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Abstract—A numerical model for describing the counterpropagation of one-dimensional waves in a nonlin-
ear medium with an arbitrary power law absorption and corresponding dispersion is developed. The model is
based on general one-dimensional Navier—Stokes equations with absorption in the form of a time-domain
convolution operator in the equation of state. The developed algorithm makes it possible to describe wave
interactions in the presence of shock fronts in media like biological tissue. Numerical modeling is conducted
by the finite difference method on a staggered grid; absorption and sound speed dispersion are taken into
account using the causal memory function. The developed model is used for numerical calculations, which
demonstrate the absorption and dispersion effects on nonlinear propagation of differently shaped pulses, as
well as their reflection from impedance acoustic boundaries.
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1. INTRODUCTION

The fundamental problem of nonlinear counter-
propagation of acoustic waves in inhomogeneous lossy
media is one of the most promising directions in mod-
ern acoustics. In many respects, this is related to the
development of novel applications of high intensity
ultrasound in medicine [ 1—3]. For instance, ultrasonic
echography using higher harmonics [4, 5], focused
ultrasound shock pulses to destroy kidney stones
(extracorporeal lithotripsy) [6, 7], and noninvasive
ultrasound surgery [8, 9] are examples of the emerging
medical technologies. The main results in this field
have been obtained for unidirectional propagation of
plane waves and acoustic beams in water and biologi-
cal tissues described by model nonlinear equations of
the evolution type [2—6, 8—10]. However, to solve
practically important problems of visualizing thera-
peutic effects on tissue with ultrasound and evaluation
of its safety in irradiation through various types of tis-
sue layers, it is often necessary to take into account the
effects of reflections and scattering. In this case, the
question arises of constructing and solving a full non-
linear wave equation where results to date are scarce
[7, 11, 12]. In constructing a full wave model, it is
important that it includes frequency-dependent
absorption and dispersion that satisfy the experimental
data and correspond to the causality principle.
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As is known, the wave equation for a classical ther-
moviscous fluid contains a derivative operator that
governs absorption, proportional to the frequency
squared. The absorption mechanisms in soft biological
tissues are significantly more complex and are related
to various types of vibrational, structural, and chemi-
cal relaxation, which leads to the experimentally
observed frequency power law absorption in the form

n
s, M=y +l (1)

a(w) = a, gel
®g
where q is the absorption coefficient at frequency ®,
o is the angular frequency, and the power law expo-

nent 1 typically varies from 1 to 1.5 [1].

To take this difference into account, the lossy
derivative operator for a thermoviscous fluid is
replaced by a general absorption operator. Rudenko,
Soluyan, and Khokhlov proposed writing the lossy
operator in the Khokhlov—Zabolotskaya—Kuznetsov
(KZK) equation in general integral form as a convolu-
tion of the solution with a kernel governing an arbi-
trary frequency law absorption in the medium [13].
Different specific forms of the integral operators to
account for frequency power law absorption were
obtained later in the papers by O’Donnell [14], Collins
[15], and Szabo [16]. An alternative approach, which
approximates the power law absorption (1) as the sum
of the relaxation processes, has also been proposed.
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Such an approach corresponds to the relationship
between absorption in tissue and various relaxation
processes. Models of continuous distribution of the
relaxation parameters [17] and a discrete set of several
relaxation processes have been proposed [18]. It was
shown that two relaxation processes quite accurately
approximate the power law absorption in the range of
1-12 MHz [19].

When implemented numerically, the integral form
of the absorption operator substantially slows the cal-
culations. As an alternative, Chen and Nolm obtained
a lossy operator based on the fractional Laplacian in
nonlinear acoustics equations [20]. This operator was
later generalized by taking into account a dispersion of
the sound speed as required by the Kramers—Kronig
relations [21]. In comparison to the time domain con-
volution operator, calculation of the fractional Lapla-
cian depends only on the pressure field values at cur-
rent time instants. This makes the operator efficient
to compute, particularly using the pseudospectral and
K-space methods [22].

Simulation of acoustic wave propagation in media

with frequency power law absorption |@" thus reduces
to introducing into the wave equation the fractional

Laplacian (—VZ)”/ % in spatial coordinates or the inte-
gral time-domain operator of absorption. Construc-
tion of the integral operator itself, which corresponds
to the power law absorption and the causality princi-
ple, is still ambiguous and interesting scientific prob-
lem.

