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Abstract—A spectral algorithm is considered for describing nonlinear generation of an acoustic wave of dif-
ference frequency formed as the interaction of two high-intensity pump waves close in frequency. To correctly
simulate the full wave spectrum involved in such two-frequency interaction, including formation of shock
fronts in the acoustic pressure waveform, it is necessary to retain about several thousand spectral components
in the numerical algorithm. This paper proposes a method that enables to significantly reduce this number
while maintaining the accuracy of calculating the difference-frequency wave field. The method combines the
limitation of the high-frequency part of the spectrum and the combination frequencies located between the
spectral components that are multiples of frequencies of the initial pump waves. Examples of the interaction
of close frequencies typical for the operation of an underwater parametric array are considered in the approx-
imation of the plane one-dimensional wave propagation. It was shown that the method makes it possible to
reduce the number of spectral components included in the nonlinear algorithm by more than 100 times and
thereby reduce the number of operations by four orders of magnitude. This makes the algorithms for simulat-
ing parametric interactions in ultrasound wave fields feasible, including three-dimensional acoustic beams.
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INTRODUCTION
Studying the parametric processes in ultrasound

wave interactions is an important problem in practical
applications of nonlinear acoustics [1, 2]. During the
nonlinear interaction of two high-intensity pump
waves with close frequencies fpump1 and fpump2, multiple
harmonics and combination frequencies are gener-
ated. Since absorption in a medium increases with fre-
quency, high-frequency spectral components decay
faster, and at distances far from the source, only the
wave of the difference frequency fdif = |fpump1 – fpump2|
propagates [3]. Development of algorithms for simu-
lating a difference-frequency wave field remains an
important problem due to a number of advantages of
the nonlinear mechanism of generating low-frequency
radiation and, as a consequence, the wide practical
applications of parametric arrays. An important fea-
ture of the two-frequency interaction is an extremely
high directivity (on the order of several degrees) of the
low-frequency radiation [4, 5]. In addition, in com-
parison with a conventional sound source operating at
the same frequency, a parametric array has a small

size, no sidelobes in the directivity pattern, and a wide
frequency bandwidth of the radiated signal.

Parametric arrays have been studied, both theoret-
ically [6] and experimentally, over the past several
decades [7–9]. They have been actively used both in
underwater acoustics, e.g., for ocean acoustic tomogra-
phy, ocean sounding, and profiling of bottom structures
[4]; and in aeroacoustics [10], e.g., for creating audio
spotlights [11] in various practical applications [12].

Theoretical models of varying complexity have
been used for governing the generation and propaga-
tion of a difference-frequency wave. The most general
approach for solving three-dimensional problems is to
solve a system of nonlinear equations for a compress-
ible viscous continuous medium using finite-differ-
ence methods [13]. However, obtaining the solution of
this system even for radially symmetric sources is com-
putationally cumbersome. A more practically suitable
model is the one-way Westervelt equation, which takes
into account the effects of nonlinearity, diffraction,
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and thermoviscous absorption [3]. In the retarded
time coordinate system, it can be written as follows:

(1)

Here, p is the acoustic pressure, z is the propagation
coordinate along the beam axis, τ = t – z/c0 is the
retarded time, Δ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the
Laplacian, с0 is the sound speed, ρ0 is the density of a
medium, and β and δ are the nonlinearity and ther-
moviscous absorption coefficients in the medium,
respectively. If necessary, the equation can also take
into account other absorption mechanisms, e.g.,
relaxation.

Originally, the Westervelt equation was used in the
modeling of parametric interactions to obtain analyti-
cal estimates of the pressure amplitude at difference
frequency in the far field of a transducer [3]. In mod-
ern studies, the Westervelt equation is solved numeri-
cally, for example, by finite-difference methods in the
time-domain representation [14]. This equation can
also be used to obtain semi-analytical solutions for the
difference-frequency field in the quasi-linear approx-
imation without paraxial approximation [15].

For ultrasound sources used in medical acoustics,
the Westervelt equation has been widely solved
numerically using operator-splitting method [16, 17].
According to this method, at each step along the coor-
dinate of wave propagation, the operators on the right-
hand side of the equation describing various physical
effects are calculated separately. Such approach makes
it possible to use the most effective numerical scheme
for each particular operator. The main challenge arises
when calculating the diffraction operator, for the
implementation of which the angular spectrum
method is often used [18]. For parametric sources,
such simulation method has been implemented in the
quasi-linear approximation for three-dimensional
geometry of the acoustic field [19].

