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Abstract—Nonlinear propagation of a periodic wave and a single pulse with a shock front through a lossy
medium is studied theoretically. The medium is characterized by the frequency dependence of the attenuation
coefficient obeying a power law and by a corresponding dispersion law. The numerical modeling of the problem
is performed on the basis of the modified spectral approach. It is found that the exponent of the aforementioned
power law essentially affects the efficiency of nonlinear interactions, the distortion of the wave profile, and the
absorption of acoustic energy in the nonlinear mode. The stability of the discontinuous structure of a shock front
is investigated for different power laws close to a linear one. The possibility of pulsed diagnostics of the param-
eters of the frequency power law governing the attenuation in the medium by the shape of a single pulse with
a shock front after its passage through the medium is considered. © 2000 MAIK “Nauka/Interperiodica”.

The nonlinear effects that accompany the propaga-
tion of intense acoustic waves in lossy media have been
studied in detail for the case of a classical fluid with a
square-law frequency dependence of the attenuation
- coefficient and for a medium with a single relaxation
time [1, 2]. However, in many acoustic media, e.g., bio-
logical tissues [3] or sea sediments [4], the frequency
dependence of the attenuation coefficient deviates from
a square-law one. The theoretical description of nonlin-
ear interactions in such media requires the solution of
fairly complicated integro-differential equations, and,
therefore, the problems related to this phenomenon
have been little investigated. However, these problems
are important for many practical applications of intense
ultrasound and, specifically, for medical acoustics
including hyperthermia, acoustical surgery [3, 5], and
extracorporeal lithotripsy [6]. The fundamental aspect
of the problem is also of interest. especially, in relation
to the study of severely distorted nonlinear distur-
bances containing steep segments, i.e., shock fronts.

This paper presents a theoretical study of the spe-
cific features of the nonlinear propagation of periodic
and pulsed disturbances in such media; namely, the
effect of the parameters of the power law, which gov-
erns the attenuation in the medium, on the evolution of
the wave profile, the structure of the shock front, and
the wave attenuation. The mathematical model devel-
oped below allows for the nonlinear effects, the attenu-
ation. and the sound velocity dispersion. The numerical
calculations are based on the modified spectral
approach [7, 8] that allows one to describe severely dis-

torted waves containing discontinuities by a small num-
ber of harmonics. We select the characteristic parame-
ters of the medium and the initial signals to be close to
those used in ultrasound therapy. We also discuss the
possibility of a pulsed diagnostics of the parameters of
the power law, which governs the frequency depen-
dence of attenuation, by single intense pulses with
shock fronts.

To describe the propagation of an acoustic wave of
finite amplitude in a medium with an arbitrary attenua-
tion law and an arbitrary dispersion. we use a Burgers-
type equation

dp € dp .
e ! S : 1
ax "o Pac = HP) e

Here, p is the acoustic pressure. x is the coordinate of
the propagating wave, T =t—x/c, is the time in the mov-
ing coordinate system, ¢, is the phase velocity of sound
at the characteristic frequency w,. € is the coefficient
characterizing the acoustic nonlinearity of the medium.
and L(p) is the linear operator responsible for the atten-
uation and dispersion.

We assume that the frequency dependence of the
attenuation coefficient is described by the power law

() = oy(@/o,)". (2)

In this case, it is impossible to rearrange the right-hand
member L(p) of equation (1) in a unique way with the
causality principle being met. The reason is that the
power law (2) cannot be obeyed in the entire infinite
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frequency range; in particular, at high frequencies, the
dependence o(®) tends to saturation [9]. The ambiguity
of the selection of the operator L(p), which should cor-
respond to attenuation law (2) and meet the causality
principle, is related to the possibility of using different
models of attenuation at high frequencies. Several dif-
ferent integral forms of L(p) can be found in the litera-
ture [4, 10-13]. The solution of the aforementioned
integro-differential equations describing the propaga-
tion of severely distorted nonlinear waves presents an
extremely complicated problem. Even in numerical
modeling, the integral form of equations makes it nec-
essary to perform a convolution at every step of the
computational scheme, which considerably compli-
cates and slows down the calculations [14]. Approxi-
mate analytical solutions can only be obtained for some
particular cases [13].

