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Elastography is a non-invasive imaging technique that can assess in vivo tissue stiffness. In shear

wave elastography imaging, the acoustic radiation force (ARF) produced by focused ultrasound

generates a local force that produces shear waves. The authors compare three existing formulations

for the ARF: its full expression in the second-order approximation and two simplified formulations

using a quasi-plane wave and an attenuated plane wave approximation. Analytical expressions for

the ARF are derived for the special cases of a concave spherical source and a quasi-Gaussian beam.

They provide expressions for the resulting ARF and show discrepancies between the different for-

mulations. For strongly divergent or highly focused beams the ARF expressed by the second-order

approximation significantly differs from both simplified formulations. However, despite those dif-

ferences the second-order and quasi-plane wave approximations create identical shear displace-

ments in tissue. To compute the ARF and the displacements produced by a conventional ultrasound

probe, the three formulations were incorporated into the k-Wave simulation package. The second-

order and quasi-plane wave approximations give different forces but nearly identical displacements

while the plane wave approximation significantly differs. It is concluded that to properly take into

account the ultrasound field structure, the second-order or quasi-plane wave approximations should

be preferably used. VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4998585]

[PLM] Pages: 947–961

I. INTRODUCTION

Elastography is a technique now widely used to image

the elastic properties of tissue.1,2 These properties are valu-

able for the diagnostics of pathologies such as cancer.

Indeed the mechanical properties of such pathologic tissue

vary from those of healthy tissue.3,4 Mapping of the local tis-

sue elasticity inside the body can help reveal the presence of

a tumor when other diagnostic modalities cannot.

Various techniques exist to obtain a local elasticity

map.1 In this article we look at the shear wave elasticity

imaging (SWEI) technique which uses the radiation force

created by ultrasound to trigger a remote displacement in the

body.5 This displacement generates the propagation of shear

waves whose speed is directly linked to the elastic properties

of the medium.

In this context, numerical simulation is a valuable tool

to predict the amplitude and shape of the displacements that

will propagate due to the acoustic radiation force (ARF).6–9

This involves modeling of the ARF generated by ultrasound

and of the reaction of the medium to this force with the prop-

agation of shear waves.

Our study looks at the existing formulations for the ARF

generated by an ultrasound field, the spatial distribution of

the force, and the displacement they create in the medium.

The goal is to compare the results and try to establish a prac-

tical domain of validity for these formulations.

We first present three distinct formulations for the ARF

and the assumptions behind them. An analytical expression

for the ARF is then derived in the case of a spherical con-

cave source and a “quasi-Gaussian beam.” Numerical simu-

lations then show the spatial distribution of the force when

using each formulation. The obtained distributions of ARF

are subsequently used to simulate the ensuing displacements

in the medium and their propagation.

II. FORMULATIONS OF THE ARF

A. Generic expression

We first recall the derivation for a general formulation

for the ARF. The conservation of momentum for a particle

in an inviscid fluid is written using Euler’s equation10

q
dv

dt
¼ q

@v

@t
þ v � $ð Þv

� �
¼ �$p; (1)

where q, v, and p are the medium density, the particle veloc-

ity, and the pressure, respectively.

Combining it with the equation of continuity

@q
@t
þr � qvð Þ ¼ 0; (2)

the rate of change of momentum in a fixed volume element

can be written10
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@ qvið Þ
@t
¼ � @Pik

@xk
; (3)

where the tensor notation was used and k is the summation

index. Pij is the momentum flux density tensor defined as10

Pij ¼ pdij þ qvivj; (4)

where dij is the Kronecker delta.

As the motion of a wave is oscillatory a time average

over a wave cycle for Eq. (3) gives the expression for the

ARF11,12

Fi ¼
@ qvið Þ
@t

� �
¼ � @hPiki

@xk
; (5)

where Fi designates the components of the ARF.

Using Eq. (4) and introducing the equilibrium pressure

p0 which is constant we can write

Fi ¼ �
@

@xk
hpEidik þ hqvivkið Þ; (6)

where hpEi ¼ hp� p0i is called the mean Eulerian excess

pressure11 and hqvivji is called the Reynolds stress sensor.

This expression for the force applied to a fixed unit volume

expressed in N/m3 shows two distinct contributions. The

first contribution comes from the pressure applied on the

volume walls (hpEidik). The second comes from the net

influx of momentum that penetrates into the volume through

the volume walls due to the movement of the fluid particles

(hqvivki).

B. Second-order approximation

Using a perturbation analysis, one can define

q ¼ q0 þ q1 þ q2 þ � � � ; (7)

v ¼ v1 þ v2 þ � � � ; (8)

p ¼ p0 þ p1 þ p2 þ � � � ; (9)

where the subscripts 0, 1, and 2 refer to undisturbed val-

ues, the first-order, and the second-order small quantities,

respectively.13,14

To the second order, one can show that the mean Eulerian

excess pressure can be written using first-order quantities

only11,15

hpEi ¼
1

2q0c2
0

hp2
1i �

1

2
q0hjv1j2i; (10)

where c0 is the sound propagation speed. The same goes for

the ARF that can be expressed using an integral over the

close surface S delimiting a chosen volume13,15,16

F¼
ðð

S

� 1

2q0c2
0

hp2
1inþ

1

2
q0hjv1j2in�q0hv1 v1 �nð Þi

� �
dS;

(11)

where n is the vector normal to S and pointing outwards.

The expression given in Eq. (11) is obtained for an

inviscid fluid. An equivalent expression for a viscous fluid

was obtained by Danilov and Mironov12 but its computation

is more involved. In the rest of the document the 1 subscript

is dropped for convenience and the quantities p and v refer

to the respective first order quantities associated with the

acoustic perturbations instead of total quantities as before.