This paper proposes a novel approach that makes it
possible, proceeding from the known frequency
dependence of absorption, to calculate the memory
function in the integral operator of losses. Using this
method, the frequency dependence of absorption
should not necessarily be written as an analytic func-
tion, but, e.g., it can be obtained in experiment or has
a complex form when it is impossible to calculate the
sound speed dispersion using local dispersion rela-
tions. A system of equations for one-dimensional
counterpropagating waves that accounts for the effects
of nonlinearity, absorption, and dispersion is obtained.
A finite difference algorithm for modeling the system
is developed. The accuracy of the algorithm is exam-
ined by solving a number of benchmark acoustic prob-
lems that have analytical solutions. New results in the
problem on nonlinear pulse propagation in a medium
like biological tissue and its reflection from a soft
boundary are obtained.

2. THEORETICAL METHOD

2.1. Method of Constructing the Causal Integral
Operator for the Power Law Absorption

Let us describe one-dimensional wave motion in a
nonlinear medium with memory by a system of equa-
tions like hydrodynamics for acoustic waves:
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where p' and p' are the density and pressure deviations
from their equilibrium values: p = py(x) + p', p =py +
p'; uis the particle velocity in the medium; py(x) is the
ambient density; cy(x) is the sound speed; € is the
parameter of acoustic nonlinearity. The equation of
state (4) is written as the convolution in the time
domain. From here on, kernel S(t) in integral law
absorption (4) will be called the memory function of
the propagation medium. Linearization of the system
of equations (2)—(4) for a homogeneous medium
yields a wave equation with respect to the perturbation
of the ambient density p':

10°p &

cc o’ ox’

The proposed method of obtaining the dispersion
equation for (5) and reconstructing on its basis the
form of kernel S(7) in integral relation (4) consists of

the following. We seek the solution (5) in the form of a
traveling wave:

J.S(t')p'(t —1)dt'| = 0. )
0

p' = pyexp(—i(or + kx)), (6)

where the complex wavenumber k has the form
k() = k'(®) + ik"(0) = 2= + io(o). (7
c(®)
Here k"(w) = a(w) describes the frequency depen-
dence of the absorption law and ¢(w) is the dispersion
law. Substitution of the expression (6) for the per-
turbed density p' in the wave equation (5) yields the
dispersion relation
k(@) = 25 (), (®)
0
where S(w) is determined, taking into account the
causality principle, as

+00
S() = j S@)e™ dt. 9)
0
Equalizing the right-hand sides of the relations (7) and
(8) for wavenumber k, we obtain the expression for
memory function S(®) in the frequency representa-
tion:
-2
S(o) :(c—°+iMj . (10)
c(m) 0]

Expression (10) can easily be rewritten in the form of
relations expressing absorption a(®) and sound speed

dispersion c(®) using the memory function S(w):
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In the expression (11), the dependence c(®) is
unknown. However, it is known that variations in
sound speed with frequency in biological tissues are
small [1]. Thus, we will seek S(w) by the method of
successive approximations, limiting ourselves to the
first approximation. For this, absorption o) and
sound speed dispersion c(w) are represented as

a %) + o) = a, |oo/0)0|y+1
Ao(®) < o,

c(m) = ¢+ c(l)(m) =cy + Ac(®), Ac(®) < ¢y
If we now substitute the relations (12) for absorption
o(m) and sound speed dispersion c(®) in the expres-
sion for S(w) (10), then, after a number of transforma-
tions that approximate the attenuation length as being
much larger than the wavelength of the acoustic field,
a(mw) < ®/c(w), we come to the expression

S(0) = cooc(m) Ac(m) iy Aa(m)c, . (13)
In expression (13), the first two terms are the zero
approximation S?(w), expressing the absence of
sound speed dispersion Re{S?(w)}, and the given fre-
quency dependence Im{S®(w)} of absorption per
wavelength. The last two terms describe the relative
correction to the equilibrium sound speed Ac(w)/c,,
expressing the dispersion law Re{S"(w)}, and the
artificial addition Aa.(®)c,/m to the law of absorption
per wavelength Im{S"(w)}. Thus, expression (13) is
the first approximation for SV(w).