In our study, for describing nonlinear waves in
media where the frequency dependence of attenuation
is governed by a power law, we use the spectral
approach. We consider a system of coupled equations
for an infinite number of harmonics; for each harmonic,
the corresponding attenuation and dispersion are taken
into account.

We assume that, in a broad frequency band, the
attenuation obeys the power law (2). According to the
causality principle, we can write the Kramers—Kronig-
type integral dispersion relations between the attenua-
tion law and the sound velocity dispersion [9, 15]. In
_the case of a smooth frequency dependence of the
attenuation coefficient, we can determine the approxi-
mate relationship between the attenuation and disper-
sion by using the so-called local dispersion relations
[15]. From the given attenuation law and the depen-
dences obtained for the sound velocity, we can calcu-
late the characteristics of the nonlinear propagation of
waves without any rearrangement of the evolution
equation ().

Now, in equation (1), we pass to dimensionless vari-
ables:
A4 aV

5o - N5 = L(V), 3)

where V = p/p, is the acoustic pressure normalized to
the characteristic amplitude value py; 8 = @, is time in
the moving coordinate system; z = x/x, is the wave
propagation coordinate normalized to the attenuation
length x,, = l/0y; oy is the attenuation coefficient at the
frequency . wy, is the characteristic frequency of the
acoustic signal, where, for a pulse disturbance of dura-
tion 1, the frequency is wy = 1/ty; Xy = cg Po/EPpWy is the
length of the discontinuity formation for a harmonic
wave in the absence of attenuation; N = x,/x, is the
dimensionless parameter of nonlinearity; and the oper-
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ator L'(V) corresponds to the initial operator L(p)
expressed through the new variables.

We represent the solution to equation (3) in the form
of a Fourier series expansion

V(z,0) = Co+ Y, C,(z)exp(-in®). 4)

n = —oo
nz0
Then, substituting solution (4) into equation (3), we
obtain a system of an infinite number of coupled equa-
tions for the Fourier components:

dC,, s n
gz V12
n-1 oo
x[zcoc,,+chc,,_k+2 2 Cka_,,} (3)
k=1 k=n+1

+iK'(n)C,~K"(n)C,.

Here, K' and K" are the real and imaginary parts of the
dimensionless wave number K(n) = K' + iK". They
describe the dispersion (K') and the attenuation (K") of
sound, and, in the moving coordinate system, they have
the form:

K'"(n) = a(nwy)/ oy,
Kl(n) = ng(l/(c(nmo) e ]/CG)/GQ.

The frequency dependence of the attenuation coeffi-
cient K" was selected according to the experimental
data for biological tissues [3, 16], and the sound veloc-
ity dispersion K" was calculated using the local disper-
sion relations [15]

(6)

2
a(w) = rl:_(ozdcl(m)‘ (7)
v LY,
Ac = c(®W)—cy = %’j?é:;;)dw'. (8)

Wy

For the attenuation obeying the power law (2), the
sound velocity dispersion calculated by formula (8) has
the form

Ac c(®)—c

Co Co

1 2el {((0)/&)0)"_'—1). n#l
(M- 1D® | In(w/w,), n = 1.

(9)

We select the parameters of the power law (2) to be
close to the parameters of biological media or the bio-
logical tissue phantom 1.3 butanediol [16]. Figure la
shows the frequency dependences of the attenuation
coefficient normalized to its value o, at | MHz. The
curves presented in the figure refer to blood (n = 1.42.
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Fig. 1. Frequency dependences of (a) the attenuation coeffi-
cient and (b) the sound velocity dispersion for different
exponents of the frequency power law governing the atten-
uation in the medium: 1 = 2 (water), 1.42 (blood), 1.2 (liver),
and | (butanediol).

o, = 0.025 cm™', and ¢y = 1570 m/s), liver (n = 1.2,
o, = 0.082 cm!, and ¢, = 1600 m/s) [3], water (n = 2,
o, = 0.0003 cm™!, and ¢, = 1500 m/s), and butanediol
(=1, oy =0.038 cm™', and ¢, = 1546 m/s). The sound
velocity calculated by formula (9) with these data is
shown in Fig. 1b. From this figure, one can see that the
dispersion characteristics of butanediol and blood are
close to each other. The theoretical dispersion curves
shown in the figure agree well with the experimental
data [3]. which testify that the values of the sound
velocity dispersion in biological tissues do not exceed
1% in the frequency range 1-10 MHz.

