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Abstract—The problem of accelerating the algorithm for calculating nonlinear effects is considered, when
modeling high-intensity ultrasonic beams based on the one-way Westervelt equation. When constructing a
numerical solution for strongly distorted waves with shock fronts, it is necessary to take into account large
number of harmonics (up to 1000) on spatial grids with a matrix size of the order of 10000 by 10000, which
requires the processing of large amounts of data and a long calculation time. In this paper, the implementa-
tion of the nonlinearity operator is carried out in a time representation using a Godunov-type shock-catching
scheme, which allows modeling nonlinear waves with shock fronts with a small (3) number of grid nodes on
the shock front. The paper compares the efficiency of using this method when it is implemented on central
processing units (CPUs) and graphics processing units (GPUs) in comparison with the spectral method
implemented earlier for quasi-linear wave propagation. An analysis is made of the speed of algorithm execu-
tion on the CPU and GPU, depending on the size of the input data arrays.
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surgery
DOI: 10.1134/S1063771022060161

INTRODUCTION
Numerical experiments are today an integral part

of the development of methods of noninvasive surgery
using nonlinear ultrasonic waves. One of the main
objects for the study of which numerical methods are
actively used are nonlinear focused ultrasonic beams
of high intensity, with the help of which designated
structures inside the human body, such as tumors, are
destroyed [1]. To generate high-power ultrasound,
transducers of various shapes and designs are used;
when designing them for specific clinical applications,
it is necessary to be able to quantitatively describe the
structure of the acoustic fields they create (Fig. 1).
Such a task can be effectively implemented using
numerical simulation methods [2–4]. One of the most
complete wave models for the theoretical description
of powerful ultrasonic beams is the Westervelt equa-
tion, which allows one to quantify accurately nonlin-
ear shock-wave fields created by focused high-power
ultrasound transducers in homogeneous absorbing
media [5, 6]. When setting a task, it is usually assumed
that the emitter generates a monochromatic wave, the
spectrum of which is enriched in higher harmonics

during propagation due to the effect of acoustic non-
linearity. In the general case, to solve this equation,
when time is an evolutionary variable, it is necessary to
use supercomputers [7]. However, a number of simpli-
fications can significantly reduce computational costs.

To optimize the numerical simulation of nonlinear
focused ultrasonic beams, special algorithms are being
developed. In this paper, the case of a directed three-
dimensional beam, which is important for practice, is
considered, which makes it possible to simplify the
computational problem by passing to a retarded time
coordinate system, the axis of which is oriented along
the predominant direction of wave propagation in the
beam. In this case, the evolutionary variable is the
coordinate along the beam’s z axis (Fig. 1). The
numerical solution of this type of evolution equation is
usually constructed using the method of splitting by
physical factors [8], according to which, at each step of
the grid along the z axis, each physical effect is calcu-
lated separately using the most appropriate numerical
method. The nonlinear evolutionary Westervelt equa-
tion in this formulation was solved for emitters of var-
ious shapes and sizes [6, 9–10]. In this case, the typi-
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Fig. 1. Scheme of propagation of a focused ultrasonic
beam created by an HIFU emitter.
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cal size of matrices for storing the parameters of the
pressure field is Mx = 10000 per My = 10000 (Fig. 1)
for each of N = 1000 spectral components of the non-
linear waveform [9]. In this case, the required amount
of RAM, which is quite large (several hundred giga-
bytes), and the corresponding complexity of the calcu-
lations still requires the use of supercomputers.

However, if we take into account the features of the
spatial structure of the nonlinear fields of highly
focused emitters, the problem under consideration
can be solved on ordinary personal computers with
multicore central processing units (CPUs). Since
nonlinear effects mainly appear where the wave
amplitude is large, i.e., near the focus, then a large
number of harmonics must be taken into account pre-
cisely in this relatively small region of space [9]. This
method makes it possible to reduce computational
costs and requirements for the amount of computer
RAM by an order of magnitude, however, even with
parallel execution of calculations on several processor
cores (usually from 2 to 16), which can significantly
speed up calculations, field simulation for one set of
input parameters can take up to several days [9]. Tak-
ing into account the fact that several tens of calcula-
tions are required to characterize the field of one emit-
ter in the entire operating power range, such a simula-
tion speed is not satisfactory.

