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Abstract—A method is proposed for spatially correcting an acoustic hologram recorded on an arbitrarily ori-
ented planar area in front of an axially symmetric ultrasound transducer. The method comprises steps for
determining the direction of the transducer’s axis from the measured acoustic hologram, transferring the
hologram data on a plane perpendicular to this axis and centering it relative to the axis by means of a correc-
tion algorithm that executes appropriate rotations and shifts of the original hologram. The corrected holo-
gram is used for reconstructing the structure of vibrations of the emitting surface of the transducer. A simpli-
fied correction algorithm is also considered that is applicable for transducers with narrow angular spectrum
and small angles of inclination of the initial hologram to the transducer axis. The accuracy of the developed
algorithms is analyzed numerically for a single focusing transducer with a uniform vibrational velocity distri-
bution on its surface and is demonstrated experimentally for an annular 12-element array.
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INTRODUCTION
The development of noninvasive therapeutic

methods using high-intensity focused ultrasound
(HIFU) requires the development of specific stan-
dards for the devices used and the fields they generate.
Manufacturers of ultrasound transducers typically
provide information on the geometric dimensions of a
source, its focal length, operating frequency, and the
efficiency of electro–acoustic power conversion.
However, the real spatial structure of vibrations of the
emitting surface is unknown in this case. The nominal
geometric parameters of the transducer specified by
the manufacturer can be used to calculate the ultra-
sound field created by the transducer in the approxi-
mation of a uniform amplitude distribution of the nor-
mal component of the vibrational velocity on its emit-
ting surface. Such an approximation is not always
valid, and therefore the acoustic field calculated with
this approach may significantly differ from the real
one, which is a critical disadvantage for the laboratory
and clinical use of ultrasound systems.

To accurately predict the spatio-temporal structure
of the ultrasound field, one should proceed from the
experimentally reconstructed distribution of the nor-
mal component of the vibrational velocity on the sur-
face of the transducer. Such a distribution can be
obtained by acoustic holography measurements,
which then are used to reconstruct the structure of the
acoustic field in the entire space based on a holo-

gram—the measured two-dimensional transverse dis-
tribution of the field parameters on a surface in front
of the transducer [1–3]. This method has been
recently recommended as a standard for characteriz-
ing ultrasound transducers [4].

When recording an acoustic hologram, it is neces-
sary to monitor a large number of experimental
parameters, which can introduce a systematic error
into the structure of the field calculated from the mea-
sured hologram [5]. A hologram is usually measured
by a miniature receiver in a large number of points of a
planar area, the size of which is chosen slightly larger
than the diameter of the ultrasound beam in order to
ensure complete recording of the acoustic field. In the
case of an axially symmetric transducer, the area in
which the hologram is measured is conveniently
located opposite the transducer, so that the center of
the hologram lies on the transducer axis and the nor-
mal to the area is directed along this axis. In reality,
such ideal positioning of the hologram cannot be
ensured: shifts and small angles between the trans-
ducer axis and normal to the hologram plane are inev-
itable [6].

It should be noted that the acoustic hologram con-
tains complete information about the field structure
not only for an ideal, but also for an inclined or dis-
placed position of the measurement plane. In this
sense, the exact orientation of the recording area of the
hologram is not essential—it is only important that the
71
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Fig. 1. Diagram of reconstructing the acoustic axis of a transducer.
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specified area is intersected by the entire ultrasound
beam generated by a transducer. However, when ana-
lyzing the field and, in particular, when determining
the structure of vibrations of the emitting surface, it is
more convenient to bring the measured hologram to
the coordinates of the transducer by recalculating it to
a plane centered on and perpendicular to its axis.

In this paper, we propose a method for such spatial
correction of a hologram. We also compare the results
of exact correction performed using transformation of
the angular spectrum of the hologram with the results
of an approximate correction performed by rotating
the phase front of the hologram in the ray approxima-
tion. The accuracy of the proposed methods is ana-
lyzed in a numerical experiment with a single focusing
transducer in the form of a uniformly vibrating seg-
ment of a spherical surface. Experimental testing of
the proposed approaches is also done when recon-
structing the structure of vibrations of the surface of an
annular 12-element phased array.

