is often possible to detect small pressure
peaks immediately behind the shock front (Fig. 3a); in
the defocusing regions, the waveform is smoothed and
has a reduced amplitude (Fig. 3b); in the vicinity of
caustics, the waveform has an increased amplitude
(Fig. 3c), and the waveform contains two or more
steps, which is explained by the folding effect of the
wave front in the caustics [15]. The normalized wave-
forms obtained for different initial amplitudes differ
mainly in the steepness of the shock fronts. The low-
frequency part of the waveforms is nearly the same.
ACOUSTICAL PHYSICS  Vol. 67  No. 1  2021
3.2. Mean Value and Standard Deviation
of N-wave Parameters

Figure 4 shows mean values and standard devia-
tions of the N-wave parameters as functions of the
propagation distance z for the normalized values of the
amplitude (Fig. 4a), steepness of the shock front
(Fig. 4b), and PL (Fig. 4c). The mean values are
shown by thin curves; standard deviations, by thick
curves. Different curve colors and shading correspond
to different initial N-wave amplitudes: black solid
curve, p0 = 10 Pa; blue dashed curve, p0 = 20 Pa; red
dash-dot curve, p0 = 40 Pa.

The mean value of amplitude compared to the
nominal level increases with increasing z. This is due
to the formation of peaks in the waveforms in caustics
with different focusing gains (Figs. 3a, 3c). The degree
of increase of the mean amplitude compared to the
nominal level increases with initial amplitude and for
z = 2 km is 1.15; for p0 = 10 Pa, 1.26; for p0 = 20 Pa; and
for p0 = 40 Pa, 1.37. This is because the rise time of the
shock front decreases and its steepness increases with
increasing p0, which leads to more efficient focusing in
caustics.

The standard deviation of the wave amplitude
increases with the distance z as new caustics form with
focusing by randomly scattered “lenses” of different
scales and strengths. At a certain distance correspond-
ing to focusing from the largest-scale inhomogeneities
(in this case, 1.5 km), the standard deviation reaches a
maximum, the value of which also depends on the
amplitude and steepness of the shock front of the ini-
tial N-wave. The higher the focusing efficiency in
caustics, the higher f luctuations of the amplitude and,
accordingly, the standard deviation, the maximum of
which is 0.29 for p0 = 10 Pa, 0.36 for p0 = 20 Pa, and
0.48 for p0 = 40 Pa.

A similar behavior of the mean value and standard
deviation of the amplitude depending on the propaga-
tion distance was found earlier in laboratory experi-
ments on shock wave propagation from a spark source
through a thermal or kinematic turbulence layer [19,
20] and in simulations of these experiments with the
nonlinear parabolic equation used in this study [28,
30]. The differences between the laboratory and real
scale data are mostly quantitative. For example, in lab-
oratory experiments and corresponding calculations,
the mean value of the amplitude never exceeded the
nominal level. This is because the characteristic frequen-
cies of the shock wave from the spark source are three to
four orders of magnitude higher than those of a sonic
boom wave. At such high frequencies, thermoviscous
absorption becomes the dominant absorption mecha-
nism, in contrast to the relaxation mechanism, which gov-
erns the structure of the shock front in real scale condi-
tions. In that case, the shock front from the spark
source at the inhomogeneity scales used (10–20 cm)
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Fig. 2. Spatial distributions of (a) wind speed modulus normalized to the sound speed, (b) shock wave amplitude, (c) steepness
of the shock front, and (d) PL, normalized to the corresponding values obtained during propagation of the plane wave in homo-
geneous medium. Distributions correspond to the case of N-wave with initial amplitude p0 = 20 Pa. 

|u|/c0

(а)
x,

 k
m

pmax/pref

(b)

0

2.0

1.5

1.0

0.5

0

x,
 k

m

2.0

1.5

1.0

0.5

0

0.005 0.010 0.015 0.020 0.025 0.5 1.0 1.5 2.0 2.5 3.0

smax/sref

(c)
PL–PLref, dB

(d)

1 2 3 4 –10 –5 0 5 10

0.5 1.0
z, km z, km

1.5 2.0 0 0.5 1.0 1.5 2.0
becomes quite large (1 μs or higher), which reduces
the focusing efficiency in caustics.