A simpler model for calculating the fields of para-
metric sources is the Khokhlov–Zabolotskaya–
Kuznetsov (KZK) equation

(2)

which differs from the Westervelt equation in the use
of the paraxial approximation in calculating the dif-
fraction operator in the right-hand side of the equa-
tion. Here, Δ⊥ = ∂2/∂x2 + ∂2/∂y2 is the Laplacian over
the transverse coordinates. The finite-difference
numerical schemes have been developed for the KZK
equation both in the time- [20] and frequency-domain
representations [21]. They are also based on the oper-
ator-splitting approach. Later, these schemes were
used to describe the difference-frequency fields of
radially symmetric [22–24] and rectangular [25]
sources.
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The main difficulty in modeling parametric inter-
actions in nonlinear beams is as follows. If we do not
restrict ourselves to the quasi-linear approximation
and take into account the formation of shock fronts in
the pump wave, then the number of spectral compo-
nents that must be formally included in the algorithm
becomes very large, on the order of several thousands.
This becomes critical when the spectral method is
used to calculate a nonlinear operator, since the num-
ber of operations is proportional to the number of har-
monics squared [26]. In this case, when solving the
Eqs. (1) and (2) using operator-splitting scheme, a
one-dimensional nonlinear problem is actually solved
at each step of the grid along the wave propagation
coordinate. The use of time-domain algorithms is also
challenging, since, on the one hand, the time window
must be sufficiently wide to encompass the low-fre-
quency component, and on the other hand, the time
sampling rate must be sufficiently small to correctly
represent the high-frequency components and their
harmonics. As a result, three-dimensional modeling
of parametric processes in acoustic fields created by
sources with arbitrary-shaped apertures becomes dif-
ficult, both in terms of the required RAM and compu-
tation time, even using modern computers with multi-
core processors.

This limitation can be overcome by selecting the
most essential spectral components that contribute to
forming the signal at the difference frequency and
retaining only these harmonics in the numerical
scheme. This idea has been considered earlier, but as
far as we know, it has not been realized [24]. In our
study, we propose to optimize the calculation of a
nonlinear operator by filtering the wave spectrum and
identifying criteria for excluding or retaining the spec-
tral harmonics. The algorithm for solving the Eqs. (1)
and (2) in a one-dimensional formulation is presented
taking into account only the nonlinearity and absorp-
tion operators, and the corresponding parametric
phenomena are described. In this case, without
account for the diffraction operator, Eqs. (1) and (2)
transform into the one-dimensional nonlinear Burg-
ers equation [27]. The proposed method can consider-
ably reduce the number of operations in the algorithm
for calculating the nonlinear operator. Development
of the method in a one-dimensional formulation is
aimed at its further use in solving the complete nonlin-
ear-diffraction problem, consideration of which is
beyond the scope of this study.

1. THEORETICAL APPROACH

1.1. Nonlinear Burgers Equation

To model the nonlinear and absorption effects
during the interaction of two one-dimensional high-
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Fig. 1. One period of dimensionless initial pressure waveform at Z = 0 for three pairs of interacting pump frequencies: (а) fpump1
= 150 kHz and fpump2 = 145 kHz, (b) fpump1 = 150 kHz and fpump2 = 140 kHz, (c) fpump1 = 150 kHz and fpump2 = 135 kHz. 
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intensity plane waves that are close in frequency, the
Burgers equation can be written as follows [27]:

(3)

with the following boundary condition for the pump
waves with frequencies fpump1 and fpump2:

(4)

where p0 is the maximum acoustic pressure reached in
the initial pump wave, and ωpump1 = 2πfpump1 and
ωpump2 = 2πfpump2 are the angular frequencies.

For convenience of obtaining the numerical solu-
tion of the Eq. (3), the dimensionless variables were
introduced: P = p/p0, θ = ωdifτ, Z = z/lsh, where ωdif =
2πfdif is the angular frequency corresponding to the
difference frequency fdif = fpump1 – fpump2 (for definite-
ness we set fpump1 > fpump2), lsh is the shock formation
distance for the wave cycle with maximum amplitude
p0 and frequency ωpump1, which is the kth harmonic of
the difference frequency (ωpump1 ≡ ωk = kωdif):

In addition, introducing the inverse acoustic Reyn-
olds number, or Goldberg number Γ, at the pump fre-
quency fpump1 as

(5)

the Burgers equation (3) and the boundary condition
(4) can be rewritten in the dimensionless form as:

(6)