SELECTING THE COORDINATE SYSTEMS 
FOR RECORDING A HOLOGRAM

Consider the acoustic field generated by an axially
symmetric source. As a consequence, the field itself is
also axially symmetric. The axis of symmetry will be
named here as the “acoustic” axis. We will also name
as an “ideal” hologram the one that is recorded in a
planar area, the center of which is located on the
acoustic axis of the transducer and the normal is ori-
ented parallel to this axis. The only parameter deter-
mining the relative position of the ideal hologram and
the source is the distance between them; therefore, if it
is known, then it is possible to calculate the structure
of the transducer’s vibrations. For an arbitrary posi-
tion of the measured hologram, corresponding calcu-
lations are also possible, but they are more difficult,
since in this case it is necessary to know several param-
eters that specify the relative position of the transducer
and the hologram. Accordingly, the problem of calcu-
lating the vibrational velocity on an emitting surface
becomes both theoretically and numerically challeng-
ing. An experimentally measured hologram that is
generally differs from an ideal one by some shift and
rotation will be named as “real.”

Since both the real and ideal holograms are com-
plete recordings of the same wave field, they can be
recalculated to each other if their relative orientation
in space is known. In practice, an acoustic hologram is
measured by scanning the acoustic field with a triaxial
micropositioning system. In this case, to set the orien-
tation of the real and ideal holograms, one can natu-
rally use the Cartesian coordinate system, the axes of
which are co-directional along three directions of
movement in the micropositioning system. We name
the indicated X, Y, Z axes as the “mechanical” axes
and assume that the measured hologram is the result
of scanning the field in the (X, Y) plane (Fig. 1).

The first step in solving the problem of construct-
ing an ideal hologram is to find the acoustic axis of the
transducer in the mechanical coordinate system. Let

 be a planar area in the (X, Y) plane, in which the ini-
tial hologram, i.e., the two-dimensional distribution

0S
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SPATIAL CORRECTION OF AN ACOUSTIC HOLOGRAM 73
of the amplitude and phase or, equivalently, the com-
plex wave amplitude, is recorded. Since the investi-
gated field is axially symmetric, the wave amplitude
distribution in the measurement plane (X, Y) of the
hologram will also possess a symmetry with a high-
lighted center even if the recording area is tilted rela-
tive to the acoustic axis. When measuring a hologram,
we place the origin of the mechanical coordinate sys-
tem (X, Y, Z) = (0, 0, 0) near this center. The accuracy
of coincidence of the center of symmetry of the beam
with the origin will be determined by the scanning
step; however, exact coincidence at this stage is not
essential. When measuring a hologram close to ideal
and choosing such an origin, the Z axis will be close to
the acoustic axis. Based on the measured hologram,
the wave amplitude distribution on the Z axis is calcu-
lated by the Rayleigh integral [7] or the angular spec-
trum method [8–10]. Due to the proximity of the Z
axis to the acoustic axis, the obtained distribution will
approximately coincide with the pressure distribution
along the acoustic axis and contain diffraction max-
ima and minima.

Next, the auxiliary transverse pressure distribu-
tions are calculated in two planar areas  and  par-
allel to the plane of the initial hologram and located at
distances  and , in which the wave ampli-
tude has local maxima (Fig. 1). Similar to finding the
field on the Z axis, the field in areas  and  can be
calculated by the Rayleigh integral or angular spec-
trum method. The problem here is to determine as
accurately as possible the coordinates of the points
where the areas  and  are intersected by the acous-
tic axis. To speed up calculations, it is convenient to
firstly obtain the transverse field distributions at the
nodes of a grid with a large step, then approximately
find the center of symmetry of the distribution and
perform the calculations again in its vicinity with a
smaller grid step. As a result, in the areas  and  of
the auxiliary planes, we can determine with high accu-
racy the coordinates  and 
of the field maxima  and , through which the
acoustic axis passes.