The mean value of the steepness of the shock front
decreases compared to the nominal level with increas-
ing distance traveled by the wave (Fig. 4b). This pro-
cess occurs the faster, the larger the amplitude of the
initial wave and is explained by the fact that the steeper
front is more easily blurred with multiple scattering by
ACOUSTICAL PHYSICS  Vol. 67  No. 1  2021
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Fig. 3. Examples of sonic boom waveforms after propagation through a turbulent layer of 2 km thickness for different initial
N-wave amplitudes: solid black curve, p0 = 10 Pa; blue dashed curve, p0 = 20 Pa; red dash-dotted curve, p0 = 40 Pa. N-wave wave-
forms: (a) with a peak near the shock front, (b) in defocusing region, (c) with a large amplitude near caustics. 
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Fig. 4. Mean values (thin curves) and standard deviations (bold curves) for (a) normalized amplitude, (b) steepness of the shock
front, and (c) PL as functions of distance z traveled for different initial N-wave amplitudes: solid black curve, p0 = 10 Pa; blue
dashed curve, p0 = 20 Pa; red dash-dotted curve, p0 = 40 Pa. 
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random medium and small-scale inhomogeneities. In
simulating laboratory experiments, the dependence of
the average steepness on the initial wave amplitude was
the inverse [30], which most likely follows from the
fact that the effects of nonlinear steepening of the
waveform under such conditions played a greater role
than in the case of a sonic boom wave. The standard
deviation of steepness of the shock front increases and
reaches a peak similarly to the standard deviation of
amplitude. However, this occurs somewhat closer to
the beginning of the layer (at z = 0.9–1.2 km) com-
pared to the position of the maxima of the standard
deviation of the amplitude. In that case, the achieved
maxima of the standard deviation of the steepness of
the shock front are 0.38 for p0 = 10 Pa, 0.48 for p0 =
20 Pa, and 0.81 for p0 = 40 Pa. These values are 25–
30% (p0 = 10 Pa and p0 = 20 Pa) and 80% (p0 = 40 Pa)
greater than the corresponding standard deviations of
the amplitude, which means that the steepness of the
ACOUSTICAL PHYSICS  Vol. 67  No. 1  2021
shock front f luctuates more strongly than the ampli-
tude, and the magnitude of f luctuations increases with
increasing amplitude and steepness of the shock front
of the initial N-wave. This qualitative conclusion coin-
cides with that for the curves of the standard deviation
of the steepness of the shock front in laboratory-scale
turbulence [30].

The mean value of PL decreases on the whole with
increasing distance traveled by the wave, and only
closer to z = 2 km there is a tendency toward a slight
increase. The maximum drop in mean loudness for
the cases p0 = 10 Pa and p0 = 20 Pa hardly depends at
all on the amplitude of the initial N-wave: –1.8 dB.
For the case p0 = 40 Pa, the drop in mean loudness is
greater: –2.7 dB. The standard deviation of PL
increases, reaching a maximum at approximately the
same distances where the maximum standard devia-
tion of the amplitude is observed (z = 1.5 km). The
maximum of the standard deviation of PL reaches
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4.2 dB and is virtually independent of the amplitude of
the initial N-wave for the cases p0 = 10 Pa and p0 =
20 Pa. For p0 = 40 Pa, the maximum standard devia-
tion is greater: 5.0 dB. This will be explained following
the discussion of cumulative probabilities in the next
section.

3.3. Cumulative Probabilities of the N-wave Parameters

The mean value and standard deviation provide
only generalized information about a random variable
if the latter is not Gaussian. As shown earlier in exper-
imental and theoretical studies, the amplitude distri-
bution has “tails” in the direction of large values from
the mean value, as indicated by the positive value of
the asymmetry coefficient [28]. The amplitude distri-
bution can be approximated by a generalized Γ-distri-
bution [19]. The distribution of the steepness of the
shock front is also non-Gaussian. According to the
calculations in this work, in the region where caustics
are formed (z > 1 km), the asymmetry and kurtosis
coefficients of distribution of steepness of the shock
front are greater than 1 for all three cases. Only the PL
distribution is closest to Gaussian: the asymmetry and
kurtosis coefficients change sign as the wave propa-
gates, but do not exceed 0.5 and 0.8 in absolute value,
respectively.

From the aspect of the procedures for certifying
supersonic aircraft in terms of noise level, it is very
important to assess the probability of the nominal level
being exceeded by a given threshold value. Based on
the data on the characteristic focusing gain values of
various parameters of the wave field in caustics
(Fig. 2), it makes sense to choose excess thresholds for
the normalized amplitude and steepness of the shock
front of 2, and for the PL metric, as corresponding to
a twofold increase in amplitude of +6 dB.