The ARF applied to an element of volume in N/m3 is

Fi ¼ �
@hpEi
@xi

� q0

@hvivki
@xk

: (12)

Some words should be said about the validity of Eq.

(11). It is strictly valid only for propagation in fluids where

there can be no shearing and the shear modulus is null.

Indeed, it assumes that the surface forces on each volume ele-

ment are only due to the pressure. This approximation is rea-

sonable in the case of ultrasound propagation in tissue where

the bulk modulus (on the order of several GPa) is much

greater than the shear modulus (several kPa)17 and compres-

sional stresses appear much more readily than shear stresses.

Although Eq. (11) is derived assuming the fluid is invis-

cid and homogeneous, it does account, albeit indirectly, for

the wave momentum deposition in the volume inside the

close surface S due to viscous attenuation and possible scat-

tering due to inhomogeneities. Strictly speaking, together

with the inviscid stresses included in Eq. (11), viscous

stresses should also be added. However, those stresses can

become comparable to the inviscid stresses on the surface S
only at the interfaces between two different media or at a

region of abrupt changes of the medium properties, i.e., in

strongly inhomogeneous media, which are not considered

here. In a practical setting for medical ultrasound applica-

tions, soft tissues are characterized by fairly low absorption

and scattering, which justifies the use of the inviscid stress

tensor in the integrand of Eq. (11).

C. Quasi-plane wave approximation

In general the mean Eulerian excess pressure hpEi is not

null however when the wave has the form of a bounded but

wide quasi-plane wave this pressure can be approximated to

zero. This follows from the fact that for a plane wave

p¼q0c0v where v is the projection of the particle velocity

vector v on the propagation direction, i.e., pE¼ 0 according

to Eq. (10). Thus for a quasi-plane wave pE can be consid-

ered as negligible. The expression for the ARF then becomes

Fi ¼ �q0

@hvivki
@xk

; (13)

or in the vector notation

F ¼ �q0hv r � vð Þ þ v � rð Þvi; (14)

which is what Nyborg derived in Ref. 14.

D. Attenuated plane wave

Further, if the wave is considered purely plane the ARF

is directed in the wave propagation direction xi and using

Eq. (13),
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F ¼ Fi ¼ �q0

@hv2i
@xi

¼ � 1

c0

@I

@xi
; (15)

where v¼ vi is the particle velocity amplitude and I
¼ hq0c0v2i is the acoustic intensity of the plane wave. If the

wave is exponentially attenuated with an attenuation coeffi-

cient a,

@I

@xi
¼ �2aI (16)

and

F ¼ 2aI

c0

: (17)

This expression is widely used when modeling the ARF used

in elastography.6,18,19

Since the pressure is easier to measure or simulate than

the particle velocity, in practice the expression

I ¼ hp
2i

q0c0

(18)

is often used for the wave intensity.

As shown in Sec. III, when using a three-dimensional

derivation and the generic expression for the wave intensity

I ¼ hpvi, Eq. (17) can be generalized to non-plane waves. In

that case, the expression F ¼ 2aI=c0 becomes an alternate

formulation of the second-order approximation. It is there-

fore important to note that it is the expression for the wave

intensity, Eq. (18), that translates the approximation of a

plane wave rather than the expression for the ARF, Eq. (17).

III. EXPRESSION OF THE ARF IN A VISCOUS FLUID

In this section we derive an expression for the ARF

using only the spatial derivatives of the pressure field. For

clarity, we explicitly use the variables x, y, z to refer to the

ARF components and call them Fx, Fy, and Fz in place of Fi

used in Sec. II. We present the detailed calculations for the z
component of the ARF only and the x and y components are

deduced by appropriate variable replacement.

A. Second-order approximation

Using the second-order approximation formulation [Eq.

(12)] the z component of the ARF is

�Fz x; y; zð Þ ¼ q0

@hvxvzi
@x

þ @hvyvzi
@y

� �

þ @

@z
q0

hv2
z � v2

x � v2
yi

2
þ hp

2i
2q0c2

0

" #

¼ q0$ � hvvzi

þ @

@z
�q0

hv2
x þ v2

y þ v2
z i

2
þ hp

2i
2q0c2

0

" #
;

where v¼ (vx, vy, vz).

Let us consider a harmonic wave of angular frequency

x and introduce the complex amplitudes of the particle

velocity components and acoustic pressure

vi ¼
Vi

2
e�jxt þ V�i

2
ejxt;

p ¼ P

2
e�jxt þ P�

2
ejxt;

where i¼ x, y, or z, j is the imaginary unit, and the asterisks

denote complex conjugates. We get

$ � hvvzi ¼
Vz

4

@V�x
@x
þ
@V�y
@y
þ @V�z

@z

 !
þ V�x

4

@Vz

@x

þ
V�y
4

@Vz

@y
þ V�z

4

@Vz

@z
þ c:c: (19)

and

@hv2
i i

@z
¼ Vi

2

@V�i
@z
þ c:c:;

@hp2i
@z
¼ P

2

@P�

@z
þ c:c:;

where i¼ x, y, or z and c.c. designates the complex conjugate

of the preceding expression. Note that in this formula the

repeated indices on the right-hand side are not summed over

(no Einstein summation).