From the found coordinates of points  and ,
we then calculate the coordinates  of the point 
where the acoustic axis of the transducer intersects the
plane of the initial hologram, as well as the coordi-
nates of the directing unit vector  of the acoustic axis:

(1)

(2)

Here,  is the radius vector of the
point ;  due to the initial choice of the ori-
gin. Vectors  and  completely define the acoustic

1S 2,S

= 1z z = 2z z

1S 2S

1S 2S

1S 2S

=1 1 1 1( , , )x y zr =2 2 2 2( , , )x y zr
1M 2M

1M 2M
0r 0M

m

−= − −
−

1 0
0 1 2 1

2 1

( ) ,z z
z z

r r r r

−=
−

2 1

2 1

.r rm
r r

=0 0 0 0( , , )x y zr
0M =0 0z

0r m
ACOUSTICAL PHYSICS  Vol. 68  No. 1  2022
axis of the transducer. The maximum errors  and
 in determining the coordinates of vectors  and

 are defined by the choice of the grid steps  and
 in the auxiliary holograms and the distances 

between them:  and

The procedure described above was performed in a
mechanical Cartesian coordinate system that corre-
sponds to the three directions of movement in the tri-
axial micropositioning system. To reconstruct the
ideal hologram, we now consider a new Cartesian
coordinate system , the origin of which lies at
the point  and the axis  coincides with the acous-
tic axis of the transducer. Axes  and  lie in the plane
perpendicular to the transducer axis; therefore, their
directions cannot be uniquely defined due to the axial
symmetry of the problem. However, it is reasonable to
choose them close to the directions of the correspond-
ing X and Y axes. For convenience of describing the
two systems, we introduce the unit vectors , ,  of
the initial (mechanical) coordinate system and unit
vectors , ,  of the new system, “attached” to the
transducer (Fig. 1). According to this definition:

(3)

The unit vectors  and  in the old basis can be
introduced, e.g., as

(4)

(5)

where the sign  denotes vector multiplication.
Note that the new basis chosen in this way can be

obtained from the old one by two successive rotations:
first around the X axis by an angle , then around the
new axis  obtained after the first rotation by an angle

, which are determined by the following expressions:

(6)

(7)
where scalar multiplication of the vectors is applied.
The first rotation makes the  axis perpendicular to
the vector , and the second one makes the  axis
perpendicular to the vectors  and . Hereinafter, the
positive angle of rotation of a hologram or coordinate
system around any axis corresponds to a clockwise
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rotation in the right coordinate system, if viewed in the
direction opposite to the axis around which the rota-
tion occurs.

CALCULATING THE IDEAL HOLOGRAM 
FROM THE REAL ONE

At the second stage of constructing the ideal holo-
gram, the relationship between the two coordinate sys-
tems described above is used. It is convenient to trans-
fer the hologram from one system to another using the
angular spectrum method. The spatial (angular) spec-
trum  of the field in the plane of the measured
hologram  has the form [8]

(8)

For a known spectrum , the complex pres-
sure amplitude , which is the solution to the
Helmholtz equation, is expressed as follows:

(9)

where  is the wavenumber,  is the angular
frequency of the wave, and  is the sound speed.

Here, the integration domain is limited to a circle
of radius k, which is valid at distances from the trans-
ducer much longer than the wavelength. Strictly
speaking, to write the exact solution (9), the integra-
tion domain should be extended to the entire plane,
which makes it possible to take into account inhomo-
geneous (evanescent) waves [1]. However, these inho-
mogeneous waves decay rapidly with the distance
from the transducer, and therefore, for ultrasound in
the megahertz range used in medicine and nonde-
structive testing, their influence can be neglected. The
wave field representation (9) has the form of the super-
position of plane waves with a complex amplitude pro-
portional to the quantity , and the
wave vector  in the (X, Y, Z) coordinate system has
the form:

(10)

We now consider the new coordinate system
 centered at the point . The radius vector

of the point in space is expressed as follows:
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where  is the complex wave
amplitude recorded in the new coordinates. The scalar
products in the exponent are easily calculated using
the relations (3)–(5).

Let us choose the plane passing through the
point  as the plane for setting the ideal hologram

. For this choice, ,
and therefore, the representation for the ideal holo-
gram follows from the expression (11):

(12)

where the terms in the exponent are given by the
expressions (1)–(5) and (10). Note that in the case of
a small angle between the normal to the initial holo-
gram and the acoustic axis of the transducer, as well as
the narrowness of the angular spectrum of the beam,
expression (12) is simplified:

(13)

Clearly, in the indicated approximation, the transi-
tion (13) from the measured  to the ideal holo-
gram  corresponds to displacement of the cen-
ter of the coordinates of the initial hologram to the
point  and multiplication by an additional phase
incursion, which increases along the transverse coor-
dinates, as for a plane wave propagating in the direc-
tion of the vector . As noted, the first condition for
the validity of the approximation (13) is the require-
ment that the angles of rotation are small, which cor-

responds to the condition . In practice,
this is relatively easy to perform, since with proper
care, transducers with a diameter of several centime-
ters can even manually be oriented relative to the axes
of the positioning system with an error not exceeding
1° or 2°. The second condition is the localization of
the angular spectrum in a narrow frequency range

, which depends on the transducer
parameters. For example, when using surgical HIFU
transducers, the angular spectrum of the wave can be
quite broad and, therefore, expression (13) for rotating
and centering the hologram will be less precise.