(7)
Equation (3) with boundary condition (4) has an

analytical solution for the amplitude Adif,analyt(z) of a
difference-frequency wave in a quasi-linear approxi-
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mation assuming constant amplitudes A1 and A2 (4) of
the pump waves [28]:

(8)

1.2. Boundary Wave Field and Parameters 
of the Medium

Numerical simulation of the generation and prop-
agation of a difference-frequency wave was performed
here using frequencies, amplitudes, and parameters of
the medium typical for experiments with a recently
developed parametric underwater array [29]. It has
been assumed that the maximum efficiency of the
parametric array is attained at a sufficiently high
intensity of the pump waves, when the nonlinear
effects balance dissipative processes and the acoustic
waveform is distorted being close to contain a shock
front [30, 31]. For numerical analysis, as the boundary
condition, three pump waves with frequencies fpump1 =
150 kHz and fpump2 = 145, 140, and 135 kHz were con-
sidered. Hence, the difference-frequency waves were
generated at the frequencies fdif = 5, 10, and 15 kHz,
respectively. Figure 1 shows one period of the initial
dimensionless pressure waveforms used as a boundary
condition (7) to the modeling for three selected pairs
of interacting pump frequencies.

To estimate the relative contributions of nonlinear-
ity and absorption, the data of recent experimental
studies with an underwater parametric array were used:
p0 = 0.6 MPa, c0 = 1502.25 m/s, ρ0 = 996.81 kg/m3 [29];
and nonlinear and absorption parameters typical for
seawater: β = 3.5, δ = 4.42 × 10–6 m2/s [32].

1.3. Numerical Algorithm

We represent the solution to the Eq. (6) in the form
of a finite Fourier series with number Nmax of the tem-
poral harmonics
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Fig. 2. Distortion of one period of dimensionless pressure
waveform of the pump wave with frequency fpump1 = 150 kHz,
amplitude p0, and absorption Γmodel = 0.01 at distances:
(а) Z = 0, 0.5, and 1, showing gradual steepening of the
waveform prior to the shock front formation; (b) Z = 1.5,
3, and 10, after shock is formed and the wave amplitude
decreases with the propagation distance. Waveforms at dis-
tances Z = 3 and Z = 10 are artificially shifted along the
time scale by π/8 and π/4, respectively. Solid curve is the
analytical solution, dashed curve is the numerical solution
obtained for Nmax = 250 spectral harmonics. 
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Then Eq. (6) is written in the frequency representation
as a finite system of coupled nonlinear equations [26]:

(9)

where 1 ≤ n ≤ Nmax,  is the complex conjugate
amplitude of the mth harmonic and i is the imaginary
unit. In this case, the boundary condition (7) is Pk–1,0 =
Pk,0 = – 0.25i.

The system of equations (9) was solved using oper-
ator-splitting method [16–18], where each step over
the coordinate Z started and ended with the absorp-
tion operator calculated at a half-step ΔZ/2 of the grid.
Thus, the operator-splitting scheme can be repre-
sented as follows:

where the absorption operator at step ΔZ/2 and the
nonlinear operator at step ΔZ are denoted as LA,ΔZ/2
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and LN,ΔZ, respectively. The system of nonlinear equa-
tions (9) without absorption was solved by the fourth-
order Runge–Kutta method [26]. To calculate the
absorption of each harmonic, analytical solution in
the form of a decaying exponent was used.

To reveal the optimum parameters of the numeri-
cal algorithm for obtaining reference solutions, we
first calculated the propagation of a plane pump wave
with frequency fpump1 = 150 kHz and amplitude p0,
which corresponds to the maximum amplitude in the
pressure waveform during the two-frequency interac-
tion (Fig. 1): p(τ, z = 0) = p0sin(ωpump1τ). Calculations
were performed for Nmax = 250 harmonics, the dimen-
sionless step of the spatial grid ΔZ = 0.01, the Gold-
berg number (5) Γ = 10–3. To ensure the stability of the
numerical scheme during modeling, it is necessary to
provide about 9 points per shock [33] that is deter-
mined by corresponding absorption coefficient δ for
the selected number of harmonics Nmax. Therefore, the
physical Goldberg number Γ = 10–3 was increased by
about ten times. Selection of Γmodel = 0.01 was deter-
mined by the number of harmonics Nmax = 250 chosen
for modeling and corresponding to the time step of the
grid Δθ = π/Nmax. In this case, appreciable discrepan-
cies are only observed in the structure of the shock
front in its vicinity θ = 0 ± 4π/Nmax, which is 1.6% of
the duration of the period.