We now pass directly to constructing the causal ker-
nel S(#) in the integral law absorption, using the
method of successive approximations, which consists
of two steps. At the first step, if we neglect the sound
speed dispersion and use the expression (1) for absorp-
tion in relation (10), we then obtain

S() = (1 +icy0g | sgn(o)))_2 (14)

Expression (14) is the zero approximation of
SO(w). However, such an expression does not satisfy
the causality principle. This is easy to demonstrate by
performing the inverse Fourier transform on
formula (14), i.e., transferring from the frequency rep-
resentation of memory function S(w) to the time rep-
resentation S(7'):

o)

+ Ao(m),
(12)

a(®) =

+00

N o L —iof
S@)=5- jS(co)e do
L 15)
-2 —iot
= i I(l +icyou o]’ sgn(co)) e do.

One can see from the obtained expression that mem-
ory function S(#) # 0 for # < 0. Integral (15) can be
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reconstructed analytically in rare cases; therefore, we
will calculate function S(#') numerically at the nodes of
the numerical temporal grid 1, = th:

+o0

S(rn)zzl [ s@sinc©.500exp(<iwtn)do, (16)
TC

where n = 0, N —1, Nis the number of grid points used
in calculating the memory function S(t,), and 7 is the
time step of the grid. Since the memory function is a
real quantity, its spectrum S(—w) = S*(w). Using this
property, we obtain

+00

S(tn) = 2i IZ Re(S(m)e ™)sinc(0.501)d®
n
0

400

:l 1- a0c0|0)|y

(1 + o |w|2y)

ApCo |0)| sgn(w)

(1+aed o)

At the second step, to satisfy the causality princi-
ple, we set the memory function t < 0 for S(t,) =0 in
the expression (17). If we now perform direct Fourier
transform of the expression (17) taking into account
that S(tn) = 0 for 1 < 0, then the causal memory func-
tion S"W(w) will be reconstructed in the first approxi-
mation. Figure 1 shows the behavior of the non-casual
SO (black dashed curve) and causal SV (solid gray
curve) memory functions in the frequency and time
representations. Figure 1b shows memory function
S(f) as a function of frequency f= ®/2n. The absorp-
tion law was chosen in the form o = o|f/fy|"%, the
absorption coefficient o, at a frequency of 1| MHz was
0.45 dB/cm, and the sound speed was ¢, = 1578 m/s,
which corresponds to the experimental data for the
liver [1]. One can see from Fig. 1b that the difference
between the curves Re{S(f)} (no dispersion) and
Re{SV(H} (dispersion is taken into account in (13) in
the form of the relative correction to the equilibrium
sound speed) is less than 1.5%. The curve Im{S©(f)}
describing the exact frequency law absorption per
wavelength (13), and the curve Im{S"(f)}, responsible
for the appearance of the artificial addition to the
absorption law, are virtually indistinguishable in the
frequency range from 0 to 35 MHz. As a result, pro-
ceeding from Fig. 1b, we can obtain (1) the relative
correction to the equilibrium sound speed Ac(f)/c, as
the half-difference of the real parts of the memory
function spectra in the first and zero

approximations 0.5 (Re {S O )} —Re {S (0)( f )}) and

(2) the artificial addition Aa.(f)c,/f to the absorption
law per wavelength according to the expression

(17)

5 cos(wth)

-2 > sin(wtn) (sinc(0.50)d .
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Fig. 1. Time dependences of the absolute values of non-
causal (tn) (dashed black curve) and causal S(l)(tn)
(solid gray line) memory function (a). Frequency depen-
dences of the real and imaginary parts of noncausal 0)(f)
(dashed black curve) and causal 1)(}‘) (solid gray curve)
memory function (b).

0.5(1m{5“)(f)}—Im{s(°>(f)}), the dependence of

which is shown in Fig. 2. One can see from Fig. 2 that
the relative correction to the equilibrium sound speed
(gray curve) expressing the dispersion law is less than
1%. The artificial addition to the absorption law per
wavelength (black curve) is less than 2 x 1073 in the fre-
quency range from 0 to 30 MHz; i.e., the error intro-
duced into the exact absorption law is small. Thus, our
method of constructing a causal kernel S(#) in the
integral law absorption gives, in the first order of suc-
cessive approximations, a good accuracy for media
like biological tissues; it is also applicable for describ-
ing the effects of absorption and dispersion in other
weakly dispersive media.