It should be noted that the fast Fourier transform
(FFT) algorithm cannot be used to accurately rotate
and center the measured hologram, since when the
integral in the equation (12) is reduced to the inverse
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SPATIAL CORRECTION OF AN ACOUSTIC HOLOGRAM 75

Fig. 2. Diagram of a single transducer in the form of a spherical segment relative to a planar surface of the initial hologram S0 and
the surface of an ideal hologram Si.
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Fourier transform, i.e., when factorizing the integrand
as , the equivalent spectrum

 will depend on the coordinates of the vec-
tor . Thus, to accurately correct the hologram, it is
necessary either to numerically calculate the integral
(12) or to implement discrete Fourier transform
(DFT) with a spectrum depending on the coordinates.
In this study, we used the second method in the calcu-
lations; the spectrum  of the initial hologram
was computed using FFT. Due to the large number of
points in the hologram, its exact correction can take
considerable time, especially for large holograms,
while approximate rotation and centering according to
the equation (13) can be done very quickly by multi-
plying the hologram by the corresponding exponential
matrix. Therefore, it is of interest to study both correc-
tion methods, as well as to analyze the error intro-
duced when using the approximate equation (13).

NUMERICAL VERIFICATION
OF THE METHOD

We carried out a numerical experiment to analyze
the proposed algorithm for obtaining an ideal holo-
gram and reconstructing the distribution of the nor-
mal component of the vibrational velocity on the
emitting surface; as an example, we used a single-ele-
ment spherical transducer with an operating frequency

1( , , )exp( )x yS k k ir kr

1( , , )x yS k k r
r

( , )x yS k k
ACOUSTICAL PHYSICS  Vol. 68  No. 1  2022
of  f0 = 2 MHz, radius of curvature of  mm, and
diameter of  mm (Fig. 2). The selected fre-
quency, shape, and dimensions of the transducer cor-
responded to the parameters of the annular phased
array described in the next experimental section.

On the surface  of the transducer, a uniform
vibrational velocity distribution of unit amplitude was
set, and the pressure on the surface  of the non-ideal
hologram was calculated using the Rayleigh integral:

(14)

where ,  is the radius vector of the surface
element  and  is the radius vector of the point at
which the complex pressure amplitude  is calculated.
The angle between the normal to the hologram surface
and the axis of the transducer  was chosen nonzero,
and the center of the site  was displaced relative to
the axis of the transducer (Fig. 2).

To calculate a non-ideal hologram  according to
the equation (14), it is necessary to know the equation
of the plane of the given hologram. It was derived from
the equation of the plane in which the ideal hologram

 lies by its two successive rotations: the first one
around the axis , and then around the new axis 
obtained after the first rotation; as well as by the dis-
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placement of the center of coordinates in the plane of
the rotated hologram. Thus, to unambiguously set the
position of the plane of the real hologram, five param-
eters were used: the distance from the center of the
source O to the center of the ideal hologram , the
angles of its rotations around the axes  and the new
axis , as well as the displacement of the center of the
hologram along the axes X and Y (Fig. 2).

After calculating the pressure distribution on the
surface  (Fig. 2) by (14), the described algorithm for
finding the acoustic axis of the transducer was applied,
then the hologram was rotated and centered using the
exact (12) and the approximate (13) methods. Two
new calculated holograms and the initial non-ideal
hologram were used in Rayleigh integral calculations
to reconstruct the amplitude and phase distributions
of the normal component of the vibrational velocity on
a surface of a spherical segment cut off by the used
hologram from a sphere of F = 80 mm radius centered
on the assumed acoustic axis and located at some dis-
tance from the hologram. In the case of correction, it
was assumed that the acoustic axis passed perpendic-
ular to the plane of the corrected hologram through its
center M0 (1), and in the absence of correction, per-
pendicular to the plane of the initial hologram through
the grid node closest to the field’s center of symmetry.
The distance from the holograms to the spherical sur-
face was obtained by superposing the maxima of the
pressure amplitude distributions on the axis calculated
using the Rayleigh integral (14) for the nominal
parameters of the transducer and reconstructed from
the used holograms. Beyond the surface of the spheri-
cal segment cut off by the hologram, the amplitude
and phase of the vibrational velocity were assumed to
be zero.