To perform a numerical integration of the system of
equations (5). we use a modified spectral approach
based on the a priori data on the high-frequency
asymptotics of the shock-wave spectrum. The main
idea of the approach developed in our previous publica-
tion [7] lies in the replacement of the exact system of an
infinite number of equations (5) by an approximate sys-

tem of equations for the amplitudes of the first Ny, har-
monics:

dc e
no_ 4 s
__dz = —IﬂN{COCn+2 E C.‘:Cn-k

k=1

Nnua Nmal"n
+ Y GciL+ Y, GCp, (10)
k=n+1 k=N+1

Nya +0

ANlexp(in®) & 1| . i

*(ﬁ) E Y +HKmC-K'(C,
k:Nm-l-l

On the right-hand side of equations (10), the ampli-

tudes of harmonics with the numbers n > Ny, are

approximated by their asymptotic values

C. = iA,exp(in®,)/2nn,

which correspond to the spectrum of a sawtooth wave
with the amplitude A, and the discontinuity at the point
8,. Such a replacement allows one to analytically calcu-
late the infinite sums on the right-hand side of equa-
tions (5). The quantities A, and 6, are determined from
the values of the two last spectral components of the
system, Cy__, and Cy_ , on the assumption that, at
n = N,,,, the form of the spectrum differs little from its
high-frequency asymptotics

A.\' = 2Tchl'laJt|CNmJ’ ex = arg(c_vm/cb\;m‘_l).(lz}

¢11)

The proposed method allows a fairly accurate modeling
of the propagation of waves with narrow shock fronts
by using a limited number of harmonics Ny, = 30-50.

Equations (10) were numerically integrated by the
Runge-Kutta scheme with a fourth-order precision at
N,pax = 50. For each subsequent step of calculation in Z.
the values of A(z) and 6,(z) were reconstructed by for-

mulas (12) from the values of the coefficients Cy_ _.
and Cy__ calculated at the preceding step.

The important characteristics that determine the
thermal or cavitation effect on the tissue are the tempe-
ral wave profile, the behavior of the wave intensity in
the medium, and the structure and width of the shock
front. The wave profile can be reconstructed as a sum of
the smooth and sawtooth components from the numer-
ically calculated amplitudes of the first N, harmonics:

N,

Nmax

V(8,2) = 3, (Cuexp(=in®)) (13
n==Ny.
. _1-22% o<e<0
_éjzsm(B—BJ A,
2 —
g 211.%28% g <o<on
ACOUSTICAL PHYSICS Vol. 46 No.2 2000



NONLINEAR DISTORTION AND ATTENUATION OF INTENSE ACOUSTIC WAVES 173

The mean wave intensity was also calculated: /(z) =

ﬁf’" V(2. 0)d0=Y"__|C,(:). With allowance for

e

the asymptotic behavior of harmonics at high frequen-
cies (i.e., at n > N,,) (11), the wave intensity can be
represented as a finite sum

r N ) A2 A2
7)) = C, 2 | = =
I(z) = G +zl [_|c,,(.,)| zmlnz}f - (14)
From the point of view of medical applications, the
study of the propagation of intense harmonic waves
(ultrasound therapy) and intense single pulses with
shock fronts (extracorporeal lithotripsy) are of most
interest. Therefore, we consider an initial acoustic sig-
nal in the form of a harmonic wave
p(t,x=0) = pysin(®,T) * (15)
of frequency 1 MHz and amplitude 0.5-7 MPa, which
corresponds to the pressure range used in ultrasound
therapy, and a shock pulse with an exponential profile
behind a shock front

0y T,

T-1,
s WS,
Iy

Here, 1, is the time of the formation of the pulse shock

_front: the initial amplitude p, = 3 MPa and the duration
fy = 300 ns of the pulse were set to be close to the
parameters of the pulses used in lithotripters (at the
focuser output, away from the focus [17]) or to the
parameters of the pulses generated by the photoacous-
tic method in the plane-wave mode [18].

p(t,x=0) = (16)