Replacing those in the expression of Fz(x, y, z), we get

�Fz x; y; zð Þ

¼ q0

4
Vz

@V�x
@x
þ
@V�y
@y
þ @V�z

@z

 !
þ V�x

@Vz

@x
þ V�y

@Vz

@y

" #

�q0

4
Vx
@V�x
@z
þ Vy

@V�y
@z

� �
þ 1

4q0c2
0

P
@P�

@z
þ c:c: (20)

Combining the linearized continuity equation and equa-

tion of state

@q
@t
þ q0$ � v ¼ 0; (21)

p ¼ c2
0q; (22)

we get the relation for the complex amplitudes

jx
q0c2

0

P ¼ @Vx

@x
þ @Vy

@y
þ @Vz

@z
: (23)

We can now replace @V�x=@xþ @V�y=@yþ @V�z =@z in

Eq. (20) to get

�Fz x; y; zð Þ ¼
q0

4
�Vz

jx
q0c2

0

P� þ V�x
@Vz

@x
þ V�y

@Vz

@y

�

�Vx
@V�x
@z
� Vy

@V�y
@z

�
þ 1

4q0c2
0

P
@P�

@z
þ c:c:

(24)

Let us now turn to the linearized equation of motion in a

viscous fluid for an irrotational flow
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q0

@v

@t
¼ �$pþ fþ 4

3
g

� �
$ $ � vð Þ;

where f and g are the bulk and shear viscosity, respectively.

Using Eqs. (21) and (22) to replace the divergence of v

by the time derivative of p in the previous equation we get

the following expression for the complex amplitudes

Vxi
¼ 1

q0jx
�

fþ 4

3
g

q2
0c2

0

0
@

1
A @P

@xi
; (25)

where xi¼ x, y, or z.
Using Eq. (25) in Eq. (24) we can see that all the terms

in the square bracket except for the first one cancel each

other out and we get

�Fz x; y; zð Þ ¼
fþ 4

3
g

� �
jx

4q2
0c4

0

@P

@z
P� þ c:c: (26)

Introducing the attenuation coefficient a xð Þ ¼ fþ 4
3
g

� 	
x2=

2q0c3
0

� 	
and extending for all three components of the ARF

we can write in vector notation

F x; y; zð Þ ¼
ja xð Þ

2xq0c0

P$P� � P�$Pð Þ: (27)

Note that according to Eq. (25), this equation can also

be written in the following form:

F x; y; zð Þ ¼
a xð Þ
2c0

V�Pþ c:c:ð Þ þ O a2 xð Þ
� 	

: (28)

Here O(a2(x)) indicates the terms that are proportional to

the square of the attenuation coefficient and that can be con-

sidered negligible in our case of a weakly absorbing media.

Also the wave intensity in such a weakly absorbing vis-

cous media is I ¼ hpvi ¼ PV�=4þ c:c:, so we come to a short

expression of the ARF in the second-order approximation

F x; y; zð Þ ¼ 2a xð Þ I

c0

: (29)

This shows that the expression F ¼ 2a xð ÞI=c0 when

using the definition of I in the generic case is an equivalent

formulation of the ARF in the second-order approximation.

B. Quasi-plane wave approximation

According to Eqs. (12) and (13) the ARF in the quasi-

plane wave approximation can be obtained by adding the

gradient of the mean Eulerian excess pressure to the expres-

sion of the ARF obtained by the second-order approxima-

tion. From Eq. (27) we have therefore

F ¼ ja xð Þ
2xq0c0

P$P� � P�$Pð Þ þ rhpEi; (30)

for the quasi-plane wave approximation.

Using Eqs. (10) and (25) we can express the mean

Eulerian excess pressure as

hpEi ¼
PP�

4q0c2
0

� q0

4
AA�$P$P�; (31)

where

A ¼ 1

jq0x
�

fþ 4

3
g

q2
0c2

0

¼ 1

jq0x
� 2a xð Þc0

q0x2
:

The expression for the ARF becomes

F ¼ jxA

4c2
0

P�$P� q0AA�

4
$2P$P� þ c:c: (32)

C. Attenuated plane wave approximation

In the case of a plane wave p¼ q0c0v and we have

F ¼ 2a xð Þ I

c0

¼ a xð Þ P2

q0c2
0

: (33)

In the rest of the article the attenuated plane wave

approximation uses I ¼ P2=q0c0 for the intensity and Eq.

(33) for the ARF.

Note that when this approximation is used in typical cases

such as a focused diagnostic transducer where the pressure

field differs from a plane wave, the result is a scalar and does

not provide any information about the ARF direction. Some

assumptions must therefore be made about the direction of the

force in this case. This is explained in more detail in Sec. IV.

IV. ANALYTICAL EXPRESSION OF THE ARF FOR
PARTICULAR CASES

In this section we consider two particular cases for

which an analytical expression of the ARF can be found.

The first case considered is that of a spherical concave

source with uniform distribution normal velocity. In this

case, we can derive an expression for the ARF along the

transducer axis. The second case is that of a quasi-Gaussian

beam satisfying the Helmholtz equation.20

A. Spherical concave source

We consider a spherical concave source with radius of

curvature R, half opening angle h, diameter D, and depth h
(Fig. 1). The normal velocity at the face of the source is con-

sidered constant and equal to V0. Using the Rayleigh integral

O’Neil established the following expression for the complex

pressure amplitude on the transducer main axis:21

P 0; 0; zð Þ ¼ q0c0V0

ejkz � ejkRmax

1� z

R

; (34)

where z is the distance to the transducer center and Rmax is

the distance from the observation point to the transducer

edge (Fig. 1)
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Rmax ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1� z

R

� �2

� 2 1� z

R

� �
cos h

s
: (35)

Equation (34) is valid when D and h are large compared to

the wavelength k.

Using this equation and the expressions of the ARF

established in Secs. III A and III B we want to establish an

analytical expression for the ARF on the transducer axis.

Due to symmetry, it is directed along the z axis.