Figure 2 compares the results of numerical simula-
tions for the above-mentioned parameters (dashed
curve) with the analytical solution for a Riemann
plane wave [34] (solid curve). Clearly, the numerical
solution agrees well with the analytical one both at dis-
tances before (Z < 1) and after (Z > 1) shock forma-
tion. Some discrepancies are observed only in the fine
structure of the shock front and are due to the finite
value of the Goldberg number, which makes it possi-
ble to use a limited number of harmonics in simula-
tions. The solutions hardly differ at all in other inter-
vals, and at θ = 0 ± 20π/Nmax, the error is already less
than 1%. Therefore, the use of 250 harmonics to
describe nonlinear processes in a high-frequency wave
can be considered as acceptable.

Now, to model two-frequency interactions, we also
used 250 harmonics of pump frequency fpump1 and
Goldberg number Γmodel = 0.01. In the direct formula-
tion, to describe waves with the selected frequencies
fpump1 = 150 kHz and fpump2 = 145, 140 and 135 kHz, it
is necessary to take into account Nmax = 7500, 3750
and 2500 harmonics of the difference frequency,
respectively. This is difficult to implement in the mod-
eling nonlinear-diffraction problems based on the
Eqs. (1) and (2) due to the quadratic growth of the
number of operations when calculating nonlinear
operator (9) as a function of Nmax.
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Fig. 3. Illustration to the method of filtering the spectrum by the example of fdif = 10 kHz. The spectrum Pn of the initial wave at
the distance Z = 0 is shown on the left, where n = f/fdif is the number of the difference-frequency harmonic; the spectrum at Z = 3
and thresholds for N = 12, 25, 50 (dashed, dash-dotted and dotted lines, respectively) are shown on the right.
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1.4. Filtering the Spectrum
The idea behind the method proposed in this paper

for reducing the number of spectral components in the
numerical solution, or filtering the spectrum, is as fol-
lows. It is known that as a quasi-harmonic high-inten-
sity wave propagates, cascade processes of generating
new frequencies are directed mainly towards transition
of the wave energy to higher frequencies [27]. The effi-
ciency of the inverse processes towards generation of
difference frequencies is extremely lower. Thus, only
high-frequency components with the highest ampli-
tudes will mainly contribute to the generation of low-
frequency spectral components. These components
are concentrated near multiple frequencies of the
pump waves. The total spectrum of the nonlinear wave
also contains frequencies with sufficiently small
amplitudes, which can be omitted without significant
loss of accuracy in the solution for the difference-fre-
quency wave. Filtering the spectrum is illustrated in
Fig. 3 for fdif = 10 kHz, where the left graph shows the
initial wave spectrum at distance Z = 0 (two peaks at
the pump frequencies), and the right graph shows the
wave spectrum at distance Z = 3 calculated with the
use of the total number of harmonics Nmax = 3750.
Note that the distance Z = 3 corresponds to the three
shock formation distances for the high-frequency
period with maximum amplitude p0; the nonlinear
effects for the remaining periods with smaller ampli-
tudes are less pronounced (Fig. 1). Indeed, the ampli-
tudes of the spectral components are the highest near
the multiple harmonics of the pump frequencies and
much smaller between them.

To determine the numbers of harmonics with the
highest amplitudes, we introduced dimensionless
threshold pressure Pth, which cuts off the harmonics
with lower amplitudes (except for the first harmonic).
Thus, the optimized algorithm includes predeter-
mined number of harmonics N which is less than is
used in the reference solution. Here, the “reference”
solution is the numerical solution obtained by model-
ing with all harmonics Nmax. Threshold values Pth were
varied so that the number of spectral components with
amplitudes above the threshold was N = 12, 25, 50
(dashed, dash-dotted, and dotted lines, respectively).
The dimensionless distance Z = 1, 1.5, and 3, at which
this procedure was performed, was also varied for
three values of fdif considered in this work. In the
obtained filtered spectrum with amplitudes above the
threshold level, first, the high-frequency part of the
spectrum was limited, and second, the number of
combination components was reduced between the
frequencies that are amplitude peaks of the multiples
of the pump frequencies fpump1 and fpump2. Then, the
algorithm for solving Eq. (6) was modified so that the
calculations were performed only using the indices of
the harmonics retained after filtering.