The plane of the non-ideal hologram  was
obtained from the plane of the ideal hologram Si at a
distance of 70 mm from the center O of the transducer
(Fig. 2). The size of the hologram was chosen as 301 ×
301 points with a step of  0.35 mm, which
corresponded to 0.47 of the ultrasound wavelength in
water at the operating frequency of the transducer. The
final grid step on the auxiliary planes (Fig. 1) was 0.01 mm,
which corresponded to the maximum error of 0.014 mm
in determining the coordinates of the center of sym-
metry in the obtained non-ideal holograms.

Three cases of deviation of the initial hologram
from the ideal one were considered. In the first case,
an imperfect hologram was obtained by rotating and
displacing the ideal hologram by relatively large values
compared to the characteristic experimental values:
the angles of rotation around the  and X axes were 
and , respectively, and the center of the hologram
was displaced to the point  mm. In the
second case, small angles of rotation and displacement
of the ideal hologram were considered: the angles of
rotation around the  and X axes were  and 
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respectively, and the center of the hologram was dis-
placed to the point  = (1,1) mm. In the third
case, to quantitatively estimate the accuracy of recon-
structing the vibrational velocity on the surface of the
transducer using the exact and approximate correction
methods, we calculated the holograms that were not
displaced relative to the ideal one, but were rotated
around the  axis by a varying angle 0° ≤  ≤ 20°. In
this case, the hologram was set on a grid consisting of

 points.
For the first case of large rotation and displacement

of the plane of the ideal hologram, Fig. 3 shows the
results of calculating the pressure amplitude and phase
in the central part of the obtained non-ideal holo-
gram, as well as after its approximate and exact correc-
tions. In the absence of correction (Fig. 3a), the dis-
placement of the center of the hologram and violation
of the symmetry of the distributions for both the
amplitude and the pressure phase are distinctly nota-
ble. After the approximate correction (Fig. 3b), both
the pressure amplitude and phase distributions
become centered. The angular asymmetry in the phase
distribution over the angle around the beam axis
decreases significantly, but remains unchanged in the
amplitude distribution, since the approximate correc-
tion (13) represents a shift of the center of the coordi-
nate system and multiplication by the phase factor.
After the exact correction (Fig. 3c), both the ampli-
tude and phase become symmetrical about the center
of the hologram. Inverse displacement of the center of
the hologram and angles of rotation during the correc-
tion calculated from (1), (6), (7) are (–2.00, –3.99) mm
and (–3.99, 3.97)°.

Figure 4 shows the initially set amplitude and phase
distributions of the normal component of the vibra-
tional velocity on the surface of the transducer
(Fig. 4a) and those reconstructed from the obtained
holograms (Fig. 3). When reconstructing without cor-
rection, the hologram is centered by shifting the center
of coordinates to the grid node with coordinates
(‒2.10, –3.85) mm, which is the closest node to the
center of symmetry of the hologram field. Clearly
(Fig. 4b), the greater inaccuracy in finding the coordi-
nates of the center did not induce a noticeable effect
on the uniformity of the reconstructed pressure ampli-
tude distribution on the surface of the sphere, but the
expected displacement of the transducer surface did
occur along the spherical surface on which the calcu-
lation was carried out. In the case of the approximate
correction of the hologram (Fig. 4c), the amplitude
distribution is different from the initial one (Fig. 4a)
both in nonuniformity along the surface and in the
non-sharp boundary of the transducer. In this case,
the observed differences are even stronger than with-
out correction of the hologram, which illustrates the
inaccuracy of the approach. The phase distribution
became more uniform, but still differs from the initial
one. With exact correction of the hologram, the calcu-
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SPATIAL CORRECTION OF AN ACOUSTIC HOLOGRAM 77

Fig. 3. Distribution of amplitude (top) and phase (bottom) in the plane of: (a) initial hologram  with large rotation and dis-
placement of its plane relative to the ideal hologram, (b) hologram corrected by the approximate method, (c) hologram corrected
by the exact method.
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lated structure of the transducer vibrations practically
coincides with the initial one (Fig. 4d). There is only a
slight inhomogeneity in the amplitude distribution at
the edges of the transducer, which occurs due to the
neglect of inhomogeneous waves when the angular
spectrum method is used to calculate the solution (9).
In real measurements, the hologram recording errors
can also introduce an additional error in the given
quantities [5].