Thus, in the zero approximation, the absorption
law a(m) is exact, there is no dispersion, but memory
function S© does not satisfy the causality
principle (14), (15). In the first approximation, to sat-
isfy the causality principle, the memory function
SO(#) is artificially zeroized for 7 < 0 and its causal
form S is automatically obtained. As a result, the
correction Ac(w) to the equilibrium sound speed
appears, as well as the artificial addition Aa(w) to the
absorption law, which is less than 1% in the frequency
range from 0 to 30 MHz. Equations (2)—(4) with
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Fig. 2. Relative correction to the ambient sound speed
Ac(f)/cy (gray curve) and artificial addition Aau(f)cy/f
(black curve) to the absorption law per wavelength as a
function of frequency in the range from 0 to 30 MHz.

causal kernel (17) are further used to construct the
numerical model.

2.2. Numerical Model

In the work, the system of equations (2)—(4) was
numerically solved within the spatial segment (—x;
L + x,) with zero initial conditions (Fig. 3):

P, t=0=0, ux,t=0=0, p'(x,r=0)=0. (18)
As boundary conditions, depending on the problem, a
rigid (19a) or soft boundary (19b) was used:

(19a)

u(x = x,,1) =0, @(x = Xy,1) =0,
Ox

g_z(hxb,t):(), Px = xp,1) =0, (19b)

where x, = —x; or L + X, is the boundary of the consid-
ered spatial domain.

To simulate a wave moving freely away to infinity,
so-called PMLs (perfectly matched layers) [23] were
placed near the border of the considered domain (—x;
L + x,), which ensured non-reflective propagation of
waves incident on them and corresponded to the seg-
ments (—x,; 0) and (L; L + x;). The length x, ofa PML
was a fraction of a percent of the length of the consid-
ered spatial domain (—x,; L + x;). The numerical algo-
rithm was implemented in such a way that at a certain
point Xx;, the internal source of ultrasound waves was
introduced in the form of a pulse of a certain shape
u(x,, 1.

2.3. Numerical Algorithm

To use the finite difference method when modeling
the system of equations (2)—(4) with kernel (17) in the
equation of state, function u(x, f) was defined at the
No. 4

ACOUSTICAL PHYSICS Vol. 60 2014
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grid nodes of the spatial coordinate x and time coordi-

nate fas u,,, and p'(x, 7) in the nodes of a grid shifted by

halfastep, as p,_y, i, and p_yp o
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After the derivatives in the system of equations (2)—(4)
were replaced with finite difference terms, the system
takes the form

2
uq+l,s+l = uq+1,s -1

' Pgrif2s+1/2 1 Pge3fa,s+)2

Uys = u(xqats)’ Pg-1/25-1/2 = P (xq—l/Zats—l/Z)a ) ' 2 2 (21)
, (20) % pq+3/2,s+1/2 _pq+1/2,s+1/2 _ Tuq+2,s - uq,s
Py-1j25-12 =P (xq—l/Z’ts—l/Z)' h 4h ’
' ' Pg- ,5— + Y ,5— U LS Y ,5— + P ,5— u .8

Puafasstf2 = Postfastf2 — ’t( q-1/2,5-1/2 g+1/2 1/2) q 2}5 q+1/2,5-1/2 g+3/2 1/2) g+l , (22)
N-1 sound (HIFU) transducers. This situation occurs in

, , . . . : .
Doy = Cozp (xq+1/2sts+l/2 - tn)S(rn) pr?ib_lerrtls on aplglylngdHIFUhln nonmvas(;ye surgeﬁy
o (23) and 1s of interest for studying the corresponding mech-

le—1 2n
Ewcopqﬂ/z, s=1/2
0

where 1 is the time step and /4 is the step along the spa-
tial coordinate. In expressions (21)—(22), for each grid

point Xg-1/2,5-1/2> Pg—1/2,5—1/2 = pO(-xq—l/Z) + p'q—1/2,s—1/2'
The algorithm was implemented such that at each
time step, the finite difference equation (22) for the
perturbed density p, ., ,,y, Was solved first (Fig. 4a).
Then, over its entire time history in the form of the

preceding Nsteps, the acoustic pressure p,, ..y
from expression (23) was calculated. At the final stage,
from the known values p_., .y and pg.y, .y, the
value of the particle velocity u, ., | ., from the equa-
tion (21) was obtained (Fig. 4b).