A potential solution to the problem of computa-
tional speed is the recently rapidly developing technol-
ogy of parallel programming on graphics processing
units (GPUs). Unlike the CPUs, these processors
have up to several thousand highly specialized cores
capable of performing a wide range of mathematical
operations [11]. Such a number of cores makes it pos-
sible to increase the speed of calculations due to a large
number of simultaneously launched processes that
process the same type of data segments in parallel. The
resulting acceleration of calculations is not necessarily
proportional to the number of processing threads,
which is due to the lower power, performance, and
computation speed of GPU cores compared to CPU
cores, as well as the peculiarities of storing and trans-
ferring data between CPU RAM and graphics mem-
ory. Since the storage and recording of data during the
execution of each of the steps of the algorithm along
the evolutionary coordinate is performed in the RAM
of the CPU, additional time is spent on the exchange
of data between the central and graphic processors at
each step of the algorithm. Due to the considered fea-
tures of the GPU architecture, it is an important task
to find a balance between the maximum sizes of pro-
cessed at this step of the algorithm, the data that are
placed in the RAM of the GPU in order to avoid their
transfer in parts, and minimizing the exchange of data
between the processors.

Earlier, for this problem, an algorithm was imple-
mented on the GPU, in which kernel functions were
written to calculate the diffraction operator by the
angular spectrum method, find the exact solution for
the absorption operator, and solve the nonlinearity
operator in the spectral representation by the Runge-
-Kutta method of four orders [12]. However, when
using the spectral method, the number of computa-
tional operations and, accordingly, the computation
time are proportional to the square of the number of
generated harmonics. Therefore, this method will be
effective only with a weak manifestation of nonlinear
effects, when a small number of higher harmonics is
formed in the wave spectrum. The nonlinearity oper-
ator can also be calculated using various methods in
time representation; however, in many of them, a large
number of grid points along the time axis (50–100) are
required to describe the discontinuity region, which
increases the total number of grid points and, thus, the
amount of data being processed [13, 14]. To solve this
problem, it is more efficient to use shock-catching
schemes that allow modeling the formation of a shock
front using a small number of points on it (about
three), for example, a conservative Godunov-type
scheme [15].

The purpose of this work is to implement the
Godunov-type shock-catching circuit algorithm on a
graphical processing unit for greater acceleration of
parallel computing compared to using multicore cen-
tral processing units and to make it possible to model
high-power ultrasonic beams with shock fronts on a
conventional personal computer.

THEORETICAL MODEL
Nonlinear Westervelt Equation

The Westervelt equation in a retarded time coordi-
nate system can be written in evolutionary form as

(1)
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Fig. 2. Scheme for the implementation of parallel calcula-
tion of a nonlinear operator, where M is number of spatial
points.
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where p(x, y, z, τ) is the acoustic pressure,  is the
speed of sound in the medium,  is the
retarded time,  is the coefficient of nonlinearity, and

 is the thermoviscous absorption coefficient [5]. The
differential operators on the right side of the equation,
in order from left to right, describe the effects of dif-
fraction, nonlinearity, and thermoviscous absorption.

In numerical solution of Eq. (1), at each step along
the z axis, discretized pressure field  is rep-
resented in the computer memory in the form of a
three-dimensional matrix, which contains a set of
complex amplitudes N harmonics of the wave spec-
trum in the expansion of its waveform into a finite
Fourier series at each spatial point of plane xy on a
uniform grid with number of points Mx and step Δx
along the x axis and My with step Δy along the y axis:

(2)

Here,  is the circular harmonic frequen-
cies with number n,  is the circular frequency of the
monochromatic source, and  is the complex ampli-
tudes of the harmonics. Note that it is sufficient to
store only one-half of the spectrum of positive fre-
quencies in the computer memory, since the ampli-
tude of the second half of the negative frequencies is
complex conjugate to the first.

Using spectral representation (2) for the pressure
field in the scheme of splitting by physical factors of
solving Westervelt equation (1), it is possible to calcu-
late the diffraction operator using the angular spec-
trum method and accurately calculate the absorption
operator for each of the spectral components of the
wave independently of each other [12]. Features of
parallel computations of the nonlinearity operator in
the spectral and temporal representations are consid-
ered below. We consider the implementation of only a
nonlinear operator in the Westervelt equation; i.e., in
fact, the equation of simple waves is solved. Since this
equation is solved independently in each spatial coor-
dinate, to simplify the representation of data in the
computer memory, we will proceed to consider the
row of the original array in terms of spatial coordinate
x with M elements, which will not affect the study of
the efficiency of the algorithm. Thus, the wave propa-
gates along the z axis, nonlinear effects are calculated
at each step by z independently M times for all grid
nodes along coordinate x (Fig. 2), optimization of cal-
culations is carried out by parallelizing data f lows
along this coordinate. In the future, when modeling a
complete nonlinear diffraction problem, calculations
will be carried out on a three-dimensional grid. For
this purpose, data from a two-dimensional spatial grid
in plane xy with full number of nodes M = MxMy can
be processed by splitting them into one-dimensional
arrays of size described above M.
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Nonlinearity operator

