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Abstract

In medical and industrial ultrasound, it is often necessary to measure the acoustic properties of a material. A specific medical

application requires measurements of sound speed, attenuation, and nonlinearity to characterize livers being evaluated for trans-

plantation. For this application, a transmission-mode caliper device is proposed in which both transmit and receive transducers

are directly coupled to a test sample, the propagation distance is measured with an indicator gage, and receive waveforms are

recorded for analysis. In this configuration, accurate measurements of nonlinearity present particular challenges: diffraction effects

can be considerable while nonlinear distortions over short distances typically remain small. To enable simple estimates of the

nonlinearity coefficient from a quasi-linear approximation to the lossless Burgers’ equation, the calipers utilize a large transmitter

and plane waves are measured at distances of 15-50 mm. Waves at 667 kHz and pressures between 0.1 and 1 MPa were generated

and measured in water at different distances; the nonlinearity coefficient of water was estimated from these measurements with

a variability of approximately 10%. Ongoing efforts seek to test caliper performance in other media and improve accuracy via

additional transducer calibrations.

c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

In diagnostic and therapeutic applications of medical utrasound, there is a general need for knowing the acoustic

properties of tissue. Although many measurements have been made (Duck, 1990), available data are not consistent
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and were compiled from studies using different measurement techniques. Beyond a general interest in the acoustic

properties of tissue, we are pursuing a specific project to use ultrasound for characterizing donor livers for transplan-

tation. Despite efforts to expand the donor pool there is still a discrepancy between the availability of transplantable

organs and the need for them (Orman et al., 2013; Wertheim et al., 2011). In particular, hepatic steatosis (fatty liver

disease) is considered a primary risk factor in transplanted livers and can therefore result in organ nonuse (McCor-

mack et al., 2011; Spitzer et al., 2010). Although there is interest in expanding the donor pool by using organs with

a higher degree of steatosis, consistent measurements of steatosis are typically not available. The current gold stan-

dard for potential donor liver evaluation is histological biopsy, which is an inherently subjective and invasive process;

moreover, because biopsies are often not performed, decisions are often based on visual inspection by the surgeon.

We seek to develop an ultrasonic caliper device capable of quantitatively characterizing liver tissue. The potential

of such measurements was investigated by Sehgal et al. (1986), who used sound speed and nonlinearity measurements

to infer the fatty and non-fatty composition of liver tissue. To build on this approach, we also aim to quantify the

amount of fat that exists in small or large droplets. Small, sub-micron sized droplets (i.e., microsteatosis) are metabol-

ically different from large droplets and potentially much less problematic in transplants. Toward this end, dispersion

calculations (Evans and Attenborough, 2002) for ultrasound propagation in a medium comprising fatty and non-fatty

components suggest that micro-steatosis may be detectable from attenuation measurements at sub-megahertz fre-

quencies. To measure ultrasonic sound speed, nonlinearity, and attenuation in transplant applications, we propose to

develop a transmission-mode caliper device such as the one pictured in Fig. 1. Notably, this basic hardware design is

comparable to that used for in vivo nonlinearity measurements by Zhang and Dunn (1987).

Fig. 1. Photo of the proposed hardware for an acousic calipers.

2. Methods

Nonlinear acoustic propagation is a well-known phenomenon characterized by distortion of the shape of an acous-

tic waveform as it propagates in a nonlinear medium. The nonlinearity comprises convective nonlinearity as well as the

impact of higher-order terms in the medium’s equation of state, which cause parts of the waveform at higher pressures

to propagate faster than those at lower pressures (Hamilton and Blackstock, 1998). Previous work by Bjørnø (1986)

suggests an estimation accuracy on the order of ±5% can be achieved for the coefficient of nonlinearity for biological

fluids. There are two basic approaches for such measurements: the thermodynamic method and the finite-amplitude

method. Though the thermodynamic method is considered to be more accurate, it is not viable for measuring tissues in
vivo. Here we use the finite-amplitude method, which relies on a calibration of source output and direct measurement

of waveform distortion over a known propagation distance. Typically, the finite-amplitude approach is implemented

by using the amplitude of the second-harmonic component of the distorted waveform to quantify the nonlinearity of

the medium.

For the present application, a key challenge is to accurately measure nonlinearity over a relatively short propa-

gation distance (15–50 mm) using a transmitting transducer with a fundamental frequency below 1 MHz. Our basic

approach is to use a large transmitting transducer such that measurements can be made in the plane-wave regime

and diffraction effects can be ignored. However, for the geometry and frequency of interest, the plane-wave regime

will be realized for only a few acoustic cycles, during which the real transducer output will be transient in nature.
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Accordingly, it is necessary to analyze nonlinear waveform distortions in the time domain. To that end, we first define

an expression for estimating the nonlinearity from an arbitrary transient waveform. Then we use a known solution

for lossless nonlinear propagation of plane waves to demonstrate the performance of this expression for estimating

nonlinearity. Finally, we use a transducer designed for the calipers depicted in Fig. 1 to generate finite-amplitude

waveforms in water and glycerol to experimentally test the approach in the regime of interest.