2. RESULTS AND DISCUSSION

Figure 4 shows the amplitude Pdif of a difference-
frequency wave along the propagation distance Z for
three values of fdif: 5 kHz (Figs. 4а, 4d), 10 kHz
(Figs. 4b, 4e), and 15 kHz (Figs. 4c, 4f). The reference
solution at N = Nmax is shown in all plots by solid red
curves, and the quasi-linear solution (8) is shown by
the grey marker curve. The upper row of plots
(Figs. 4а–4c) was obtained by filtering the spectrum
of the reference solution at distance Z = 3 with a dif-
ferent number of harmonics included in the nonlinear
algorithm: N = 12 (dashed curve), 25 (solid curve),
ACOUSTICAL PHYSICS  Vol. 68  No. 2  2022
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Fig. 4. Dependences of the amplitude Pdif of difference-frequency wave on distance Z for three values of fdif: (а, d) 5 kHz, (b, e)
10 kHz, and (c, f) 15 kHz. (а–c) filtering the spectrum at the distance Z = 3 with different numbers of harmonics included in the
algorithm: N = 12 (dashed curve), 25 (solid curve), and 50 (dotted curve); (d–f) filtering the spectrum for N = 25 at different
distances: Z = 1 (dotted curve), 1.5 (dashed curve), and 3 (solid curve). The solution in the quasi-linear approximation (solid
marker curve) and the reference solution (solid red curve) for N = Nmax (7500, 3750, and 2500) are also shown. Dependences
Pdif(Z) at the initial stage of propagation are shown in the insets to the corresponding figures. 
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and 50 (dotted curve). The lower row (Figs. 4d–4f)
was obtained by filtering the spectrum with a constant
number of harmonics N = 25 included in the nonlin-
ear algorithm, but at different distances: Z = 1 (dotted
curve), 1.5 (dashed curve), and 3 (solid curve).
Dependences Pdif(Z) at the initial stage of propagation
are shown in the insets to the corresponding figures.

As shown in the figure, at the initial stage up to the
distance Z = 2, the amplitude of the difference-fre-
quency wave obtained by the numerical solution both
including all harmonics and with the spectrum filter-
ing grows linearly and practically is indistinguishable
from the result of the analytical solution obtained in
the quasi-linear approximation. Then the linear
growth slows down and turns to saturation at distances
of the order of several lengths of the shock formation.
In this case, the higher difference frequency fdif is, the
more energy is transferred to it from the pump fre-
quencies. Thus, according to the quasi-linear approx-
imation (8), at distance Z = 1, the amplitude of the dif-
ference-frequency wave is proportional to its fre-
quency. For fdif = 5 kHz it is 0.2%, for fdif = 10 kHz it
is 0.4%, and for fdif = 15 kHz it is 0.6% of the maxi-
mum amplitude p0 of the initial pump wave. The
intensities of the difference-frequency waves are 0.01,
0.04, and 0.09% of the initial intensity p0

2/(4с0ρ0)
averaged over the period of a low-frequency wave. At
distances of several shock formation lengths, at which
the amplitude of the difference-frequency wave
ACOUSTICAL PHYSICS  Vol. 68  No. 2  2022
becomes saturated, this amplitude additionally
increases more than twofold, which corresponds to a
more than fourfold increase in intensity.

Figures 4a–4c show the effect of filtering the spec-
trum of the reference solution at distance Z = 3 on the
accuracy of the numerical solution for Pdif at different
numbers of harmonics N = 12, 25, and 50 included in
the nonlinear algorithm versus the reference solution
at N = Nmax. For the number of harmonics N = 12, the
numerical solution for the difference-frequency wave
considerably differs from the reference one starting
from distances of about Z = 3. The use of N = 25 har-
monics in the nonlinear algorithm results in an error in
calculating the amplitude of the difference-frequency
wave of less than 0.4% at distance Z = 1, less than 1.8%
at Z = 3, and less than 2.8% at Z = 10, while the max-
imum error over the entire distance range is less than
2.8%. Accounting for N = 50 harmonics results in an
error not exceeding 2% at all distances. Considering
that parametric arrays operate mainly in modes close
to the shock front formation, selection of N = 25 har-
monics seems sufficient for further analysis.

Figures 4d–4f show the results of filtering the spec-
trum with a constant number of harmonics N = 25
included in the nonlinear algorithm at different dis-
tances Z = 1, 1.5, and 3 versus the reference solution at
N = Nmax. Clearly, all obtained solutions are quite
close, but filtering at the distance Z = 3 is preferable.
This selection results in an error which is less than
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Fig. 5. (а–d) One period of dimensionless pressure waveform for fpump1 = 150 kHz and fpump2 = 140 kHz at distances Z = 1, 1.5,
3, and 10, respectively; (e–h) wave spectrum at the same distances Z = 1, 1.5, 3, and 10, respectively. The reference solution is
shown by the bold grey curve, the result of filtering the spectrum at distance Z = 3 by including N = 25 harmonics in the nonlinear
algorithm is shown by the thin red curve. 
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2.8% compared to the reference solution at all dis-
tances for all three difference frequencies.