As was mentioned above, the sound velocity disper-
sion is relatively small. However. it noticeably affects
the profile of the acoustic disturbance. Figure 2a pre-
sents the numerically calculated evolution of the profile
V = p/p, of an initially harmonic wave (15) in a medium
with a linear frequency dependence of attenuation, =1,
which corresponds to the parameters of butanediol
(Fig. 1). Curve / represents the initial wave profile, and
curve 2 represents the wave profile at the distance z =
0.3 (8 cm) in the case of linear propagation, N = 0. Pro-
files 3 and 4 are calculated for the same distance in the
case of a nonlinear propagation N = 10 (p, = 4.5 MPa)
in the absence and presence of the sound velocity dis-
persion. respectively. One can see that the effect of dis-
persion manifests itself as an asymmetric distortion of
the wave profile: the negative semiperiod becomes
sharper, while the positive semiperiod is “protracted”
so that the position of the peak of the wave increasingly
lags behind the wavefront. Such an asymmetry of the
profile is characteristic for media with dispersion, e.g.,
a relaxing medium [1, 18, 19]. In a dispersion medium,
the shock front is shifted at the expense of the faster
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Fig. 2. Effect of nonlinearity, dissipation, and dispersion on
the evolution of a wave profile in a medium withn = 1.

(a) Harmonic initial wave (curve /); curves 2—4 correspond
to z=0.3: (2) profile calculated with allowance for only the
attenuation (N = 0); (3) profile in the presence of attenuation
and nonlinearity (V = 10); and (4) profile in the presence of
attenuation, nonlinearity (N = 10), and dispersion.

(b) Initial pulse with a shock front (curve /); curves 2— cor-
respond to z = 0.23: (2) profile in a linear medium (V = 0)
with attenuation and dispersion: (3) profile in a nonlinear
medium (N = 3.3) with attenuation and dispersion; and
(4) profile in a nonlinear medium (N = 3.3) with attenuation
only.

propagation of higher frequencies forming the discon-
tinuity.

In a similar way, the dispersion affects the profile of
a shock pulse. Figure 2b presents the profile of the ini-
tial pulse (16) (curve /) and the profiles of the pulse at
the distance z = 0.23 (6 cm) at which pronounced
effects of both nonlinearity and dissipation can be
observed. In the case of linear propagation (curve 2),
the shock front broadens because of the attenuation of
the high-frequency components. In the case of a nonlin-
ear propagation (curve 3), the front of the pulse propa-
gates faster, and the front width is less than in the case
of linear propagation. Such a manifestation of nonlin-
ear effects is well known. The aforementioned curves 2
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Fig. 3. Profiles of an initially harmonic wave (dashed curves) at different distancesz = (a) 0.13, (b) 0.22, (c) 0.4, and (d) 3 in a non-
linear medium with different frequency power laws governing the attenuation: 1 = 1 and 2 (numbers near the curves). The nonlinear

parameter is N = 10.

and 3 are calculated with allowances made for the
sound velocity dispersion. To illustrate the role of dis-
persion, we also present a nonlinear pulse profile calcu-
lated with allowance for the presence of attenuation but
in the absence of dispersion (curve 4). Correlating pro-
files 3 and 4, one can see that the neglect of dispersion
leads to the appearance of a lengthy precursor propa-
* gating faster than the shock front. which is a result of
the violation of the causality principle. Besides, in the
model without dispersion, the peak pressure of the sig-
nal is slightly overestimated, and the velocity of the
shock front propagation is reduced.

In biological tissues, the frequency dependences of
the attenuation coefficient vary from a linear law to an
almost square one. The exponent of this power law is
one of the parameters that affect the nonlinear evolution
of the acoustic signal profile. This effect is illustrated in
Fig. 3, which compares the wave profiles formed at dif-
ferent distances in media with linear (n = 1) and a
square-law (1 = 2) frequency dependences of the atten-
uation coefficient. The profiles are obtained for an ini-
tially harmonic wave. In the medium with the linear law
(n = 1), the shock front is formed earlier, it is narrower,
and it lasts longer than in the medium with the square
law (n = 2). This occurs because in the medium with
the square law, the high-frequency harmonics of the
spectrum experience a stronger attenuation.