Detailed calculations that can be found in Appendix A

give the expression for the ARF on the axis using the

second-order approximation

Fz 0;0;zð Þ¼a xð ÞP2
0

q0c2
0

R0maxþ1
� 	

1� z

R

� �2
1�cos

x
c0

z�Rmaxð Þ
� �� �

;

(36)

where

R0max¼
@Rmax

@z
¼

z

R
�1þcoshffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1� z

R

� �2

�2 1� z

R

� �
cosh

s ;

P0¼q0c0V0: (37)

In the quasi-plane wave approximation due to symmetry

the velocity vector and the pressure gradient are oriented

along the z axis and

Fz 0; 0; zð Þ ¼ jxA

4c2
0

P�
@P

@z
� q0AA�

4

@2P

@z2

@P�

@z
þ c:c: (38)

The details derivation as well as the expressions for @P=@z
and @2P=@z2 can be found in Appendixes A and B.

We now use the above expressions to compare the

amplitude of the ARF using the second-order approximation,

the quasi-plane wave approximation, and the attenuated

plane wave approximation along the source axis for different

values of the angle h or equivalently different values of F-

number which in our case is equal to 1= 2 sinhð Þ. A large

value of h corresponds to a highly focused transducer and a

low F-number.

Figure 2 shows a comparison of the ARF amplitude for

three configurations: h¼ 15�, h¼ 20�, h¼ 30�, and h¼ 45�

(F-number of 1.9, 1.5, 1.0, and 0.7). The values chosen for R,

q0, and c0 are 10 cm, 1000 kg/m3, and 1500 m/s, respectively.

The wave frequency is 3 MHz, the wavelength k¼ 0.5 mm,

and the attenuation coefficient is 1 dB/cm/MHz.2 Each con-

figuration corresponds to a diameter D of 5.2, 6.8, 10.0, and

14.1 cm and to a depth of 3.4, 6.0, 13.4, and 29.3 mm.

As the source angle h increases (the F-number

decreases) the discrepancy at focus between results obtained

with the second-order approximation and those obtained

with the quasi-plane wave or the plane wave approximation

increases. To quantify this discrepancy we compute Dpw and

Dqp the root-mean-square errors (RMSEs) over the displayed

depth range (0.9� z/R� 1.1) between the plane wave and

the second-order approximations and between the quasi-

plane wave and the second-order approximations, respec-

tively. The RMSE gives a relative measurement of the dis-

crepancies between each solution. While Dpw and Dqp are

very low for F-numbers greater than 1 they increase dramati-

cally for F-number below 1 (Fig. 2).

This behaviour is expected since the pressure field dis-

tribution deviates greatly from a “locally plane wave” as the

degree of focusing increases (increasing value of h).

These results clearly show that in the case of highly

focused sources the quasi-plane wave and plane wave

approximations significantly differ from the original expres-

sion of the second-order approximation.

B. Quasi-Gaussian beam

Quasi-Gaussian beams satisfying the Helmholtz equa-

tion can be defined in various ways.22,23 In this article we

use the formulation from Ref. 20 where Sapozhnikov defines

an axisymmetric beam with a “quasi-Gaussian” pressure dis-

tribution along the radial dimension. This beam satisfies the

Helmholtz equation and can be approximated by a Gaussian

beam at short distances from the symmetry axis. It can be

seen as the superposition of two sources and sinks with com-

plex coordinates. The analytical expression for the pressure

field complex amplitude in this beam is

P x; y; zð Þ ¼
P0zd

2sinh2 kzdð Þ
ekzd

sin k
ffiffiffiffiffiffiffi
D�
p� 	
ffiffiffiffiffiffiffi
D�
p

"

�e�kzd
sin k

ffiffiffiffiffiffiffi
Dþ
p� 	
ffiffiffiffiffiffiffi
Dþ
p

�
; (39)

where

zd ¼ ka2=2; (40)

D� ¼ x2 þ y2 þ z� jzdð Þ2; (41)

Dþ ¼ x2 þ y2 þ zþ jzdð Þ2; (42)

FIG. 1. Concave spherical source with radius of curvature R, diameter D,

depth h, and half opening angle h. Rmax is the distance between the observa-

tion point (0, 0, z) along the axis and the transducer edge.
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with a a parameter characteristic of the source spatial exten-

sion in the plane z¼ 0.

The pressure field of such a beam in a plane containing

the symmetry axis is shown in Fig. 3 for ka¼ 5. It presents a

maximum on the axis at z¼ 0. The wavefield propagates

from z< 0 toward z> 0 and presents a beam waist at z¼ 0.

From the expression in Eq. (39) P and its spatial deriva-

tives can be computed anywhere and hence an analytical

expression for ARF using the second-order or the quasi-

plane wave approximation can be established.

The detailed analytical expressions for the spatial deriv-

atives or the pressure are given in Appendix C.

Using these expressions, we compute the ARF direction

and amplitude in the plane y¼ 0 using the second-order and

quasi-plane wave approximations for ka¼ 7 and ka¼ 5. The

higher the value of ka the more “collimated” the beam is.

The values for q0 and c0 are specified in Sec. IV A. The

attenuation and frequency are as before 1 dB/cm/MHz2 and

3 MHz, respectively.

Figures 4 and 5 show the ARF field and amplitude using

both formulations as well as the force amplitude on axis for

all three formulations in the case ka¼ 7 and ka¼ 5, respec-

tively. The on-axis force amplitudes are normalized with the

maximum amplitude obtained using the second-order

approximation. The quasi-plane wave approximation differs

significantly from the results given using the second-order

approximation especially for the low value of ka where the

beam is more divergent. The attenuated plane wave formula-

tion over-estimates the force amplitude in z¼ 0 compared to

that obtained with the second-order approximation by 4%

and 9% for ka¼ 7 and ka¼ 5, respectively.

This shows that in this case the second-order approxi-

mation should be favoured especially for low values of ka.