Thus, for three pairs of interacting pump waves
with difference frequencies fdif = 5, 10, and 15 kHz,
the number of spectral components included in the
nonlinear algorithm can be reduced from Nmax = 7500,
3750, and 2500 to N = 25. The error in calculating the
amplitude of the difference-frequency wave is less
than 3% with the most appropriate selection of the
distance at which filtering of the spectrum is per-
formed. Further results will be presented for N = 25
spectral components obtained by filtering the refer-
ence numerical solution at the distance Z = 3.

Note that at distances Z < 2, the analytical solution
(8) obtained in the quasi-linear approximation for
constant pump wave amplitudes (solid marker curve in
Figs. 4a–4f) agrees well with the reference solution
and can be used instead of numerical calculation of the
nonlinear operator. At distances Z > 2, the error asso-
ciated with using the quasi-linear approximation rap-
idly increases.

Figure 5 shows typical pressure waveforms
(Figs. 5a–5d) and spectra (Figs. 5e–5h) obtained by
filtering the reference spectrum at the distance Z = 3
and selecting the threshold at which N = 25, for fdif =
10 kHz when the wave propagates over distances Z =
1, 1.5, 3, and 10 (fine red curve) versus the reference
solution for N = Nmax (bold gray curve). As seen from
the figure, f luctuations in the pressure waveform
occur due to the effect of frequency reflection due to
the limitation of retained high-frequency harmonics
(Figs. 5a–5d). However, as shown above, these arti-
facts in the description of the total spectrum of the
wave weakly affect the amplitude of the difference-fre-
quency wave (Fig. 4). The final filtered spectrum
(Figs. 5e–5h) contains the difference-frequency com-
ponent and groups of one to five spectral components
around 11 peaks, which are multiples of the initial
pump frequencies. Each of these groups is a successive
alternation of two and one spectral components with
the maximum amplitude, on the sides of which com-
bination frequencies are observed. The number of
these frequencies varies from 0 to 3 for the first six
groups and is zero from the seventh group on.

CONCLUSIONS
In this paper, numerical methods were used to

study generation of a difference-frequency wave
formed during the interaction of two high-intensity
pump waves with close frequencies in a nonlinear
medium. The calculations were performed for a one-
dimensional wave using the example of three pairs of
interacting frequencies typical of the operation of
parametric sources in underwater acoustics.

A method for filtering of the wave spectrum was
proposed, which made it possible to reduce the num-
ber of spectral components included in the nonlinear
algorithm by more than two orders of magnitude,
thereby reducing the number of operations by four
orders of magnitude. The method includes limiting
the number of high-frequency components and
reducing the combination frequencies with small
ACOUSTICAL PHYSICS  Vol. 68  No. 2  2022
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amplitude located in the intervals between the har-
monics, which are multiples of the initial waves. It is
shown that filtering of frequencies in the numerical
solution with a large number of spectral components is
preferably performed at a distance equal to three shock
formation lengths for the high-frequency period of the
pump wave with the maximum amplitude. This selection
results in an error less than 3% in the calculation of the
difference-frequency wave amplitude compared to the
calculations with the total number of spectral compo-
nents up to distances of ten shock formation lengths.

The amplitude of the difference-frequency wave is
proportional to its frequency fdif and at a distance equal
to one shock formation length it is 0.2, 0.4, and 0.6%
of the maximum amplitude of the pump wave or 0.01,
0.04, and 0.09% of the initial intensity averaged over
the period of a low-frequency wave for frequencies
fdif = 5, 10, and 15 kHz. At saturation distances, the
amplitude and intensity of the difference-frequency
wave additionally increase by more than two and four
times, respectively.

We have also shown that at distances less than two
characteristic shock formation lengths, the analytical
expression obtained in the quasi-linear approximation
at constant pump wave amplitudes agrees with good
accuracy with the reference solution obtained with a
large number of spectral components. Therefore, the
quasi-linear approximation can be used in modeling
nonlinear beams. The results obtained in this study
can be subsequently used to solve the complete three-
dimensional nonlinear-diffraction problem of gener-
ating a difference-frequency wave using a parametric
array [29, 31].
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