For clarity, Fig. 5 compares the obtained amplitude
(Fig. 5a) and phase (Fig. 5b) distributions on the sur-
face of the transduce along the  axis for . The
red curve corresponds to the distribution obtained
after exact correction of the hologram. As can be seen,
it is very close to the initially specified rectangular dis-
tribution (gray curve), whereas the results obtained
with approximate correction or without correction
(black and blue curves, respectively) differ greatly
from the true ones.

For the second case of small rotation angles and
displacement of the initial hologram relative to the
ideal one, the results of reconstructing the amplitude
and phase of the vibrational velocity on the transducer
surface are shown in Fig. 6. The corrected inverse dis-
placement of the center of the hologram and rotation
angles were (–1.01, –1.01) mm and (–1.01, 1.01)° as
compared to the initially specified ones (1.00, 1.00) mm

X = 0y
ACOUSTICAL PHYSICS  Vol. 68  No. 1  2022
and (1.00, –1.00)°; when reconstructing without cor-
rection, the center of the coordinate was shifted to the
grid point with coordinates (–1.05, –1.05) mm. On
the whole, in the reconstructed distributions,
although to a less extent, the same differences are
observed as in the case of large angles and displace-
ments. It is worth noting that although in this case
application of the approximate method is more justi-
fied, both the amplitude and phase distributions of the
vibrational velocity at the transducer (Fig. 6c),
obtained from the approximately corrected hologram,
still differ from the initial ones (Fig. 6a). This is
because the angular spectrum of the field of the con-
sidered HIFU transducer is quite broad.

For the third case of different rotation angles  of
the hologram relative to the ideal one and use of the
exact and approximate correction methods, the mag-
nitude of the error in determining the vibrational
velocity on the surface of the transducer was estimated
quantitatively. From the obtained holograms, the
vibrational velocity on the assumed surface of the
transducer was calculated without correction and after
approximate and exact rotation of the hologram. As
mentioned above, due to the neglect of inhomoge-
neous waves [8] even calculating an ideal hologram
from the boundary condition set on the transducer
surface and making the inverse calculation, the
obtained distribution of the vibrational velocity on the

α
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Fig. 4. Distribution of amplitude (top) and phase (bottom) of normal component of vibrational velocity at the transducer’s sur-
face: (a) initially specified; calculated from (b) the initial hologram in case of large rotation and displacement of its plane relative
to the ideal hologram, (c) approximately corrected hologram, (d) exactly corrected hologram. 
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Fig. 5. (a) Amplitude and (b) phase of normal component of surface’s vibrational velocity along the axis X for . Gray line
corresponds to the initially specified rectangular distribution; blue curve corresponds to that reconstructed from the initial holo-
gram without correction for large rotation angles and displacement of its plane relative to the ideal hologram; red and black lines
correspond to those reconstructed from the holograms corrected by the exact and approximate methods, respectively. 
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transducer will not be identical to the initial one.
Therefore, the error  in the vibrational velocity
distribution calculated at the transducer  arising
after the exact and approximate rotations was consid-
ered with respect to the numerically reconstructed dis-
tribution :

(15)

where  is the number of grid points on the surface of
the spherical segment cut off by a hologram from a

( )ε α
( )αnV

( )α = 0nV

( ) ( ) ( )ε α = α − α =1 0 ,
N

n n
n

V V
N

N

sphere of radius F = 80 mm, on which the velocity dis-
tribution is reconstructed.

