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INTRODUCTION

High�intensity focused ultrasound (HIFU) trans�
ducers are widely used in modern medical applications
to perform noninvasive surgeries [1, 2]. The main
mechanism for destroying pathological tissue volumes
with HIFU is thermal ablation. However, in the past
few years, methods of mechanical tissue disintegration
that utilize nonlinear high�amplitude waves with
shock fronts have been garnering much attention [3,
4]. Numerical simulation methods have been widely
used to characterize nonlinear ultrasound fields gener�
ated by HIFU transducers [5–7], planning treatments
[8], and developing transducers for specific applica�
tions [9]. A single�element transducer in the shape of
a spherical segment with a uniform amplitude distri�
bution of the vibration velocity over its surface is both
a simple and quite general model of a HIFU source [5,
6, 9]. To describe nonlinear and diffraction effects in
ultrasound beams generated by such sources, the most
complete model is the three�dimensional Westervelt
equation [10]. However, numerical solution of this
equation, in particular, in the shock�generation
regime, is a computationally intensive problem even
with the performance and memory available in mod�
ern computers [7, 11]. Such computational limitations

still hinder the use of numerical modeling tools for
solving multiparametric problems [9, 12].

The nonlinear parabolic Khokhlov–Zabolotskaya
(KZ) equation for axially symmetric beams is a far
simpler model for numerical solution [13]:

(1)

Here, p is the acoustic pressure;  –  is the
retarded time; ε is the nonlinear parameter; (zp, rp) are
the axial and radial coordinates with the origin at the
center of a plane source, which does not coincide with
the center of a spherical cup in the method proposed

here (Fig. 1a); and  =  is the radial

component of the Laplace operator in the case of axi�
ally symmetric beams. The subscript and superscript
“p” from here on correspond to consideration of the
parabolic equation. To solve the KZ equation (1), it is
necessary to set boundary conditions in the plane zp = 0
perpendicular to the beam axis.

It is known that the domain of applicability of the
KZ equation is limited to weakly focused beams [14].
In addition, a separate problem is the definition of
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boundary conditions in a plane even though therapeu�
tic ultrasound transducers usually have a spherically
curved shape. The choice of boundary conditions in
the form of a plane source with an aperture and ampli�
tude equal to those of the spherical one—and a phase
distributed according to the parabolic law to provide
focusing—is applicable for the weakly focused fields
of diagnostic ultrasound transducers with convergence
angles less than 30° [15]. However, for strongly
focused therapy transducers with angular apertures on
the order of 70° this approach leads to large differ�
ences between the solutions of the parabolic and full
diffraction models (Fig. 1).

Various modifications to the KZ equation have
been proposed to extend its domain of applicability for
strongly focused beams, e.g., the use of spheroidal
coordinates that take into account the beam conver�
gence [16], the introduction of a coordinate system
that replicates the geometry of a Gaussian beam [17],
and the wide�angle parabolic approximation [18, 19].

An alternative approach uses the unmodified form
of the KZ equation with an appropriate choice of a
boundary condition to produce the effects of strong
focusing. In this approach, boundary conditions are
defined in the plane passing through the center of the
spherical transducer; then the aperture and initial
pressure amplitude of the “equivalent source” are
chosen different from those of the spherical one. For
example, the authors of [20] proposed to determine
the aperture of the equivalent source by transferring
boundary conditions to a plane following the rays that

diverge spherically from the focus and are directed
toward the edges of the transducer. Results of recent
experimental studies demonstrated that by varying the
aperture and the pressure amplitude of such an equiv�
alent piston source, it is possible to achieve good
agreement between the numerical solution to the KZ
equation and acoustic pressure measurements in the
focal region for both linear and nonlinear fields of
strongly focused transducers with aperture angles of
around 70° [5, 6]. Nevertheless, no general approach
has been proposed to transfer the boundary condition
from a sphere to a plane in order to obtain the best
agreement between the solutions to the parabolic and
full diffraction models for spherical sources that
vibrate uniformly.