3. RESULTS AND DISCUSSION

Below we present the results of using the proposed
method to construct the causal memory function and
to simulate the system of equations (21)—(23), illus-
trating the effects of wave propagation in two direc-
tions, nonlinearity, absorption, dispersion, and reflec-
tion from the impedance boundary. Two well-known
model problems are examined here such as propaga-
tion of a single pulse in a thermoviscous medium,
which demonstrates the accuracy of the representa-
tion of the absorption operator on the grid and the
absence of numerical viscosity and dispersion; and
nonlinear propagation of a plane wave, which illus-
trates the accuracy in describing the nonlinear finite
difference operator. We then consider the problem of
how different physical effects influence on the wave-
form structure: propagation and reflection from a soft
acoustic boundary of a unidirectional pulse in a non-
linear medium with memory and in a medium without
memory. We further study the problem of reflection of
a shock pulse from a soft acoustic boundary. This
problem imitates the reflection of ultrasound waves
with shocks from a vapor bubble when boiling in tissue
is initiated at the focus of high intensity focused ultra-
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anisms of biological tissue damage. All calculations
were performed mainly with the time step of T = 300 ps
and the spatial step of 4 = 0.5 pm.

Figure 5 shows the dependences of the absorption
coefficient o(f) normalized to its value o, at 1 MHz,
and variations in the sound speed Ac(w)/c, for media
with a different power law exponent n, calculated by
the proposed method (solid curve) and using local dis-
persion relations developed by Szabo (circles) [1, 16].
The curves in the figure have been constructed for
blood (n = 1.42, o, = 0.22 dB/cm, ¢, = 1570 m/s),
liver (n = 1.2, oy = 0.71 dB/cm, ¢, = 1600 m/s) [1],
water (N = 2, o, = 0.0025 dB/cm, ¢, = 1500), and
butanediol (n = 1, oy = 0.33 dB/cm, ¢, = 1546 m/s).
Figure 5a shows the dependences for absorption coef-
ficient o(f) neglecting (circles) and taking into
account (solid line) the correction to the absorption
law Aau(f) that corresponds to the causality principle.

One can see from Fig. 5b that the sound speed dis-
persion is indeed small, less than 1% in soft tissues
within the range from 1 to 10 MHz. In the case of clas-

O nonhpear a
E ' medium E
=B with memory =B
X
—XO L + XO
L

Fig. 3. Schematic diagram of the coordinate system used in
simulations with the initial and boundary conditions. The
vertical dashed line shows the position of the internal
source, and the adjacent solid curve shows a single pressure
pulse as an example of the time-dependent boundary con-
dition.
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Fig. 4. Diagram of constructing the solution on a staggered grid for the perturbed density (a) and particle velocity (b) in counter-

propagating acoustic wave.
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Fig. 5. Dependences of the absorption coefficient a(f) normalized to its value oy at 1 MHz and of the relative change in sound
speed Ac(m)/c( for media with different power law exponents 1 (numerals on curves), calculated by the proposed method (solid
curve) and using local dispersion relations developed by Szabo (circles).

sical quadratic absorption, the dispersion is absent.
The difference in determining the dispersion law using
the two approaches is fractions of a percent. In con-
trast to Szabo’s model of local dispersion relations,
where the dispersion curves can be calculated for a
particular type of absorption law, our method makes it
possible to calculate the sound speed dispersion for
any absorption law, which can have a complex form or
lack an analytic expression, e.g., being obtained in
experiment.