Figure 5 shows the cumulative probabilities of
exceeding the specified thresholds for the normalized
values of the amplitude (Fig. 5a), the steepness of the
shock front (Fig. 5b) and PL (Fig. 5c) as functions of
the propagation distance z for different initial N-wave
amplitudes. Up to certain distances z, different for dif-
ferent parameters and p0 values, the probabilities are
zero until caustics with a sufficient focusing gain are
formed. Then, the probabilities begin to increase, and
at some distance, the maximum is reached. For the
amplitude, this is from 1.5 to 2 km; for the steepness of
the front, 0.8–1.1 km; for PL, 1.2–1.4 km, which
actually corresponds to the distances at which the
maxima of the standard deviation of each of the con-
sidered quantities are formed (Fig. 4). It can be
emphasized that the maxima of the probability of the
amplitude and steepness strongly depend on the
amplitude of the initial N-wave waveform. For p0 = 10 Pa,
less than 0.9% of the waveforms have an amplitude that is
twice the nominal level. With twofold increase of the
initial amplitude p0 = 20 Pa, the number of such wave-
forms can be up to 4.3%, and with a fourfold greater
amplitude p0 = 40 Pa, up to 10.6%. For the steepness
of the shock front, the corresponding maximum prob-
abilities in order of increasing N-wave amplitude are
1.0, 2.6, and 6.3%. This behavior of the cumulative
probabilities of observing high values for the ampli-
tude and steepness of the shock front is explained by
an increase in the focusing efficiency in random caus-
tics due to the steepness of the shock front of the initial
wave that passed through a focusing inhomogeneity.
Nonlinear effects support the structure of the shock
front, preventing it from significant blurring due to
multiple instances of scattering by inhomogeneities of
various scales and strengths [14, 48]. In that case, with
increasing amplitude in caustics, the role of nonlinear
effects increases.

In contrast to the cumulative probabilities of
amplitude and steepness of the shock front, the vari-
ability of the cumulative probability curve of PL is
nearly independent of the initial N-wave amplitude for
cases with p0 = 10 Pa and p0 = 20 Pa. The maximum
probability does not exceed 3%, which actually means
that only every 30th waveform is 6 dB louder than the
nominal one. After passing a distance at which the
strongest caustics are formed (here it is about 1.5 km),
at z = 2 km, the probability drops to 1.4%. The maxi-
mum probability of obtaining a sonic boom wave with
a loudness of 10 dB greater than the nominal one is less
than 0.1% and in practice can be considered zero. For
p0 = 40 Pa, the maximum probability becomes greater:
4.4%. For z = 2 km, the probability drops to 2.3%. The
maximum probability of obtaining a sonic boom wave
with a loudness of 10 dB greater than the nominal one
in this case is less than 0.4%, which can also be consid-
ered insignificant.

The weak sensitivity of the cumulative probability
of the normalized PL to the initial N-wave amplitude
for p0 = 10 Pa and p0 = 20 Pa, and, accordingly, to an
increased steepness of the waveform in caustics
(Fig. 5b), is explained by the features of the change in
the N-wave spectrum with an increase in its ampli-
tude, as well as by the method for taking into account
the loudness inherent in the PL calculation algorithm.
Figure 6 shows the influence of the wave amplitude.
The gray curves show the sound pressure levels in the
one-third octave bands, calculated by formula (10) for
the initial N-wave waveforms (thick gray curves). It
can be seen that whereas at low frequencies the sound
pressure level increases by 6 dB when the amplitude is
doubled, starting from frequencies above several hun-
dred hertz, a significantly greater rise in the pressure
level is observed (see the difference between the gray
curves). This effect is due to the decrease in the rise
time of the shock front and an increase in its steepness,
which increases in proportion to the wave amplitude
squared. The colored curves show the average sound
pressure levels for waves distorted in a turbulent layer
at a distance z = 1.5 km, which corresponds to the
ACOUSTICAL PHYSICS  Vol. 67  No. 1  2021
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Fig. 5. Cumulative probabilities of exceeding a given threshold for (a) normalized amplitude, (b) steepness of the shock front, and
(c) PL as functions of distance z traveled for different initial N-wave amplitudes: solid black curve, p0 = 10 Pa; blue dashed curve,
p0 = 20 Pa; red dash-dotted curve, p0 = 40 Pa. For amplitude and steepness of the shock front, threshold is set to 2; for PL, 6 dB. 
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maximum PL fluctuations; the vertical intervals show
the standard deviation of the sound pressure level.
Clearly, in the low-frequency region (up to 10 Hz),
turbulence-related spectral f luctuations are insignifi-
cant. At higher frequencies (from 10 Hz and above),
appreciable f luctuations occur.