Here we propose an analytic method of determin�
ing the parameters of an equivalent source for calcula�
tion, in the parabolic approximation, of nonlinear
fields of strongly focused transducers. In contrast to
the previous studies [5, 6], three parameters of the
equivalent source are varied in the boundary condition
to the parabolic model: the aperture, the position of
the plane where the boundary condition is set (focal
distance), and the pressure amplitude (Fig. 1a). These
parameters are chosen such that the best agreement is
achieved on the beam axis in the focal region of the
source for the solutions to the linearized Westervelt
equation in the form of the Rayleigh integral (termed
as full diffraction model later in the paper) with
boundary conditions set on a spherical surface and the
linearized KZ equation (termed as parabolic model
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later in the paper) with boundary conditions set on a
plane (Fig. 1b). This method uses analytic solutions of
both models to transfer the boundary conditions from
the spherical surface of a real transducer to a plane sur�
face of an equivalent source. It is demonstrated that
excellent agreement between the solutions for the two
models is observed even for strongly focused transduc�
ers with aperture angles of ~70°.

THEORETICAL MODEL

As already mentioned above, the position of the
plane for setting boundary conditions and the param�
eters of the equivalent source were chosen by minimiz�
ing the difference between the pressure amplitudes on
the axis of a linear focused beam, obtained in the full
diffraction model with boundary conditions set on a
sphere, and the parabolic model with boundary condi�
tions set on a plane. The operating frequency of the
real and the equivalent sources were assumed to be the
same.

Consider the solution to the full diffraction model
in the form of a Rayleigh integral, which is a particular
case of the Kirchhoff–Helmholtz integral [21]:

(2)

Here, integration is performed along the radiating sur�
face S;  is the complex acoustic pressure ampli�
tude  =  at the observation point
with the coordinate r; t is time; vn is the normal com�
ponent of the complex vibration velocity amplitude at
the surface of the transducer; r' is the radius vector of
the surface element  ρ0 is the density of the
medium; c is the ambient sound speed in the medium;

 is the wavenumber;  f is the operating
frequency of the source. This solution is exact for
plane transducers, but can also be applied with a high
degree of accuracy for calculating the fields of focused
sources with aperture angles up to 70° [22, 23]. The
result of integrating (2) for the complex acoustic pres�
sure amplitude  on the beam axis can be repre�
sented as [22]

(3)

Here z is the coordinate along the beam axis with the
origin at the center of the spherical transducer; v0 is
the amplitude of the normal component of the vibra�
tion velocity of the radiating surface; F is the focal
length;  is the distance from the observation point
z to the edge of the source. The distance
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where a is the radius of the transducer (Fig. 1a). Using
Eq. (3), we can obtain the solution for the absolute
value of the acoustic pressure amplitude on the beam
axis in the full diffraction model:

(5)

Here,  is the characteristic acoustic pres�
sure on the surface of the source.

Consider now the beam generated by the round
piston source of the parabolic model (1). As proposed
here, its aperture, center position, and vibration
amplitude are chosen so that the linear beam solution
most exactly approximates the exact solution to the
full diffraction problem in the form of the Rayleigh
integral (5). Here, it is assumed that the solutions to
the nonlinear Westervelt and the KZ equations will
also be close when the amplitudes of the boundary
conditions in both models are scaled in the same way.
This assumption is supported by the results of recent
studies where nonlinear simulations using the para�
bolic approximation were compared with experimen�
tal data for strongly focused single�element transduc�
ers [5, 6, 24].

Rewriting the linearized KZ equation (1) in terms
of the complex pressure amplitude  =

 we obtain the parabolic diffrac�
tion equation:

(6)

The beam focusing is controlled by changing the
phase on the plane surface of the source according to
the parabolic law:

(7)

Here,  is the absolute pressure amplitude, Fp is the
focal length, and ap is the radius of the plane source.
The exact solution to the parabolic model (6), (7) for

the absolute acoustic pressure amplitude  on the
beam axis has the form

(8)

The problem now is to choose the parameters with
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(7) for which the difference between the axial distribu�

tions of the solutions  (8) and  (5) is mini�
mal in the focal region of the beam. The physical
motivation of such an algorithm for transferring the
boundary condition is related to the fact that the ulti�
mate goal is solving the KZ equation (1). Since non�
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same pressure distributions (5) and (8) in the focal
region where the pressure amplitude is the highest [5, 6].