If the diffraction and absorption operators are not
considered in Eq. (1), as a result, we obtain the equa-
tion of simple waves, which describes the nonlinear
distortions of the plane waveform:

(3)

As mentioned above, in a three-dimensional non-
linear problem, Eq. (3) is solved independently for
each of points M = MxMy spatial grid in plane xy (Fig. 2).
In the case of weak manifestation of nonlinear effects,
when the formation of shock fronts is not expected, it
is convenient to use a spectral algorithm in which the
system of coupled nonlinear equations is solved
numerically for the amplitudes of harmonics (2) [16].
Usually, the Runge–Kutta method with four orders of
accuracy is used as a numerical method.

Earlier, in the works of the authors of this article,
such a spectral algorithm was implemented to perform
calculations on graphics processors when solving the
complete nonlinear diffraction problem (1) [12]. Par-
allel computing is organized by splitting the total data
array into segments of size LxLyN, where Lx is the size
of the buffer along the spatial coordinates x, Ly is that
along spatial coordinate y, and N is the number of har-
monics. This approach allows one to process the
amount of data that does not necessarily fit entirely in
the amount of GPU memory. Portions of data from
temporary buffers are transferred from the CPU mem-
ory to the GPU memory, where they are processed by
a parallel algorithm, in which, for each process on the
graphics core, a set of N harmonics was selected out of
total number of processes LxLy. Thus, for each data
segment sent to the GPU, the algorithm uses data par-
allelism. When implementing an algorithm on a GPU,
it is an important task to find a balance between the
amount of data being processed and the capabilities of
the processor’s memory. When evaluating computa-
tional performance, one must also take into account
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Fig. 3. Scheme for a conservative Godunov-type numeri-
cal scheme for the simple wave equation.
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the time spent transferring data between CPU and
GPU memory.

With a strong manifestation of nonlinear effects, a
large number of harmonics are required to describe
the process of waveform distortion, information about
which must be stored at each step along beam axis z.
Since the number of computational operations in the
spectral approach grows in proportion to the square of
the number of harmonics, the spectral algorithm
quickly becomes inefficient. An alternative way to
solve Eq. (3) is to use numerical schemes that work in
time representation. In this case, it is most efficient to
use shock-catching schemes that allow one to model
highly distorted nonlinear waves using a small number
of points on shock fronts [13, 15]. Note that, when
storing data in spectral representation (2), in order to
pass to waveforms, it is necessary to perform a fast
Fourier transform, which can also be performed on
the GPU. To construct a numerical solution, it is con-
venient to reduce Eq. (3) to a dimensionless form:

(4)

where  is acoustic pressure normalized to
wave amplitude ,   are the
dimensionless time and coordinate, respectively; and

 is the shock formation distance for an
initially harmonic wave with frequency ω0 specified in
dimensionless variables as

(5)

∂ ∂=
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Godunov’s method
The numerical solution of Eq. (4) at each grid step

along the evolutionary coordinate σ was constructed
using a Godunov-type scheme (Fig. 3). The calcula-
tion algorithm is an explicit six-point conservative
scheme of the second order of accuracy in time and
the first order of accuracy in the propagation coordi-
nate [13, 15]:

(6)

where f lows  through the centers of the cells of the

numerical grid on the kth step by coordinate  are set
as follows:

(7)

Here,  is the scheme step along coordinate ,
is the grid step along dimensionless time axis , and
local f low velocity in the grid cell is

(8)

To obtain the second order of accuracy, this algo-
rithm uses a piecewise linear reconstruction of pres-
sure values  on the right  and left

 of the node of the numerical grid :

(9)

For greater stability of the numerical algorithm, the
time derivatives involved in (8) of the solution at step k
by coordinate  are chosen in such a way that their val-
ues are minimal in absolute value from the possible
values of the derivatives—right, left, and central with a
weighting factor of 1 ≤  ≤ 2:

(10)

Weight coefficient  corresponds to the most
accurate solution with minimum grid absorption and
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Table 1. Comparison of the speed of algorithms based on the Godunov method for a CPU and GPU and using the spectral
method for a GPU, when performing calculations on a laptop, for number of harmonics N = 1000 for different numbers of
M waveforms

Number of points in space M 100 500 1000 5000 10000

Time 

CPU (TD Godunov) 30.7 156 324 1562 3023

GPU (TD Godunov) 3.5 12.2 22 55 108

GPU (FD RK4) 2 11.6 36.8 141 282

8.3 12.8 14.8 28.4 28

0.57 0.95 1.67 2.56 2.6

,  sT

G GCPU GPUT T

RK4 GGPU GPUT T
rithm, which is achieved by increasing grid absorption.
In this work, the value of b assumed to be 1. The pre-
sented scheme makes it possible to calculate the prop-
agation of narrow shock fronts with high accuracy
using only three grid nodes on the shock front [15].
Note that, when solving three-dimensional problems,
artificial absorption is usually additionally introduced,
which makes it possible to smear the width of the
shock front to the required values (usually 7 or 8 points
per front) in order to reduce large spatial gradients of
the pressure field along transverse coordinates [6].