V. INFLUENCE OF THE MEAN EULERIAN EXCESS
PRESSURE

The expression for the ARF in the quasi-plane wave

approximation is obtained by adding the mean Eulerian

FIG. 2. Amplitude of the ARF along the source axis for a spherical concave source when using the second-order—F2o (solid line), the quasi-plane wave

(dashed-dotted line)—Fqp, and the plane wave—Fpw (dotted line) approximations. Calculations were done for four setups with increasing values of h (increas-

ing degree of focusing). The ARF amplitude is normalized by the maximum of the amplitude found using the second-order approximation. Dpw and Dqp are

the RMSEs over the displayed depth range between the plane wave and the second-order approximations and between the quasi-plane wave and the second-

order approximations, respectively.

FIG. 3. Normalized pressure amplitude generated by a quasi-Gaussian beam

in a plane containing the symmetry axis for ka¼ 5. The wavefield propa-

gates from z< 0 toward z> 0 and has a beam waist at z¼ 0. The contours

show the normalized level in dB.
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excess pressure hpEi to the ARF expression obtained with

the second-order approximation [see Eqs. (12) and (13)].

Considering Eqs. (30) and (31) it appears clearly that even in

a lossless medium where a(x)¼ 0, the ARF in the quasi-

plane wave approximation is not null. This result is not phys-

ical. It is not the case for the ARF expressed using the

second-order or quasi-plane wave approximation where it is

proportional to a(x) in both cases.

Figure 6 shows the on-axis ARF in the lossless case

using the quasi-plane wave approximation for a spherical

concave source of half opening angle h¼ 20� and for a

quasi-Gaussian beam with ka¼ 7. In the lossless case it cor-

responds to $hpEi. It shows that the influence of the Eulerian

pressure is mainly on each side of the focus depth and of the

beam waist for the spherical concave source and the quasi-

Gaussian beam, respectively.

It is therefore important to take the mean Eulerian

excess pressure to correctly estimate the ARF.

However, as explained in Refs. 24 and 25 the compo-

nent of the ARF that can be expressed as a gradient does not

generate rotational motion in the medium that is associated

with shear waves in case of soft solids, and with acoustic

streaming in case of fluids. So although hpEi should be taken

into account for a correct computation of the ARF, it does

not contribute to the generation of a displacement of shear

waves.

In the context of SWEI the gradient of the mean

Eulerian excess pressure can therefore be neglected to esti-

mate the displacement created by the ARF and the second-

order and quasi-plane wave approximations should lead to

identical displacements.

VI. NUMERICAL SIMULATION OF THE ARF FROM AN
EXISTING ULTRASOUND SOURCE

The analytical expressions presented in Sec. IV corre-

spond to somewhat idealistic sources. In practice, sources

are of a more complex structure. For instance, in SWEI the

probes are multi-element arrays similar or identical to those

used in conventional ultrasound imaging. In such a case,

analytical expressions for the ARF do not exist, but the

acoustic field and related radiation force can be calculated

based on direct numerical simulations. To do so, in this

paper we used the simulation package k-Wave26,27 running

under MATLAB (Mathworks, Natick, MA).

We simulated the pressure and particle velocity fields

created by an ultrasound transducer P4–2 V (Verasonics,

Inc., Redmond, WA). This transducer is a 20-mm wide and

14-mm high phased array made of 64 elements. It has a cen-

ter frequency around 3 MHz, a fixed focus in the elevation

direction at 60 mm, and an adjustable electronic focus in the

azimuth direction set to 30 mm in our simulations.

FIG. 4. (Color online) Amplitude of the

ARF computed using the second-order

approximation (top left) and the quasi-

plane wave approximation (top right) in

the case ka¼ 7. The gray scale repre-

sents the amplitude of the ARF and the

arrows its direction. The ARF amplitude

on the source symmetry axis (x¼ 0) is

also compared (bottom) using the

second-order approximation (solid line),

the quasi-plane wave approximation

(dashed-dotted line), and the plane wave

approximation (dotted line). The on-axis

force amplitudes are normalized with

the maximum amplitude obtained using

the second-order approximation.
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The propagation medium is chosen homogeneous with a

sound speed and density of 1540 m/s and 980 kg/m3, respec-

tively. The attenuation coefficient is set to 0.5 dB/MHz/cm.

The transmitted pulse is 5-cycles long and is obtained by

weighting a 3-MHz sine wave by a Gaussian envelope.

Waveform distortion effects due to acoustic nonlinearity are

not included.

The computation grid is made of 133, 93, and 321 elements

in the azimuth, elevation, and depth direction, respectively. The

mesh size is set to 0.16 mm corresponding to a total grid size

of approximately 21.3 mm in azimuth, 14.9 mm in elevation,

and 51.4 mm in depth. The simulation end time is set to 40 ls

and the time step is 0.03 ls. A perfectly matched layer

(PML) 20-element wide in the azimuth and depth directions

and 10-element wide in the elevation direction is included in

the computation grid.

The simulations were run in three dimensions but the

ARF was only computed in the plane of symmetry for the

FIG. 5. (Color online) Amplitude of

the ARF computed using the second-

order approximation (top left) and the

quasi-plane wave approximation (top

right) in the case ka¼ 5. The gray scale

represents the amplitude of the ARF and

the arrows its direction. The ARF ampli-

tude on the source symmetry axis

(x¼ 0) is also compared (bottom) using

the second-order approximation (solid

line), the quasi-plane wave approxima-

tion (dashed-dotted line), and the plane

wave approximation (dotted line). The

on-axis force amplitudes are normalized

with the maximum amplitude obtained

using the second-order approximation.

FIG. 6. Normalized ARF on the axis of a spherical concave source of half opening angle h¼ 20� (left) and on the axis of a quasi-Gaussian beam with ka¼ 7

(right) using the quasi-plane wave approximation in the lossless case. In that case the ARF is equal to $hpEi.
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transducer (zero elevation). In this plane, hereafter called x,

z plane, the ARF has only two components Fx and Fz due to

symmetry.