Figure 6 shows the simulation results describing the
broadening of a Gaussian pulse with initial amplitude
of py =5 MPa in a linear medium with a quadratic fre-
quency law absorption n = 2. Clearly, the numerical
calculations with sufficiently small grid steps (dashed
black curve) agree well with the known analytic solu-
tion to the linearized Burgers equation in the form of
convolution of the Green’s function of a point source

with an initial perturbation of the Gaussian profile of
p'(x=0,1) = p;(t) (solid gray curve) [1]:

-0.5 2
p(x 1) = p0(1+4Tij‘j exp{—m}, (24)

0 TO2 + 40x

where 8 = 0,/(8.686m;) = 0.13 x 1072 s2m~" is the
sound absorption coefficient that corresponds to the

quadratic frequency law o = oco((o/oaé). Here, the
coefficient o, at a frequency of f; = oy/2n = 1 MHz
was 0.45 dB/cm, like in biological tissue; the pulse
duration was 27, = 1 ps; the sound speed was ¢, =
1500 m/s; the attenuation length at which the pulse
amplitude decreased by e times was about 3 m.

In this problem, to calculate a smooth wave profile,
the spatial step # was chosen as 5 um and the time
step T was chosen as 3 ns, in accordance with the Cou-
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rant criterion. For a width of the initial Gaussian pulse
(dashed black curve) of 1.5 mm, this corresponded to
approximately 300 points per initial pulse width.
Clearly, such discretization was sufficient so that the
effects of numerical viscosity and dispersion were not
significant during the propagation up to the distance of
around 2000 initial pulse widths (3 m), i.e., one atten-
uation length. The figure also shows the solution for
large grid steps # = 250 um and 4 = 30 ns (dashed gray
line), illustrating the effect of numerical viscosity and
dispersion. When choosing the step of # = 5 um, the
deviation from the exact solution at a distance of
around 2000 initial pulse widths (3 m) was slightly less
than half a percent, and for the 50 times larger step
(h =250 um), it was around 27%.

Now consider the problem of nonlinear propaga-
tion of nonlinear Riemann waves, which has an exact
analytic solution. This solution follows from the sys-
tem of the Euler equations in the case of the adiabatic
equation of state and in the small Mach number
approximation:

p= dD(t T xe, + gpalc(;}p'x), (25)
where the function ®(7) = p'(x = 0, 1) gives the tempo-
ral wave profile at the entrance to a nonlinear medium.
Expression (25) describes noninteracting nonlinear
waves traveling both in the positive and negative direc-
tions of axis x; the upper symbols correspond to the
wave traveling to the right.

Figure 7 shows the results of simulating the unidi-
rectional propagation of a simple wave traveling in the
positive direction (right). The initial pulse had a Gaus-
sian shape p'(x =0, ) = p, exp(—tz/ TOZ) with the
amplitude of p, = 5 MPa and the duration of
2T, =1 ps; the parameters of the nonlinear medium
o, Po» € Were close to those of biological tissue (¢, =
1578 m/s, p, = 1060 kg/m3, € = 4.38) [1]. The solid
curves in the figure have been calculated numerically
using the developed algorithm and are compared to

the dashed curves obtained from the exact solution to
the simple wave equation

2

r+8polco3p'x . (26)
T,

In the expression (26), the variable T = — x/c, is time

in the traveling coordinate system. If we pass from an

implicit p'(x, T) to an explicit solution t(x, p') in the

formula (26), we obtain

©=TyIn(py/p) - (8/ PoCo )p'x. (27)

To construct the solution, we simply need to add the
initial wave profile T = ®~'(p) = T,\/In(p,/p) to the
linear function At = —(s/ o Co ) p'x.

P' = pyexp —[

As well known from theory and confirmed by
numerical calculation, during propagation, the parts
of acoustic waveform with higher positive pressure
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Fig. 6. Comparison of exact (gray solid curve) and numer-
ical (black dashed curve) solutions for the initial Gaussian
pulse (thin black dashed line) with the amplitude of py =
5 MPa and duration of 1 ps after propagation at a distance
of 3 m in the medium with an absorption coefficient of
o = 0.45dB/cm at a frequency of 1 MHz for different grid
stepsof 4 =5 pum and 4 = 250 pm.

propagate faster and as a result “overrun” the wave-
form parts with lower pressure, the speed of which is
lower. As a result, waveform parts with increasing pres-
sure become steeper, and waveform parts with
decreasing pressure, vice versa, become smoother. As
one can see from the Fig. 7, at a distance of

3

X, = \/gpLOTO, which for the given parameters of the
€Dy

problem corresponds to 11.1 cm, the tangent to the

profile at the point T, = Tj / V2 becomes vertical, and

for further increase in distance, an ambiguity arises: it

“tips over.”