Calculations were carried out on two different
computers: on a laptop with a CPU Intel Core i5-
8250U with a GPU Nvidia GeForce MX150 video
card (380 cores, 1.5 GHz) and on a personal computer
(PC) with a CPU Intel Core i7 4790 with an Nvidia
GTX1070 graphics card (1980 cores, 1.7 GHz). To
implement calculations on GPUs, a program was writ-
ten in C containing a CUDA core function that imple-
mented algorithms (6)–(10). To determine the effi-
ciency of this program in the C language, a similar sin-
gle-threaded algorithm for the CPU was
implemented, as well as an algorithm for the GPU
based on the spectral method, with the calculation
speed of which a comparison was made. When solving
Eqs. (6)–(10) numerically, at each step in σ, the dis-
cretized pressure field was represented in the computer
memory in the form of a two-dimensional matrix that
contained the set of M waveforms specified in M spatial
points. Such a representation of the data is necessary to
implement data parallelization, in which each waveforms
from among M is processed in parallel with other wave-
forms by different GPU cores. The calculations were
carried out for a different number of spatial coordi-
nates M (100–10000 points), as well as for a different
number of points per wave period (100–3000 points)
with time grid steps  and  sat-
isfying the stability of the Godunov-type scheme for
the maximum considered number of points per wave
period. To determine the correctness of the imple-
mented algorithm in the time representation, we used
an analytical solution of a simple wave equation with

Δ = 0.0063t Δ =σ 0.2378 
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an infinitely narrow shock front (4) with initial wave-
form (5) presented in an implicit form [17]:

(11)

The position and magnitude of the shock front
were determined by the rule of equality of areas.

RESULTS
Figure 4 shows the wave profiles at different dis-

tances obtained numerically using the Godunov
method implemented on a laptop GPU, as well as the
theoretical solution described by Eq. (11). There is
good agreement between the numerical and analytical
solutions with an error of no more than 0.03% in the
amplitude of the shock front. The discrepancy is
observed only in the discontinuity region, since, in
contrast to the analytical solution, the numerical
scheme leads to the formation of a shock front of finite
width with three points on the discontinuity.in. Thus,
the width of the front when using 1000 points per
period is about 0.2% of the wave period. These results
confirm the correct implementation of the algorithm
for the GPU. Identical results were obtained for algo-
rithms implemented on a PC using one of the CPU
cores and on a laptop with and without a video card.

Tables 1 and 2 compare the results of calculations
on a laptop based on the run time of a single-threaded
algorithm based on the time-domain method and
implemented on the CPU with the corresponding
algorithm for the GPU, as well as with an algorithm
that implements the spectral method on the GPU,
depending on number of spatial points in buffer M and
the quantity of harmonics N. As expected, the compu-
tation time using the spectral method on the GPU
increases quadratically with an increase in the number
of harmonics, which demonstrates its inefficiency in
the case of strong nonlinear effects and a large number
of harmonics. In this case, the time of calculations
based on the Godunov method is proportional to the
number of harmonics. For the dimensions of the pres-
sure-field matrix with 10000 spatial points and, at
1000 harmonics, calculations implemented on the

( )= +th thsin θ σ .V V
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Fig. 4. Comparison of the analytical (solid gray line) and
numerical (dashed black line) solutions for plane waves
with a harmonic initial profile at different distances from
the source: σ = (a) 0.5, (b) 1.0, and (c) 4.0. (d) Compari-
son of analytical and numerical solutions near the shock
front at σ = 4.0.
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Fig. 5. Dependence of the acceleration of the algorithm
based on the Godunov method implemented on the GPU:
(a) compared to the version for the CPU, (b) compared to
the spectral algorithm on the GPU, depending on buffer
size M.
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GPU using the time approach are 26 times faster com-
pared to the CPU and 2.6 times faster than the spectral
algorithm implemented on the GPU.