The pressure amplitude distribution obtained is shown

in Fig. 7.

The distribution of the ARF formulated using Eq. (12) is

shown in the left pane of Fig. 8.

It shows that the ARF reaches a maximum amplitude

along the main propagation axis in the focal area.

When using Eq. (13) we obtain the spatial distribution

of the ARF shown in the middle pane of Fig. 8.

This spatial distribution is quite similar to that obtained

with the ARF formulation using the second-order approxi-

mation. The main difference is in the distribution of Fx.

Finally, Eqs. (17) and (18) valid for an attenuated plane

wave were used to get the spatial distribution of the ARF

shown in the right pane of Fig. 8.

As the force has only one component in this case (along

the plane wave propagation direction) a common approxima-

tion sets the force direction toward the focal point for depths

smaller than focus and away from the focal point for depths

larger than focus (Poynting vector). In a reduced depth range

FIG. 7. Spatial distribution of the nor-

malized pressure amplitude in the x, z
plane (left) and along the transducer

main propagation axis, x¼ 0 (right) for

a propagation in a homogeneous

medium.

FIG. 8. (Color online) Spatial distribution of the ARF in the zero-elevation plane when using the second-order approximation (left), the quasi-plane wave

approximation (middle), and the attenuated plane wave approximation (right). The gray tones represent the normalized ARF amplitude. The length and direc-

tion of the arrows represent the local amplitude and direction for the ARF. Note that the vertical and horizontal scales are not identical for better readability.
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around focus, typically 10% of the focus distance, the force

is approximated parallel to the main propagation axis.6 This

approximation was also made in our case.

VII. SIMULATION OF SHEAR WAVE PROPAGATION

Once the spatial distribution of the ARF is available the

propagation of the ensuing shear wave can be modelled. For

that, we used k-Wave again to simulate propagation of elas-

tic waves in three dimensions.28,29

The ARF is considered as an input volume force distrib-

uted in the x, z plane (y¼ 0). The ARF amplitude is taken

constant in time and it is applied for a given duration. In our

simulations, the force is applied at t¼ 0 for 200 ls which

corresponds to a 600-period long pushing pulse of center fre-

quency 3 MHz.

The medium is homogeneous with a shear wave speed

of 1.7 m/s. The computation grid is made of 128 elements in

the azimuth and depth directions and 32 elements in the ele-

vation direction. The mesh size is set to 0.2 mm correspond-

ing to a total grid size of 25.6 mm in the azimuth and depth

directions and 6.4 mm in the elevation direction. The simula-

tion end time is set to 5.5 ms with a time step of 1 ls. The

PML size is 10 elements in the azimuth and depth directions

and 5 elements in the elevation direction. Note that in k-

Wave there is no formal way to input a volume force. It only

takes stress components or particle velocities as inputs.

However, as explained in the k-Wave user manual30 the

input velocity is automatically scaled to a force per mass

(m/s2) by multiplying it with the factor 2c0/Dxi where Dxi is

the spatial step in the chosen direction. To get a volume

force Fi as input, we can therefore use an input velocity

equal to Fi=q0ð Þ= 2c0=Dxið Þ.
The generated shear waves propagate mainly in the x

direction and the displacement main component is there-

fore along the z direction. In SWEI and more generally in

ultrasound-based elastography, only the z-component of

the displacement is tracked (toward and away from the

transducer). Therefore, we only study the displacement

along z.

Using the fields of ARF computed with the three meth-

ods described above, the obtained displacements along the z
direction are shown in Fig. 9 at three distinct times.

Three cuts along the x direction in each of these planes

are shown in Fig. 10.

The displacements computed using the attenuated plane

wave approximation for the ARF clearly differ from the two

other computed displacements.

FIG. 9. Fields of displacement in a

homogeneous medium at t¼ 1 ms (left

column), t¼ 2.5 ms (middle column),

and t¼ 4 ms (right column) generated

by the ARF using the second-order

approximation (top row), the quasi-

plane wave approximation (middle

row), and the attenuated plane wave

approximation (bottom row). The

fields are normalized with the maxi-

mum displacements obtained from the

second-order approximation at

t¼ 1 ms.
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The displacements computed using the quasi-plane

wave approximation and the second-order approximation are

nearly identical as expected and can hardly be distinguished.

To quantify the similarity between the displacements

obtained with the second-order and the attenuated plane

wave approximations a RMSE is computed. It is the root

mean square of the difference between the displacement

obtained using the ARF formulation with the second-order

approximation and with the attenuated plane wave

approximations.

The RMSE is below 2.3% at t¼ 1 ms but at 30 mm

depth it grows to 11.1% and 11.2% at t¼ 2.5 ms and

t¼ 4 ms, respectively.

The displacements at points positioned on the axis,

1.5 mm, and 3.0 mm off-axis, and at all three depths (25, 30,

and 35 mm) are shown in Fig. 11.

FIG. 10. Displacements in a homogeneous medium at t¼ 1 ms (left column), t¼ 2.5 ms (middle column), and t¼ 4 ms (right column) and at 25 mm depth (top row),

30 mm depth (middle row), and 35 mm depth (bottom row), when the ARF was computed using the second-order approximation (solid line), the quasi-plane wave

approximation (dashed-dotted line), and the attenuated plane wave approximation (dotted line). In this case, each curve is normalized with the its maximum at t¼ 1 ms.