To solve the posed minimization problem, it is nec�
essary to choose specific parameters included in (8)
and (5) which can conveniently be varied. Solutions
(8) and (5) can be rewritten such that each of them
contains only three parameters. These are the pressure
amplitude at the source and two dimensionless param�
eters—the corresponding F�number and the focal
length:

(9)

(10)

Here  =  is the dimensionless
coordinate along the beam axis with the origin at the
focus;  and  are the F�numbers;
kF and kFp are the dimensionless focal distances of the
sources in the full diffraction and the parabolic mod�
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It is convenient therefore to choose the sets of

 and  as the three parameters
determining the form of solutions (9) and (10). Note
that the main parameter determining the spatial field
structure on the beam axis is the F�number, which
characterizes the angular aperture of the source. In
fact, for transducers with different focal lengths but
the same aperture angle, the dimensionless pressure
distributions in the focal region are close to each other
(Fig. 2a). However in the case of the same focal length
but different aperture angles, they are very different
(Fig. 2b). As one can see from the Fig. 3a, changing
the parameters kFp (focal length) and αp (aperture
angle) yields a shift of the plane of the equivalent
source from the focus and a change in its radius in
comparison to the corresponding parameters of the
spherical source.

For a non�optimal choice of the equivalent source
parameters, the pressure amplitude distributions 

and  on the beam axis in the full diffraction and
parabolic models differ appreciably, but they have a
similar spatial structure: the main diffraction lobe and
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the lobes in the prefocal region and beyond the focus
(Fig. 3b). Consider that the best correspondence of

 and  near the focus is obtained in the case
of coincidence of the solutions at three points: the

pressure amplitudes at the focus,  =  and
the coordinates of the first diffraction nulls before

 and after  the focus (Fig. 3b). The
positions of the nulls in the solutions to the full diffrac�
tion (9) and parabolic (10) models can be determined
analytically from the following equations:

(11)
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ical transducer. The solution to this system can be rep�
resented in the following form:

(14)

Here, the zeros of σ1 and σ2 are determined by the
expressions
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An exact solution to the system of equations (13) as
represented by Eqs. (14) and (15) is quite cumbersome
and the structure is complicated for evaluation. How�
ever, using the assumption that the ultrasound wave�
length is small in comparison to the size of the trans�
ducer,  which is usually valid for medical ultra�
sound transducers, this solution can be reduced to a
simpler form:
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Fig. 3. Illustration of setting the boundary conditions in a plane in the linear parabolic model to describe ultrasound beams gen�
erated by a single�element transducer in the form of a spherical segment. For the equivalent source, changes in position 
radius , and initial pressure amplitude  (a) were varied. The pressure amplitude distributions on the beam axis in the full
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Figure 3c shows the pressure amplitude
1
 distributions

on the beam axis after matching three points in (9) and
(10) using the solution (16). As one can see, the solu�
tions to the full diffraction and parabolic models are
practically indistinguishable within the main and two
neighboring diffraction maxima. Nevertheless, it is
also important to study more exactly the optimality of
this approach of matching two curves at three points to
obtain their best agreement in the entire focal region.

To check the accuracy of the proposed method of
setting the boundary condition, consider a more gen�
eral numerical approach. We determine the function
of the integral discrepancy between the axial ampli�

tude distributions  and  of the two models,σA( )p σ
p
A( )p

the variables of which are the parameters 
of the equivalent source (Fig. 4):

(17)

Here A and B are the boundaries of the focal region,
which is introduced as containing the main diffraction
lobe and halves of the first two adjacent lobes of the
axial pressure distribution  in the full diffraction
model (Fig. 4a). The position of the boundaries of the
focal region A and B was calculated in the maxima of
the solution (9):

(18)

α
p

p p 0' ' '( , , )kF p

( ) ( )( )Δ = σ − σ σα ∫p p
p p A A

2

0( ) .' ' ', ,

B

A

p p dkF p

( )σAp

( )
( )( )

σ + − σ α⎛ ⎞ = ϕ σ =⎜ ⎟
⎝ ⎠

max , ,
sin sin 1,

2

kF kR kF

100

20

0
20–40 σ0

pA, Pа

pA pA
p–( )

2
 Pа

2
,

(а) (b)

40–20

40

60

80

Spher.