At large distances x > x,, (Fig. 3d) where the wave
reverts to the harmonic form, the peak pressure ampli-
tude in the medium with m = 1 is less than in the
medium with = 2. This result may seem unexpected
at first glance, because, in the medium with n = 2, all
higher harmonics propagate with higher attenuation
coefficients than in the medium with 1 = 1. The effect

is caused by the less intense generation of high-fre-
quency spectrum components in the more dissipative
medium, and, hence, by a lower attenuation at the aris-
ing shock fronts. Such an effect, which consists of the
limitation of the efficiency of the wave energy redistri-
bution toward the high-frequency spectrum region with
increasing attenuation of the harmonics of the initial
signal, can be used for controlling nonlinear wave inter-
actions. This phenomenon should be most pronounced
in a medium with resonance absorption at the second
harmonic: in such a medium, the energy transfer to
higher frequencies of the spectrum is limited, and the
wave propagates almost without distortion [20].

For an initially harmonic wave, the change in the
frequency dependence of attenuation from linear to a
square-law one leads to some broadening of the shock
front, which is illustrated in Fig. 4a. This figure pre-
sents the wave profiles calculated for the distance z =
0.5 at N = 15, for media with different exponents 1 (the
numbers near the curves) and the sound velocity disper-
sion corresponding to these media. One can see that an
increase in 1M has practically no effect on the wave
amplitudes, while a noticeable broadening of the shock
front is observed. The front width increases several
times as the frequency power law governing the atten-
uation changes from linear to a square one.

The exponent of the frequency power law also
noticeably affects the absorption of the total wave
energy in a nonlinear medium. Figure 4b shows the
variation of the effective normalized attenuation coef-
ficient O,¢ with distance. where the normalization of
the coefficient is performed with respect to its value in
the case of a linear wave propagation, and the quantity
Vol. 46 2000
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O, is calculated from the variation in the wave inten-
sity (14):

_ dl/dx
W 20,1

(17)

Different curves correspond to media with equal values
of the attenuation coefficient o, at the fundamental fre-
quency, but with different exponents of the frequency
power law: 1 = I, 1.5, and 2. One can see that, at small
distances, the effective attenuation coefficient is higher
for the square law because of the stronger dissipation at
high frequencies. However, after the formation of steep
segments in the wave profile, the attenuation coefficient
is higher in the medium with the linear law as a result
of the more efficient nonlinear attenuation mode. The
curves shown in Fig. 4b were calculated with allow-
ances made for the dispersion. However, the corre-
sponding dependences calculated by neglecting the dis-
persion proved to be virtually identical to those shown
in Fig. 4b. Hence, although the dispersion affects the
wave profile, it has no noticeable effect on the absorp-
tion of the wave energy.

The power law (2) is characterized by two parame-
ters, 0 and 1, which play different roles in the evolu-
tion of the acoustic signal. Figure 5a shows the profiles
of pulse (16) at the distance x = 6 cm for media with dif-
ferent exponents of the power law (2) and a fixed
parameter o, corresponding to the attenuation in
butanediol at a frequency of 1 MHz. From this figure,
one can see that an increase in the exponent leads to a

_noticeable broadening of the shock front, which can be
explained by a stronger attenuation of the high-fre-
quency spectrum components. At the same time, the
variation in the exponent has no noticeable effect on the
peak pressure value. By contrast, a change in the
parameter ¢, leads to a change in the pulse amplitude.
As the attenuation coefficient @, increases, the peak
pressure decreases, while the width and the position of
the shock front vary insignificantly (Fig. 5b). Figure 5b
shows the pulse profiles corresponding to the same dis-
tance v = 6 cm for media with a linear frequency depen-
dence of the attenuation coefficient and different values
of o, (numbers near the curves).

Thus, nonlinear interactions that occur in both peri-
odic waves and pulsed fields depend on the parameters
of the power law governing the frequency dependence
of attenuation, especially for strongly nonlinear waves
with discontinuities. Even a weak dispersion of sound
velocity leads to noticeable distortions of the wave pro-
file as compared to the case of a square-law frequency
dependence of attenuation in the absence of dispersion.
At the same time, the dispersion has virtually no effect
on the dissipation of the energy of a nonlinear wave.
The parameters of the power law governing the fre-
quency dependence of attenuation affect the distortion
of the profile of a propagating signal in different ways,
especially in the case of a shock pulse: the exponent
variations mainly affect the width of the pulse shock
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Fig. 4. Effect of the exponent 1 on the evolution of a wave
in a nonlinear medium. At the input, a harmonic wave of fre-
quency | MHz is set; 0 = 0.038 cm™; the nonlinear param-
eter is V = 15. (a) Wave profile at the distance z = 0.5;
(b) dependence of the effective attenuation coefficient on
distance.

front, while the variations in the attenuation coefficient
mainly affect the peak pressure value. This result
allows one to discuss a fundamental possibility of the
diagnostics of the parameters of attenuation in the
medium by the form of a shock-wave pulse transmitted
through it.