FIG. 11. Displacements in a homogeneous medium as a function of time for points positioned on the axis (x¼ 0 mm), 1.5 mm (x¼ 1.5 mm), and 3.0 mm

(x¼ 3.0 mm) off-axis and at 25 mm (left), 30 mm (middle), and 35 mm (right) depth. The displacements obtained using the second-order approximation, the

quasi-plane wave approximation, and the attenuated plane wave approximation are shown in solid, dashed-dotted, and dotted lines, respectively. They are nor-

malized with the maximum on-axis displacement computed at 30 mm depth using the second-order approximation.
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Again, they show that the displacements computed

using the second-order approximation and the quasi-plane

wave approximation are very similar. The minute differences

that can be observed in Fig. 11 at z¼ 25 mm are attributed to

numerical errors. On-axis, these displacements are slightly

smaller than those computed with the attenuated plane wave

approximation at 25 mm depth, but at 30 and 35 mm depth,

they are much larger (approximately a factor 2 and 1.4,

respectively). Similar trends can be observed at x¼ 1.5 mm

and x¼ 3.0 mm.

VIII. DISCUSSION

The analytical studies in the case of a spherical concave

source and a quasi-Gaussian beam show clearly that there is

a difference between the amplitude, and the direction of the

ARF when computed using the second-order approximation

and either the attenuated plane wave or the quasi-plane wave

approximations.

The differences get larger as the source is more focused

(larger values for h or smaller values for ka). Indeed with a

large focusing gain, the beam cannot be approximated to a

plane or quasi-plane wave in most of the space due to the

many propagation directions included in the beam. In that

case both plane wave and quasi-plane wave approximations

differ significantly from the second-order approximation.

An F-number of 1.5 or more is quite common for diag-

nostic probes. It is therefore reasonable in that case to use

the quasi-plane wave approximation for estimating the ARF

around focus. However, when using more focused trans-

ducers with lower F-numbers (below 1), only the second-

order approximation should be used.

When simulating the ARF and the ensuing shear dis-

placement created by a diagnostic cardiac probe, there is a

visible difference in the ARF field when using the three

approximations (Fig. 8). However, there is a noticeable dif-

ference in the shear displacement only between the results

obtained with the second-order approximation and the plane

wave approximation. The displacements obtained using the

second-order approximation and the quasi-plane wave

approximation are nearly identical.

This demonstrates, as explained in Sec. V, that although

the mean Eulerian excess pressure should be taken into

account for a correct estimation of the ARF as in the second-

order approximation, it can be neglected for a prediction of

the created shear displacement. The ARF expression in the

quasi-plane wave or second-order approximation leads to

identical theoretical displacements associated with the shear

waves.

One limitation of the presented study is the formulation

of the ARF based on a lossless stress tensor. Although the

formulation accounts for momentum deposition due to atten-

uation and scattering from inhomogeneities it cannot account

for losses due to large ruptures of acoustic impedance

between tissue and bone, for instance. Forces and shear

displacements due to the presence of strong inhomogeneities

can be important and in some cases prevail over viscous

forces.31 Likewise nonlinear propagation was neglected in

this study, and in the case of high power ultrasound its con-

tribution to ARF can be significant.32

IX. CONCLUSIONS

We have presented three formulations of the ARF and

the assumptions behind each of them. The second-order

approximation does not assume anything on the geometry of

the beam while the quasi-plane wave assumes that the beam

is a bounded plane wave. The formulation of the ARF using

the attenuated plane wave approximation and Eq. (18) for

the expression of the intensity is a more coarse approach. It

does not take into account the pressure or velocity spatial

gradients, only the pressure amplitude. Because of that, it

“flattens out” some spatial variations in the amplitude and

direction of the ARF.

Analytical solutions for the ARF in the case of a con-

cave spherical transducer and a quasi-Gaussian beam have

shown the advantage to use the second-order approximation

over the quasi-plane wave and attenuated plane wave

approximations for highly focused sources or strongly diver-

gent beams.

Numerical simulations for the ARF created by a diag-

nostic cardiac probe have shown the differences in the ARF

computed when using the three approximations. The dis-

placements generated by the ensuing shear wave, however,

only differ between the second-order approximation and the

attenuated plane wave approximation. This shows that the

ARF expression using the second-order or quasi-plane wave

approximations leads to identical displacements.

In conclusion we can state that to get an accurate esti-

mate of the ARF the second-order approximation or the

quasi-plane wave approximation should be used instead of

the attenuated plane wave approximation for transducers

with large F-numbers.

The part of the force in the second-order approximation

formulation that is neglected in the quasi-plane wave approx-

imation does not generate any shear motion in the tissue. In

the context of SWEI both formulations can therefore be used

equivalently to estimate the shear displacement created by

the ARF.
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APPENDIX A: EXPRESSION FOR THE ARF ON THE
AXIS OF A SPHERICAL CONCAVE SOURCE USING
THE SECOND-ORDER APPROXIMATION

On the axis of an axisymmetric source due to symmetry

the ARF is directed along the axis and only the z component

of the ARF is not null. For the second-order approximation

formulation we have according to Sec. III A,

Fz 0; 0; zð Þ ¼ ja xð Þ
2xq0c0

P
@P�

@z
� P�

@P

@z

� �
: (A1)
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We aim at finding an expression for Eq. (A1) in our par-

ticular case of a spherical concave source.