Parab.

A B

500

100

0
20–40 σ0 40–20

200

300

400

Fig. 4. Illustration of using a numerical method of finding the best match between the solutions for the pressure amplitude on the
beam axis in the full diffraction and parabolic models for the single�element transducer in the form of a spherical segment. The
method is based on minimizing the integral discrepancy (17). The example is given for a spherical transducer with the following
parameters: 1 MHz frequency, a = 5 cm, F = 9 cm; and for a source given on the plane: 1 MHz frequency, ap = 6 cm, Fp = 9 cm.

p0
p
/p0

(а)

0.90

2.50.5
α

2.0 3.01.5

0.95

1.00
(b)

αp/α

1.0

0.8

2.5
α

2.0 3.01.5

1.0

1.4

Fp/F

1.0

1.2

Fig. 5. Scaling curves for F�number (a), focal distance, and initial pressure amplitude (b) for the equivalent source in the parabolic
model as functions of the parameters of the spherical transducer.



ACOUSTICAL PHYSICS  Vol. 62  No. 2  2016

SETTING BOUNDARY CONDITIONS ON THE KHOKHLOV–ZABOLOTSKAYA EQUATION 157

so that the position of the points  and  is found from
the conditions  =   = 

Then, the problem of setting the optimal boundary
condition reduces to finding the parameters of the par�

A B
( )ϕ A − π3 2, ( )ϕ B π3 2.

abolic model  that yield the minimum

value  of the integral discrepancy. The
problem of finding this minimum was solved by the
Nelder�Mead method [25] near the point 
Here, the integral (17) (Fig. 4b) was calculated
numerically by the Simpson method [26]. The calcu�
lations were performed within a wide range of practi�
cally important values of the geometrical parameters
of the spherical transducer: 

 Comparison of the results for the
boundary condition to the parabolic model obtained
analytically and numerically showed that the differ�
ence between the parameters (  ,

and ) did not exceed 0.01% in the entire focal
region. Thus, it can be considered that the analytic
solution (16) for source parameters in the parabolic
model can be employed with high accuracy to describe
the focal region of strongly focused transducers.

CALCULATION RESULTS

Figure 5 shows the scaling curves (16) of the
parameters of the equivalent source as functions of the
parameters of the spherically focused transducer; both
sources are assumed to vibrate uniformly. As one can
see from the solution (16), the F�number of the source
in the parabolic model is less than the F�number in the
full diffraction model:  (Fig. 5a). In this case
the angular aperture (the angle at which the diameter
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diffraction and the parabolic models normalized to the
pressure amplitude at the focus  in the plane
passing through the beam axis. Here, r is the radial coordi�
nate, and  is the axial coordinate with the origin at
the focus. The two�dimensional distribution also depicts
the spherical and equivalent sources.

Δ A ,Fp p

−z F



158

ACOUSTICAL PHYSICS  Vol. 62  No. 2  2016

ROSNITSKIY et al.

of the source is visible from the focal point) of the

equivalent source  is also less than that

of the spherical source  i.e., the equiva�

lent source is always less focused than the spherical one.

Scaling curves shown in Fig. 5b demonstrate that
the focal length Fp and the initial pressure at the source

 in the parabolic model depend linearly on the cor�
responding parameters F and p0 in the full diffraction
model; the scaling coefficient is determined by the F�
number α. Here, for an arbitrary spherical transducer,
the equivalent source of the parabolic model is located
further away from the focal point  and the

pressure amplitude at its surface is smaller 
Note also that the F�number  is indeed the main
parameter characterizing the properties of the trans�
ducer: all the scaling coefficients of the equivalent
source parameters in comparison to the spherical one
are determined precisely by its value. The effect of the
F�number  on the parameters of the parabolic model
are such that for small  (strongly focused source), the

 , and  significantly differ from unity,
and for large α (weakly focused source), they tend
toward unity; i.e., all parameters of the parabolic
source are close to the corresponding parameters of
the spherical source.