Figure 7 compares the error introduced in this way
for the three described cases. As expected, as the angle
between the normal to the hologram and the trans-
ducer axis increases, the error in determining the
vibrational velocity on the transducer surface that
occurs after the approximate correction of the holo-
gram increases much faster than in the case of the
exact correction. The appearance of a small error
when using the exact correction method is associated
both with some inaccuracy in determining the direc-
tion of the acoustic axis and, correspondingly, the
ACOUSTICAL PHYSICS  Vol. 68  No. 1  2022
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Fig. 6. Distribution of amplitude (top) and phase (bottom) of normal component of vibrational velocity at the transducer’s sur-
face: (a) initially specified; calculated from (b) the initial hologram for small rotation angles and displacement of its plane relative
to the ideal hologram, (c) approximately corrected hologram, (d) exactly corrected hologram.
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Fig. 7. Dependence of the error in determining a distribu-
tion of the complex amplitude of normal component of
vibrational velocity on the transducer’s surface on the angle
of inclination of a hologram plane to transducer’s axis for
the exact (red line 3) and approximate (black line 2) holo-
gram correction, as well as without correction (blue line 1). 
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coordinates of vectors  and  (1), (2), and with the
fact that for higher angles of rotation, due to the fixed
size of the hologram, less beam energy is incident on
its surface, so it contains less complete information
about the acoustic field.

EXPERIMENTAL VERIFICATION
OF THE METHOD

The method was verified experimentally for a
piezocomposite annular focusing transducer (Ima-
sonic, France) (Fig. 8) in the shape of a concave
spherical bowl with a circular central hole. The trans-
ducer has the following parameters: inner and outer
diameters mm and  mm, respec-
tively; focal length (radius of curvature)  mm;
resonance frequency  MHz. The emitting surface
of the transducer is divided into 12 annular segments of
equal area  cm2 with a gap of  mm
between two neighboring rings, which allows the
transducer to be used as an annular phased array.

The transducer was immersed in a  cm
tank with degassed water and fixed in place during
measurements. The water was filtered and degassed
with a PA WTS (water treatment system, Precision
Acoustics, UK). Each element of the phased array was
supplied with electric voltage from a 12-channel gen-
erator [11]. An HNA-0400 needle hydrophone (Onda
Corp., USA) with a sensor area 0.4 mm in diameter
was placed opposite the array. The sensitivity of the
hydrophone, taking into account the built-in pream-
plifier of the electrical signal, was 1.197 V/MPa at fre-

m 0r

=1 40D =2 100D
= 80F

=0 2f

= 5.2S = 0.5dr

× ×100 50 50
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quency 2 MHz. During measurements, the hydro-
phone was moved automatically with the UMS-3
micropositioning system (Precision Acoustics, UK)
positioned above the tank, allowing 3D scanning with
guaranteed positioning accuracy of 6 μm. The electri-
cal signal from the hydrophone was fed to an oscillo-
scope (TDS5054B, Tektronix Inc., USA) connected
to a computer. The measurement process was con-
trolled by a program written in the LabView environ-
ment, which is part of the Precision Acoustics posi-
tioning system. Water temperature stability during
measurements was maintained by a thermocouple
built into the transducer. The hologram measurement
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Fig. 8. (a) Diagram and (b) photograph of the ultrasound phased array (Imasonic, France) used in holography measurements.
The array comprises 12 rings of equal area, located on the sphere of F = 80 mm radius. 

(а)
–60

–60

–40

–40

–20

–20

0

0
x, mm

20

20

40

40
60

60

y,
 m

m

(b)
time was approximately 10 hours, during which the
temperature deviation from  was no more than
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Two holograms were measured: the first one was
recorded when the transducer was positioned parallel
to the hologram measurement plane with an accuracy
of about ; the second one was measured after rotat-
ing the transducer by  around the Y axis of the
hologram. Rotation was done via the rotary mecha-
nism of the positioning system with a nominal angle-
setting accuracy up to . The hologram was
recorded by measuring the hydrophone signal at the
nodes of a plane square grid with a step of 0.4 mm,
located 15 mm from the focal maximum towards the
transducer. The corresponding number of grid nodes
was chosen as 221 × 221, the size of the hologram in
each measurement exceeded the geometric size of the
ultrasound beam in this region by a factor of 3.6. The
center of the region and scanning in both cases were
set manually in the center of the acoustic beam to
ensure that the acoustic beam passed through the
measurement area to the fullest extent.