Tables 3 and 4 compare the speed of the same pro-
grams on a more powerful computer (a PC). There are
similar dependences of the time spent on calculations
on the number of harmonics used for both methods.
For matrix sizes with 10000 spatial points and 1000
harmonics, calculations implemented on the GPU
using the time approach are 33 times faster compared
to the CPU and 2.3 times faster than the spectral algo-
rithm implemented on the GPU.

On Fig. 5, where the data on comparing the speed
of the algorithms are summarized in the form of
graphs, it can be seen that the acceleration for a laptop
with an increase in both the number of spatial points
and the number of harmonics (Fig. 6) reaches a cer-
tain value and then does not change. This is because
the GPU on a laptop has a small number of cores
capable of running parallel processes, as well as a small
amount of memory, which limits the capacity of pro-
cessed data. Therefore, with large parameters of the
input array, it becomes necessary to transfer it from
CPU memory to GPU memory in parts, which takes
additional time. Also, a small number of cores makes
it possible to process only the corresponding number
of threads at the same time. The acceleration of calcu-
lations implemented on a more powerful computer (a
PC) grows for all kinds of constructed dependences,
due to the greater power and memory of its GPU.

In the case of comparing the speed of the algo-
rithms implemented using the Godunov method on
the CPU and GPU, the acceleration achieved on a PC
is less than on a laptop. This is due to the higher power
of the PC’s CPU. An important result is a significant
acceleration achieved in PC calculations with an
increase in the number of harmonics in the case of
ACOUSTICAL PHYSICS  Vol. 68  No. 6  2022
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Table 2. Comparison of the speed of algorithms based on the Godunov method for a CPU and GPU and using the spectral
method for a GPU, when performing calculations on a laptop, for number of points in space M = 2500 and different quan-
tities of harmonics N

Number of harmonics 50 250 500 1000 1500

CPU (TD Godunov) 73 371.5 738.6 1476 2214
GPU (TD Godunov) 3.8 14.4 27.7 56.1 83.2
GPU (FD RK4) 0.8 19.7 79.1 316 713

19.2 25.8 26.7 26.4 26.6

0.21 1.37 2.85 5.6 8.6

N

Time  ,  sT

G GCPU GPUT T

RK4 GGPU GPUT T

Fig. 6. Dependence of the acceleration of the algorithm
based on the Godunov method implemented on the GPU:
(a) in comparison with the version for the CPU, (b) in
comparison with the spectral algorithm on the GPU,
depending on number of harmonics N.
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Table 3. Comparison of the speed of algorithms based on the Godunov method for a CPU and GPU and using the spectral
method for a GPU, when performing calculations on a stationary computer, for number of harmonics  for differ-
ent-quantity M waveforms

Number of points in space M 100 500 1000 5000 10000

Time 
CPU (TD Godunov) 7.1 35.8 71.1 355 712
GPU (TD Godunov) 2.1 7.3 7.8 14.1 21.2
GPU (FD RK4) 0.03 8.0 9.0 24.4 48

3.4 4.9 9.1 25 33.6

0.01 1.1 1.2 1.7 2.3

= 1000 N

,  sT

G GCPU GPUT T

RK4 GGPU GPUT T

Table 4. Comparison of the speed of algorithms based on the Godunov method for a CPU and GPU and using the spectral
method for a GPU, when performing calculations on a stationary computer, for number of points in space M = 2500 of dif-
ferent numbers of harmonics N

Number of harmonics 50 100 500 1000 1500
CPU (TD Godunov) 18.7 91.4 182.8 384 576
GPU (TD Godunov) 1.6 7.0 13.7 27.4 40.9
GPU (FD RK4) 1.4 35.6 142.4 569 1281

11.7 13.0 13.34 14.0 14.1
0.88 5.0 10.39 20.7 31.3

N

Time  ,  sT

G GCPU GPUT T

RK4 GGPU GPUT T
using the time method compared to the spectral
method.

CONCLUSIONS

The paper implements a numerical algorithm for
calculating nonlinear acoustic effects on graphics pro-
cessing units using a Godunov-type shock-catching
circuit. Calculations on a GPU made it possible to
speed up the calculations compared to the algorithm
for a CPU by an order of magnitude or more for both
a laptop and a more powerful personal computer for all
the sizes of the data array under consideration. In
addition, for the characteristic number of harmonics
(N = 1000) required to describe high-amplitude shock
fronts, the implementation of the Godunov scheme
on the GPU gave a gain of an order of magnitude in
time compared to the spectral algorithm in calcula-
tions on a personal computer and one of five times on
a laptop. Thus, it was shown that computations on
graphics processors can be effectively used to solve
nonlinear wave problems using shock-catching
numerical schemes operating in time representation.
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