2.1. Model

The nonlinear propagation of plane waves is commonly described by Burgers’ equation (Hamilton and Blackstock

(1998)):
∂p
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− β
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where p(x, τ) is pressure, x is propagation distance, β is the coefficient of nonlinearity, c0 is sound speed, ρ0 is

density, and τ = t − x/c0 is a retarded time coordinate. Note that the nonlinearity of a medium is often expressed as

B/A, where A and B are coefficients of nonlinear terms in the Taylor series expansion of the equation of state. By

definition, β = 1 + B/2A. In Eq. (1), the right-hand side captures attenuation with δ representing the diffusivity of

sound. As a plane wave at an initial point p1(τ) = p(0, τ) propagates to an arbitrary second point, the waveform shape

p2(τ) = p(x, τ) becomes distorted. It is now convenient to define p̂ = p2 − p1 as the nonlinear component of the

distorted waveform. If we neglect attenuation and waveform distortions p̂ are small, then Eq. (1) is readily integrated

to yield

p̂ = x · β
2ρ0c3

0

∂p2
1
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From this expression, if waveforms p1 and p2 are measured in conjunction with the propagation distance x, then the

coefficienct of nonlinearity β can be readily calculated. In practice, we estimate β from a set of measurements by

selecting the value that provides the optimal least-squares fit between the left- and right-hand sides of Eq. (2).

While Eq. (2) is sufficient if attenuation can be neglected, we note from Zhang and Dunn (1987) that attenuation

can be accounted for using the modified estimate

β′ = β · exp
[ (
α1 +

α2

2

)
x
]

(3)

Here, α1 and α2 are the attenuation coefficients of the medium evaluated at the fundamental frequency and the second

harmonic, respectively.

2.2. Experiments

Transient pressure waveforms with a center frequency of 667 kHz were generated by a flat piezoceramic transducer

50 mm in diameter. The transducer was driven by a class D amplifier with supply voltages between 50 and 350 V.

Using a 14-bit digitizer (Gage Razor 14, DynamicSignals LLC, Lockport, IL), waveforms were measured with a

capsule hydrophone (Model HGL-0200, Onda Corp., Sunnyvale, CA). This hydrophone was calibrated at 667 kHz

by substitution with a calibrated fiber optic hydrophone (Model FOPH 2000, RP Acoustics, Leutenbach, Germany).

With these components, measurements were acquired in a tank of deionized, degassed water at a temperature of 18◦C.

All propagation distances were inferred from the sound speed in water at this temperature and measurement of the

time-of-flight for waveform propagation. In addition, to estimate β in glycerol, a 35 mm thick drum with 0.5 mm

acoustic rubber windows was submerged in the tank in the propagation path.

To implement the method described in Section 2.1, a low-amplitude measurement at driving voltage Vlo in the

plane-wave regime was used to represent the shape of the undistorted waveform p0 at the source. The size of the flat

transducer in conjunction with the desired propagation range from 15–50 mm constrained the plane-wave regime to a

time window corresponding to about three acoustic cycles. Each high-amplitude waveform p2 at known propagation

distance x was measured directly at a driving voltage Vhi. The corresponding source pressure p1 was then calculated

by assuming linear transducer behavior and scaling the waveform shape p0 by the ratio Vhi/Vlo.
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3. Results

A measured nonlinear signal p̂ is shown in Fig. 2. In this example, a p̂ amplitude of about 0.03 MPa was achieved

using a source pressure of about 1 MPa. In order to estimate β reliably, measured waveforms were averaged over

1,000 realizations to reduce noise in the signal. Using the least-squares method proposed in Section 2.1, a best-fit

value of β was estimated to match the measured p̂ signal from Fig. 2. This estimation was well-behaved with a clearly

defined convergence at a minimum error as shown in Fig. 3. In water, measurements produced estimates β = 3.35±0.3
over distances from 15–50 mm in 5 mm intervals. For comparison, Hamilton and Blackstock (1998) reported a table

of β values for water at temperatures from 0–100◦C. Interpolation at 18◦C yields a value of 3.45. Figure 4 shows

experimentally estimated values of β over multiple days across the aforementioned distance range.
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Fig. 2. An example of the nonlinear signal p̂ as measured in water at 15 mm.
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Fig. 3. Normalized error in estimating p̂ as a function of β at 15 mm.
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Fig. 4. Estimation of β across distance range

In glycerol, measurements produced an estimate β = 5.0 in the absence of attenuation. However, unlike water,

glycerol has non-negligible attenuation. Using available values for glycerol’s attenuation at 667 and 1334 kHz (Kaye

& Laby Online, Version 1.0, 2005), we use Eq. (3) and obtain the improved estimate of β = 5.75. This value compares

favorably to a reported value of 6.0 for pure glycerol at 20◦C (Khelladi et al., 2009). In addition, we note that the

drum used to contain the glycerol possessed 0.5 mm thick “windows” that impacted measurements. When filled with

water, we found that the drum itself decreased β estimates on the order of 5%.

4. Conclusion

For both water and glycerol, the proposed approach for estimating nonlinearity was robust when p2 amplitudes

were high enough to introduce significant distortion relative to baseline noise in the hydrophone measurements. Here

we used source pressures near 1 MPa in addition to waveform averaging, though we expect that this maximum

pressure amplitude could be reduced with a different combination of averaging and source pressures represented by

p1 and p2. Parameter estimates were relatively accurate and repeatable – i.e., within 10% of reported values at any

given measurement distance. Note that a significant portion of this variability can be attributed to ∼10% variability

for the hydrophone calibration, which is needed to quantify absolute source pressures. In addition, it was found that

measurements in water across the entire range from 15–50 mm were consistent within 8% of the average value. This

measurement variability in homogeneous media is somewhat larger than that of 3% as reported in measurements used

to characterize liver tissue using a thermodynamic approach (Sehgal et al., 1984, 1986). Future work will include

consideration of higher-order terms in the approximation represented by Eq. 2 in order to obtain more consistent β
estimates over the entire measurement range. In addition, we will build and calibrate receivers designed to facilitate

the acquisition of nonlinearity, sound speed, and attenuation measurements for planned ex vivo and in vivo studies.
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