In closing, we discuss the problem of stability of a
discontinuous wavefront propagating in a lossy
medium obeying a frequency power law o(®) ~ @". It
has been found that the shock front of a wave propagat-
ing in a medium obeying a square law with n = 2 is no
mathematical discontinuity but has a finite width deter-
mined by the viscosity of the medium and the ampli-
tude of the wave [1]. On the other hand, in all media
with constant attenuation (1 = 0), the dissipation does
not preclude discontinuities in the wave profile [21].
Discontinuities are also stable in relaxing media. Such
media are characterized by a constant value of the
attenuation coefficient at high frequencies [19]. As far
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Fig. 5. Elfect of the parameters of the power law (2), &g and
1. on the profile of the shock pulse transmitted through a
layer of u nonlinear lossy medium. The input parameters of
the pulse are pg = 30 atm and (= 0.3 ps: the distance in the
medium 1s x =6 cm.

(a) Pulse profiles in media with equal attenuation coeffi-
cients o, = (| MHz) =0.038 cm~! and different exponents
n=1.15and2.

(b) Pulse profiles in media with equal exponents 1 = 1 and
different values of the attenuation coefficient oty = 0.025,
0.038. and 0.05 cm™".

as we know, for the case of an arbitrary power law (2),
the problem of the stability of a discontinuity had never
been studied. Below, we demonstrate that the exponent
n = | isacritical value for a discontinuity, i.e., a discon-
tinuity is unstable atn 2 1.

Let a plane wave with a discontinuous wave profile
be set at the medium input. Without loss of generality.
we can assume that the wave is a periodic one. The dis-
sipation of the wave energy is described by the expres-
sion

{!I o Z"‘au!n' (18)

n=1

where 1, ~ |C,|* and o, = 0(n@,) ~ n" are the intensity
of the nth harmonic and the corresponding attenuation
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Fig. 6. Stability of the shock front of an initially sawtooth
wave in media with different exponents 1 of the power
law (2). (a) Dependence of the normalized intensity 1=
I(z)/I(z = 0) on the distance 2; (b) wave profile in the shock
region at z = 0.005.

coefficient, respectively. At high frequencies. the spec-
trum of a discontinuous wave always has the asymp-
totic form (11), i.e., |C,| ~ n~". Hence, the decrease in
the wave energy with distance is determined by a series
whose terms at large n behave as n" -2, Atn 2 1, series
(18) diverges, i.e., the quantity dl/dx is infinite. If we
assume that the high-frequency asymptotics (11) of the
spectrum exists in an arbitrarily small interval of dis-
tances, we obtain an infinite value of the absorbed
energy, which is impossible because of the finiteness of
the intensity of the initial wave. Thus, in this case. the
discontinuity is unstable. At n < 1, series (18) con-
verges, and, hence, the existence of the discontinuity is
possible.

As an illustration, Fig. 6 presents (a) the numeri-
cally calculated dependences of the intensity of an ini-
tially discontinuous wave on the distance z and (b) the
profile of the wave in the shock region formed at z =
0.005 in a nonlinear medium (N = 10) for different
exponents of the frequency power law governing the
attenuation: 1 = 0.5, 0.9, 1.5, and 2. The initial wave
2000
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was taken to be a sawtooth one with the discontinuity
amplitude A, = 1, and the intensity was normalized to
its initial value at z = 0. One can see that, at | < 1, the
derivative dl/dz at z = 0 is finite, and the wave profile
remains discontinuous in the course of the wave propa-
gation. At 1 > |, the intensity at z = 0 decreases infi-
nitely fast, and the initial discontinuity is smoothed out.
As the exponent 1 increases, the effect of smoothing
out is enhanced.
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