On the axis the expression of the complex pressure

amplitude is

P 0; 0; zð Þ ¼ q0c0V0

ejkz � ejkRmax

1� z

R

:

Let us compute P @P�=@zð Þ.
First

@P

@z
¼ q0c0V0

1� z

R

� �2
1� z

R

� �
jkejkz� jkR0maxejkRmax
� 	�

þ1

R
ejkz�ejkRmaxð Þ

�
; (A2)

where

R0max ¼
@Rmax

@z
¼

z

R
� 1þ cos hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1� z

R

� �2

� 2 1� z

R

� �
cos h

s :

Then

P
@P�

@z
¼ q0c0V0ð Þ2

1� z

R

� �3
ejkz � ejkRmaxð Þ 1� z

R

� ��

� �jke�jkz þ jkR0maxe�jkRmax
� 	

þ 1

R
e�jkz � e�jkRmaxð Þ

�

and

P
@P�

@z
� P�

@P

@z
¼ � jk q0c0V0ð Þ2

1� z

R

� �2
2 R0max þ 1
� 	

� 1� cos k z� Rmaxð Þð Þ½ �: (A3)

The expression of the ARF on axis then becomes

Fz 0;0;zð Þ¼a xð ÞP2
0

q0c2
0

R0maxþ1
� 	

1� z

R

� �2
1�cos

x
c0

z�Rmaxð Þ
� �� �

;

where

P0 ¼ q0c0V0:

APPENDIX B: EXPRESSION OF THE ARF ON THE
AXIS OF A SPHERICAL CONCAVE SOURCE USING
THE QUASI-PLANE WAVE APPROXIMATION

According to Eq. (38)

Fz 0; 0; zð Þ ¼ jxA

4c2
0

P�
@P

@z
� q0AA�

4

@2P

@z2

@P�

@z
þ c:c:

The expressions for P� @P=@Pð Þ and @P�=@z were estab-

lished in Appendix A. We therefore only need to establish

an expression for @2P=@z2:

@2P

@z2
¼ P0

�k2ejkz � jkR00maxejkRmax þ k2R02maxejkRmax

1� z

R

2
664

þ2
jkejkz � jkR0maxejkRmax

R 1� z

R

� �2
þ 2

ejkz � ejkRmax

R2 1� z

R

� �3

3
7775; (B1)

where

R00max ¼
@2Rmax

@z2
¼ R sin hð Þ2

R3
max

: (B2)

Combining Eqs. (A2), (A3), and the above equations,

we find an analytic expression for Fz(0, 0, z) on the axis of

the source for a spherical concave source. The expression is

quite large and is not given here for brevity.

APPENDIX C: EXPRESSION OF THE ARF FOR A
QUASI-GAUSSIAN BEAM

When using the second-order approximation Eq. (27) is

used while when using the quasi-plane wave approximation

Eq. (32) is used.

We therefore need to establish the expression for the

first and second spatial derivatives of the pressure.

Expressions anywhere in space can be obtained but we

will derive here the above expressions in the plane y¼ 0.

Because of symmetry of the field, all components in y will

therefore be zero in this plane.

We are therefore looking for an expression for Fx(x, 0,

z) and Fz(x, 0, z), the radial and longitudinal components of

the ARF.

In the following derivations since x and y play a sym-

metric role only expressions involving the variables x and z
are shown. Expressions involving y can be deduced by

switching x with y.

Let us first define

B ¼ P0zd

2sinh2 kzdð Þ
;

so that the expression for the complex pressure amplitude is

P x; y; zð Þ ¼ B ekzd
sin k

ffiffiffiffiffiffiffi
D�
p� 	
ffiffiffiffiffiffiffi
D�
p � e�kzd

sin k
ffiffiffiffiffiffiffi
Dþ
p� 	
ffiffiffiffiffiffiffi
Dþ
p

" #
:

Remembering that D� ¼ x2 þ y2 þ z� jzdð Þ2 and Dþ ¼ x2

þ y2 þ zþ jzdð Þ2 we get the following expression for the

spatial derivatives of P:
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@P

@z
¼ B ekzd

k z� jzdð Þcos k
ffiffiffiffiffiffiffi
D�
p� 	

D�
� z� jzdð Þsin k

ffiffiffiffiffiffiffi
D�
p� 	

D3=2
�

 !
� e�kzd

k zþ jzdð Þcos k
ffiffiffiffiffiffiffi
Dþ
p� 	

Dþ
� zþ jzdð Þsin k

ffiffiffiffiffiffiffi
Dþ
p� 	

D
3=2
þ

 !2
4

3
5:

By replacing both (z - jzd) and (zþ jzd) with x or y we get similar expressions for @P=@x or @P=@y, respectively.

We then evaluate the second spatial derivatives

@2P

@z2
¼ B ekzd

k cos k
ffiffiffiffiffiffiffi
D�
p� 	

D�
� 1þ k2 z� jzdð Þ2
� �

sin k
ffiffiffiffiffiffiffi
D�
p� 	

D3=2
�
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p� 	
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D�
p� 	
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 !"
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p� 	
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D
3=2
þ
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þ 3 zþ jzdð Þ2
sin k

ffiffiffiffiffiffiffi
Dþ
p� 	

D
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þ

 !#
:

Again, by replacing both (z - jzd) and (zþ jzd) with x or y we get similar expressions for @2P=@x2 or @2P=@y2, respectively.

@2P

@x@z
¼ B ekzd �k2x z� jzdð Þ sin k

ffiffiffiffiffiffiffi
D�
p� 	

D3=2
�

� 3kx z� jzdð Þ cos k
ffiffiffiffiffiffiffi
D�
p� 	

D2
�

þ 3x z� jzdð Þ sin k
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 !"
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þ

� 3kx zþ jzdð Þ cos k
ffiffiffiffiffiffiffi
Dþ
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D2
þ

þ 3x zþ jzdð Þ sin k
ffiffiffiffiffiffiffi
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D
5=2
þ

 !#
:

And finally by replacing x with y in the above expres-

sion we get an expression for @2P=@y@z and by replacing

both (z � jzd) and (zþ jzd) with y we get an expression for

@2P=@x@y.

From these equations we can get an analytical expres-

sions for Fx(x, 0, z) and Fz(x, 0, z) using the second-order or

the quasi-plane wave approximation. The expressions are

quite large and will not be shown here for brevity.
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