As an example, Fig. 6 shows the results of using the
developed method to simulate the field of a strongly
focused spherical transducer with a frequency of
1 MHz, a radius of a = 5 cm, and a focal length of F =
9 cm (α = 0.9). This single�element source was devel�
oped by Imasonic (Besanson, France) for histotripsy
research [24]. As one can see, not only the pressure
amplitude along the beam axis (Fig. 6a), but also the
phase (Fig. 6b) and the pressure amplitude in the focal
plane (Fig. 6c), calculated using the Rayleigh Integral
for a spherical transducer and in the parabolic approx�
imation for the equivalent source, are practically
indistinguishable within several diffraction lobes
around the focus. The frames to the left depict
enlarged areas of the plots to better visualize the differ�
ences between the curves. One can see from Fig. 6 that
the solution (16) makes it possible to transfer the
boundary condition from a sphere to a plane with high
accuracy even for strongly focused transducers. It is
seen (Fig. 6a) that pressure amplitudes on the beam
axis in the solutions to the two models are different in
the fifth significant digit.

Despite the fact that the proposed method makes it
possible to achieve good agreement between pressure
amplitude distributions on the transducer axis for the
two models, the question of the accuracy of the para�
bolic approximation in the remaining space is still
open. To answer this question, two�dimensional pres�
sure amplitude distributions were calculated numeri�
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cally in the axial plane of the previously considered
transducer (Fig. 6). Calculations were performed
using the full diffraction and the parabolic models.
Figure 7 shows the two�dimensional distribution of
the absolute value of the difference in pressures  =

 obtained in the two models in this
plane normalized to the pressure amplitude at the
focus pF. As one can see, the maximum discrepancy

 in the entire region does not exceed 6%, and, near
the focus, it does not exceed even 3% of the pressure
amplitude value pF at the focus. The areas of maximum
discrepancies between the solutions are on the beam
axis in the near field of the sources near the points at
which the zeros of the distributions do not coincide
(Fig. 6a). However, due to the small pressure levels and
small dimensions of these regions, these discrepancies
would not appreciably influence nonlinear effects at
the focus [5, 6, 24].

CONCLUSIONS

This paper proposes a method that reduces the full
diffraction problem on modeling the field of a trans�
ducer with a boundary condition set on a spherical cup
with a radius a and focal length F to the corresponding
problem formulated in the parabolic approximation
with a boundary condition set on a plane. Here, three

parameters  ap, and Fp of the parabolic model are
different from the parameters p0, a, and F of the corre�
sponding spherical transducer and can be easily deter�
mined by the exact analytic solutions (14) and (15) or
an approximation (16). The proposed method was
tested for the case of a typical strongly focused ultra�
sound therapeutic transducer. It was shown that in the
spatial region near the focus, the results obtained in
the full diffraction and the parabolic models differ by
not more than 3%. The greatest difference of 6% is
observed in the low�amplitude near field of the source;
however, nonlinear effects are weak there, and details
of the field in such regions away from the focus are of
less interest for practical applications in ultrasound
surgery.

Note that the parabolic model and our proposed
method of transferring the boundary conditions to a
plane can be used not only for single focused elements
that vibrate uniform, but also for sources with a non�
uniform amplitude distribution [5, 6] and multi�ele�
ment phased arrays with round piston elements dis�
tributed over a spherical cup [7]. In such cases, the ini�

tial pressure  position Fp, and radius ap of the
equivalent source can be chosen numerically to obtain
the best agreement between the solution (10) of the
parabolic equation and the calculated or measured
field on the axis of the real source.

The proposed method of setting the boundary con�
dition to the parabolic equation is of interest for simu�
lating nonlinear fields generated by HIFU sources,

Δ Ap

( ) ( )−

p
A A, ,p z r p z r

Δ Ap

p
0,p

p
0,p



ACOUSTICAL PHYSICS  Vol. 62  No. 2  2016

SETTING BOUNDARY CONDITIONS ON THE KHOKHLOV–ZABOLOTSKAYA EQUATION 159

since the calculation speed of such a problem
increases by several orders of magnitude in compari�
son to the full diffraction model. Because of this accel�
eration, the parabolic model makes it possible to solve
nonlinear inverse problems requiring multiple solu�
tions to the direct problem [9]. In addition, it is much
simpler for use by researchers and engineers who are
not simulation specialists.
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