Then, based on the sound pressure levels in one-
third octave bands, the PL algorithm calculates the
subjective loudness levels, measured in sones, the
plots of which corresponding to the spectra in Fig. 6
for the initial waveforms and for the waveforms in a
turbulent layer at a distance of 1.5 km are shown in
Fig. 7. Since calculation of the subjective loudness
takes into account an increase in hearing sensitivity
with increasing frequency, despite the general drop in
the sound pressure level starting at 5 Hz (Fig. 6), there
is a clear maximum on the loudness graphs. For waves
ACOUSTICAL PHYSICS  Vol. 67  No. 1  2021
with initial amplitudes of 10 and 20 Pa, the loudness
maximum is near frequency 100 Hz, i.e., lower than
the characteristic frequencies of shock fronts. This is
also illustrated in Fig. 7b by the green dashed curve,
representing the loudness curve for the initial N-wave
waveform for p0 = 10 Pa, but with double the ampli-
tude. The steepness of the shock front of such a wave
is two times less than the steepness of the shock front
of the initial wave with an amplitude of 20 Pa and with
a physically substantiated shock front structure. It can
be seen that the maximum in the loudness spectrum
shifts slightly, from 80 Hz for p0 = 10 Pa to 124 Hz for
p0 = 20 Pa, and the increase in loudness due to the
increased steepness of the shock front occurs at higher
frequencies. The maximal loudness f luctuations cen-
ter around the maximum of the average loudness curve
over one-third octave bands. Therefore, when calcu-
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Fig. 7. Curves of subjective loudness level, measured in sones, in one-third octave bands, calculated for initial N-wave waveforms
with amplitudes of 10, 20, and 40 Pa (thick gray curves) and average values for waves distorted in turbulent layer at distance z =
1.5 km, which corresponds to maximum PL fluctuations. Vertical intervals show standard deviation of loudness level. Solid black
curve (a), p0 = 10 Pa; blue dashed curve (b), p0 = 20 Pa, red dash-dotted curve (c), p0 = 40 Pa. Green dashed line (b) shows loud-
ness levels in one-third octave bands, calculated for initial N-wave waveform for p0 = 10 Pa with doubled amplitude without
change in structure of shock front; green dash-dotted line in (c) is same, but for case of p0 = 20 Pa. 
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lating PL, a loudness of ~100 Hz will make a decisive
contribution. And since these frequencies do not cor-
respond to the characteristic shock front frequencies,
f luctuations around the mean value will behave simi-
larly, regardless of the shock front parameters.

For an initial wave amplitude of 40 Pa, the maxi-
mum of the spectral loudness curve shifts to higher
frequencies, about 400 Hz, compared to the initial
amplitudes of 10 and 20 Pa. From the loudness curve
for the N-wave obtained for the initial one from the
waveform with p0 = 20 Pa by simply doubling the
amplitude (Fig. 7c, dashed green curve), it can be seen
that an increase in loudness in one-third octave bands
due to the steepness of the front occurs at frequencies
from hundreds of hertz to 10 kHz. As a result of the
shift in the maximum of the spectral loudness curve to
the higher-frequency region, where effects related to
fluctuations in the steepness of the shock front and the
corresponding high-frequency spectral components
are more substantial, nonlinear effects have a stronger
effect on the PL statistics. This process is reflected in
the curves of the mean, standard deviation (Fig. 4c),
and cumulative probability (Fig. 5c).

4. CONCLUSIONS

In this paper, propagation of a sonic boom with a
classical N-wave waveform through atmospheric tur-
bulent layer was analyzed using numerical modeling
methods. The effect of the initial wave amplitude in
the range of 10–40 Pa on the statistics of the acoustic
field parameters was evaluated. Peak positive pressure
(amplitude), steepness of the shock front, and loud-
ness metric PL were considered as sonic boom param-
eters and cumulative probabilities of their twofold
excess were calculated with respect to the nominal
level. It was shown that an increase in the initial
N-wave amplitude leads to a significant increase in the
probability of positive outliers for the amplitude and
steepness of the shock front. These effects are related
to increased efficiency of the shock front focusing in
random caustics with an increased role of nonlinear
effects. In this case, the probability of positive outliers
for PL hardly changes for initial wave pressures of 10
and 20 Pa (3%) and increases with increasing ampli-
tude to 40 Pa (4%). This PL behavior is explained by
the shift in the spectral loudness curve, starting from a
certain level of steepness of the shock front, to the high
frequencies of increased human hearing, and the
emphasis on the weight of these frequencies when
constructing the metric. Thus, reducing the amplitude
of a sonic boom not only reduces the nominal subjec-
tive noise level, but also reduces the likelihood of
observing its positive outliers. The results demonstrate
the importance of developing the concept of super-
sonic aircraft with low-noise sonic boom waveforms
with a smaller steepness of the front and lower level of
high-frequency spectral components.
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