Figure 7 depicts a similar profile at the distance of
x = 4x, that was calculated analytically taking into
account the “rule of equal areas,” i.e., cutting off the
areas of ambiguity, as a result of which the profile con-
verts to a triangular shape. As one can see, the profiles
calculated numerically (dashed black curves) are vir-
tually superposed on the profiles having an analytic
solution in the form of Riemann waves (solid gray
curves) with one characteristic difference: the shock
fronts in the exact Riemann solution with allowance
for the rule of equal areas is vertical; for the numerical
profile, the shock front has a finite width. This dis-
crepancy is related to the impossibility of describing
wave solutions with mathematical discontinuities
using the finite difference method: the given time
instant and point in space should singularly determine
the parameters p', u, and p'. Therefore, in numerical
calculations, in order to construct a solution with a
shock front, a nonlinear viscous medium was consid-
ered, having a small viscosity quadratic with frequency
that smoothens the wave front. For the given problem,
the following parameters of such a medium were cho-
sen: the absorption coefficient o, at a frequency of
1 MHz was 1072 dB/cm, the sound speed was
co = 1578 m/s, the density was p, = 1060 kg/m?, and
the parameter of acoustic nonlinearity was € = 4.38,
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Fig. 7. Distortion of the initial Gaussian pulse with an amplitude of p, = 5 MPa and duration of 1 ps while propagating in a non-
linear medium with a parameter of acoustic nonlinearity of € = 4.38: numerical calculation (black dashed curves) and analytic

solution (gray solid curves) of the simple wave equation.

which for a time step of T = 0.3 ps corresponded to
80 points per shock front. Clearly, such discretization
sufficed to describe wave propagation up to the dis-
tance of four shock formation lengths, or 277 initial
pulse lengths, without manifestation of numerical vis-
cosity and distortion of the shocks in the pulse.

Figure 8 shows the results of simulating nonlinear
counterpropagation of two pulses at different time
instants . The distance between the initial pulses was
8x, (88.8 cm); their amplitudes, durations, shapes,
and parameters of the medium were chosen as in the
case of the unidirectional propagation (Fig. 7). The
dashed black curves in the figure were calculated
numerically using our algorithm and are compared to
the solid gray curves, which are the superposition of
two exact solutions to the simple wave equation,
which correspond to pulse propagation in opposite
directions (25). Collision of pulses begins at the time
instant 7 = 279.4 ps. At the time instant = 279.51 pis,
during the collision of pulses, the numerically calcu-
lated profiles are indistinguishable from the analytic
solutions in the form of a superposition of noninter-
acting Riemann waves. After interaction, at the time
instant £ = 286.58 us, the pulse divides into two pulses,
which coincide in shape with those observed before
the collision. Thus, despite the nonlinearity of the
process, for the pulse amplitude of 5 MPa considered
here, independent passage of one pulse through
another occurs.

Figure 9 shows the results of simulating the propa-
gation of a nonlinear pulse with an initial Gaussian
shape, the amplitude of p, = 3.3 MPa, and the dura-
tion of 5 us in a medium with memory (n = 1.05, o,y =

0.45 dB/cm, ¢, = 1578 m/s, p, = 1060 kg/m?) (solid
curves) and in a low-viscosity medium (n = 0, ¢, =
1578 m/s, p, = 1060 kg/m®) (dashed curves)
and its reflection from a soft acoustic boundary. The
figure illustrates the pulse profiles initially traveling in
the x direction (profiles (1)—(3)) and after reflection,
in the reverse direction (profiles (4)—(6)). As one can
see, for x = x, during propagation in the medium
with memory, the shock character of a direct wave
(profile (2)) is retained; however, its shape differs from
the case of propagation in a lossless medium: the pulse
amplitude is lower, and the shock front forms later.

For x = 2x,, the relaxation process leads to the fact
that the form of profile (3) behind the shock front
becomes significantly rounded. When reflecting from
a soft boundary, the pulse changes its polarity, the
compression phase converts to the decompression
phase (profile (4)), and for x = 3x,, the shock front for
a wave traveling to the left (5) is smeared. Finally, for
x = 4x,, the pulse (6) becomes more wedge-shaped in
the decompression phase, with notable steepening of
its trailing edge.