All annular elements of the transducer were excited
in phase by an electric pulse consisting of N = 5 peri-
ods at f0 = 2 MHz frequency and 1 V amplitude; the
pulse repetition rate was T = 4 ms. The signal at each
point of the hologram was recorded within a 100 μs
time window, which was sufficient to record the pulsed
acoustic signal by the hydrophone in each point of the
hologram. The hydrophone signal was recorded at a
sampling rate of 20 ns, which included 5000 time sam-
ples for the selected time window. To reduce the noise

°22 С
°0.3 С

°1
°10

°0.2
level at each point of the hologram, averaging was per-
formed over 48 samplings of the periodically repeating
signal. The measurements yielded a nonstationary
hologram, from which the hologram at the transducer
resonance frequency was extracted using spectral
decomposition and then was normalized to the corre-
sponding frequency component of the voltage signal
spectrum on the elements. After taking into account
the sensitivity of the hydrophone, we obtained the dis-
tribution of the complex pressure amplitude (in Pa) in
the plane of the measured hologram; it corresponded
to operation of the array in the monochromatic mode
at the resonance frequency with the voltage of 1 V
across the elements.

The data obtained by these methods were used to
reconstruct the distribution of vibrations of the trans-
ducer surface after preliminary exact and approximate
corrections of the measured holograms. The auxiliary
pressure distributions in the planar areas  and 
(Fig. 1) were calculated at the distances of –15.07 and
14.75 mm from the initial holograms, respectively, and
the field in them was calculated iteratively by the
Rayleigh integral in a window with  points; the
final grid step was 0.01 mm.

In the first case, for correcting the measured holo-
gram that was located close to the ideal one, it was
necessary to move the center of the coordinates to the
point (0.06, 0.27) mm and perform rotation around
the X axis by –0.15° and then around  by 0.44°. The
distance from the plane of the corrected holograms to
the maximum amplitude distribution on the trans-
ducer axis was 15.01 mm. The amplitude and phase

1S 2S

×50 50

�Y
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Fig. 9. Comparison of amplitude (top) and phase (bottom) distributions of normal component of vibrational velocity on the sur-
face of a phased array reconstructed from holograms measured at (a, b) small and (c, d) large rotation angles of the hologram
plane relative to the acoustic axis of the array after correction (a, c) by the approximate and (b, d) the exact methods. 
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distributions of the vibrational velocity reconstructed
on the assumed surface of the transducer described
above turned out to be almost indistinguishable after
both approximate (Fig. 9a) and exact (Fig. 9b) correc-
tions.

In the second case, when the transducer axis was
rotated with respect to the axes of the positioning sys-
tem by a sufficiently large angle, to reconstruct the
ideal hologram, the center of the coordinates was
moved to the point (–0.08, 0.15) mm and the initial
hologram was rotated around the X axis by –0.19° and
around the  by –9.57°. The distances from the
approximately and exactly corrected holograms to the
focus were 13.60 and 15.08 mm, respectively. In this
case, the approximate method of correcting the holo-
gram yields unsatisfactory results (Fig. 9c). Note that
the distribution of the vibrational velocity on the
transducer surface obtained even from the exactly cor-
rected hologram (Fig. 9d) somewhat differs from that cal-
culated at a small rotation angle (Fig. 9b). This discrepancy
may be due to the neglect of the hydrophone directivity
pattern, which introduces additional distortions when
measuring the hologram on a rotated plane [12].

CONCLUSIONS
The paper proposes a method for spatially correct-

ing acoustic holograms of transducers with axial sym-
metry for practical use in characterizing vibrations of
the transducer surface and the fields generated by the
transducer. The method allows for constructing a
hologram on a plane perpendicular to the transducer
axis and centered relative to it, which provides the

�Y
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most convenient geometry for subsequent setting the
boundary conditions on the transducer surface for
performing numerical experiments, field reconstruc-
tion, and comparison with measurement data in the
transducer coordinates. The error of the exact and
approximate methods of hologram correction is ana-
lyzed at various angles between the axis of the trans-
ducer and the normal to the initial hologram. It is
shown that, while the approximate correction method
is much simpler and faster, its use for sources with a
broad angular spectrum may introduce significant
errors in reconstruction of an ideal hologram even at
small angles of inclination of the hologram plane to the
transducer axis,. Thus, for medical ultrasound applica-
tions requiring high accuracy in determining the struc-
ture of vibrations of a transducer surface and the field
generated by the transducer, correction of the acoustic
hologram using the exact method is preferable.
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