Figure 10 shows an example of reflecting a shock
wave pulse of several cycles from a soft boundary that
mimic a cavitation cloud or a boiling vapor bubble that
forms in biological tissue exposed to HIFU for its
mechanical disintegration (histotripsy) [24, 25]. The
pulse shape corresponds to that observed in experi-
ment: the initial amplitude of the pulse shock front is
50 MPa, the frequency is 2 MHz, and the duration is
4 us [24]. Each of the cycles has a characteristic shape
corresponding to nonlinear-diffractive distortions of
the wave profile at the focus of a high intensity ultra-
2014
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Fig. 9. Propagation of the initial Gaussian pulse with an amplitude of p, = 3.3 MPa and duration of 5 ps in a nonlinear medium
with memory (n = 1.05, oy = 0.45 dB/cm, ¢y = 1578 m/s) (solid curve) and in a lossless medium (1 = 0, ¢y = 1570 m/s) (dashed
curve) and its reflection from a soft boundary. The profiles are shown at various distances: x = 2.5 mm (1); x = x,, (x,, is the shock
formation distance) (2); x = 2x 3);x= 2x (reflected wave) (4); x = 3x 5);x= 4x (6).

sound beam: a high narrow peak positive pressure
behind the shock front and a smooth rarefaction phase
of substantially smaller amplitude. Two propagation
media were considered: a lossless medium (black
dashed curve), and an absorptive medium (solid gray
curve) obeying a power law absorption with an expo-
nent of 1 = 1.05 with the same parameter of acoustic
nonlinearity of ¢ = 1, the sound speed of ¢, =

1578 m/s, and the ambient density of p, = 1060 kg/m?.
The figure illustrates the change in pulse polarity dur-
ing reflection: superposition of the high-amplitude
peak on the negative phase of the incident wave results
in a sharp increase in the peak negative pressure
(Fig. 10c). This effect can intensify cavitation phe-
nomena near the boundary and can explain one of the
main mechanisms of mechanical tissue damage [24,
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Fig. 10. Nonlinear propagation of the initial shockwave pulse p'(x =0, #) for x = 0 in a lossless medium 1 = 0 (dashed gray curve)
(a) and in a lossy medium obeying a power law absorption with an exponent of 1 = 1.05 (solid gray curve). Pulse waveforms are
shown at different time instants ¢ corresponding to propagation in the positive direction of axis x (b); interference with a pulse
reflected from a soft boundary (c), and formation of sharp peaks of negative pressure during propagation of a reflected pulse with

a changed polarity in the reverse direction x (d).
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25]. As mentioned above, in the case of a medium with
power law absorption (solid gray curve), i.e., a medium
with memory, dispersion leads to the change of the
waveform behind the shock front. The wave front
becomes significantly rounded in the compression
phase, the position of the wave maximum is delayed
comparing to the shock front in the positive half-peri-
ods (Fig. 10c), and the pulse itself is delayed from the
pulse propagating in the nondispersive medium
(dashed black curve). Reflection of the wave from a
soft boundary leads to a change in polarity and smear-
ing of its wave front (Figs. 10c, 10d).

4. CONCLUSIONS

A new approach that enables calculation of the
memory function in the integral law of losses proceed-
ing from the known frequency dependence of absorp-
tion and fulfilling the causality principle is presented.
A system of equations for one-dimensional waves that
accounts for the effects of nonlinearity, absorption,
and dispersion is obtained. A finite difference algo-
rithm for numerical simulation of the system taking
into account the reflection of waves from the imped-
ance boundary is developed. The algorithm is tested by
solving a number of benchmark nonlinear acoustic
problems that have analytical solutions. The test
results show the good accuracy of the algorithm. Prop-
agation of a nonlinear pulse in a medium like biologi-
cal tissue and its reflection from a soft boundary is sim-
ulated as an illustration to the tissue damage mecha-
nism during histotripsy.

Compared to known models based on nonlinear
equations of the evolution type, the developed numer-
ical model does not have any restrictions on the direc-
tionality of the sound waves. The system of equations
and the algorithm can also be used to simulate wave
propagation in media with spatially distributed inho-
mogeneities. The proposed model makes it possible to
study a wider class of practically important problems
of medical acoustics where it is necessary to account
for reflection and scattering effects.
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