Modeling elastic wave propagation in kidney stones
with application to shock wave lithotripsy
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A time-domain finite-difference solution to the equations of linear elasticity was used to model the
propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on
the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact
of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is
generated by constructive interference from shear waves launched from the outer edge of the stone
with other waves in the stone. Notably the shear wave induced loads were significantly larger than
the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of
the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more
than 50%. The constructive interference was also sensitive to shock rise time and it was found that
the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results
demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters
with large focal widths and short rise times should be effective at generating high stresses inside

kidney stones. © 2005 Acoustical Society of America. [DOI: 10.1121/1.2032187]

PACS number(s): 43.80.Gx, 87.54.Hk, 43.20.Gp [FD]

I. INTRODUCTION

Lithotripsy is the clinical procedure whereby extracor-
poreally generated shock waves are focused onto kidney
stones to fragment them into small enough pieces that they
can be passed naturally. Lithotripsy was first introduced in
1980 (Ref. 1) and in the United States about 70% of kidney
stones are treated with shock waves.” Despite the wide ac-
ceptance of shock wave lithotripsy the mechanisms by which
the shock waves comminute stones are not agreed upon. In
addition it is now recognized that lithotripsy is not a benign
procedure but results in tissue damage to most if not all
kidneys which can lead to both acute and chronic
complications.}6 Until the mechanisms of kidney stone frag-
mentation and kidney tissue damage are identified, improve-
ments to lithotripsy are principally found empirically.

Identification of the mechanisms of kidney stone frag-
mentation requires that one first determine the state of load-
ing on the stone and after which a fracture mechanics model
needs to be applied to determine the material failure. A few
models to determine the loading within kidney stones have
been published. Dahake and Gracewski™® used a finite-
difference time-domain (FDTD) simulation for elastic waves
but their study was motivated by intracorporeal shock wave
lithotripsy and they treated the case of point sources on the
surface of spherical stones. Xi and Zhong9 have used ray
tracing of compression and shear waves to determine loca-
tions of interactions but the ray tracing model cannot predict
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stress amplitudes and does not account for diffractive effects.
Cleveland and Tello'® described a FDTD model for calculat-
ing pressure waves in kidney stones subject to lithotripsy
shock waves but the model treated the stone as a fluid and
neglected the presence of shear waves. Mihradi et al." em-
ployed a finite-element model (FEM) to predict the stress
loadings on kidney stones in lithotripsy. The incident wave-
form was modeled as a half-sinusoid of purely positive pres-
sure and simulations were carried out for pulses of different
durations (0.5 to 5 us) in a two-dimensional Cartesian coor-
dinate system. It was concluded that fracture occurs due to
spall, that is, reflection of the positive pressure from the dis-
tal surface of the stone.

Once the state of loading is determined the criteria for
failure has to be identified. Most measurements on stone
strength have reported either compressive strength or frac-
ture toughness in experiments that were carried out at low
strain rates.'>'* This data shows enormous variation and be-
cause the strain rate in lithotripsy is 10° s™! it is not clear
whether measurements at low strain rates provide data rel-
evant to lithotripsy.15 Also, it is likely that the fracture is a
fatigue process and requires further data, such as dynamic
fracture toughness.16

This paper aims to address the issue of determining the
stresses and strains in kidney stones during lithotripsy. We
employ a finite-difference scheme, which is widely used in
the geophysics community, to model the propagation of
shock waves in kidney stones. This allows us to compute the
stress and strain inside stones accounting for pressure waves
in the surrounding fluid and elastic waves in the solid includ-
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ing all surface interactions. Using the simulations we are
able to quantify a key role of shear waves that has only been
alluded to in previous work.

Il. MODEL

In this work kidney stones were assumed to behave as a
linear, isotropic, elastic medium (the validity of this assump-
tion is addressed in the discussion), in which case the under-
lying equations are Newton’s second law and Hooke’s law:

ot Po (9)(, ’

oT;; v dv; Jv;
_'1:)\5ij_k+M(_l+_i) (2)
ot oxy, dx;  Ix;

The equations are written in index notation where v; repre-
sent the velocity at each location, 7;; the stress tensor, &;; the
Kronecker delta function, a repeated index implies summa-
tion, p, is the material density, and N\ and w are the Lame
coefficients of the material.

We further assumed that the problem was axisymmetric
and cast the equations in cylindrical coordinates (r, 6,z). The
z axis was the axis of propagation of the shock wave and the
stones were modeled as volumes of rotation around the z axis
(in this paper either spheres or cylinders). For cylindrical
coordinates v,=0 and all derivatives with respect to 8 vanish
(see, for example, Ref. 17, pp. 26-27; Ref. 18, p. 77; or Ref.
19, Chap. 12) in which case Eq. (1) becomes
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and the nonzero stresses in Eq. (2) are given by
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where the dilatation rate is
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Equations (3)—(5) were solved using a finite-difference grid
that was staggered in both time and space, referred to as the
Vireux scheme in geophysicszo*22 or the Yee cell in electro-
magnetics (Ref. 23 and Ref. 24, pp. 107-144). In this formu-
lation it is assumed that the velocities are known at time ¢
—At/2 and the stresses known at time ¢. To march forward
one step first the velocities are advanced from r—A¢/2 to ¢
+A¢/2 using Egs. (3) and in the second the stresses are ad-
vanced from 7 to +Ar using Egs. (4) and (5). Due to the
nature of the staggered grids the v,/r term is never evaluated
at r=0 and therefore does not need special attention within
the algorithm. The material properties were allowed to vary
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arbitrarily in space and were assumed to be defined at the
same spatial location as the normal stresses. Linear interpo-
lation was used to determine material properties at staggered
grid points.

The edges of the numerical grid produce reflections that
can be avoided by either solving on a large enough domain
that the reflections are delayed enough in time that they can
be gated out of the analysis or by use of boundary layers that
absorb incident waves in particular the perfectly matched
layer (PML).>? In these 2D simulations (where computer
memory limitations are not a significant issue) the grid was
chosen to be very large (at least 8 mm away from any inter-
face) to ensure that reflections did not enter the domain of
interest (the stone) during the time of interest. For these
simulations the boundary condition applied along each
boundary was that the shear stress and normal component of
the velocity were zero which ensured that along the =0 axis
the axis-symmetric assumption in cylindrical coordinates
was satisfied.

From a material failure point of view, the principal
stresses and strains and maximum shear stress and strain are
important indicators of fracture. Two of the principal stresses
lie in the r-z plane and are given by

- /
O12= (T + T2 ENT, + (1, — 7..) /4 (6)
with the angle of o with respect to the r axis given by
tan 26, =27,./(7,,— 7). (7)

Due to the absence of the other two shear stresses the third
principle stress is o3=7y,. We define the maximum tensile
stress as op=max(0,03) and the peak compressive stress
oc=—min(0,,03) (large compression is associated with a
large negative number). The maximum shear stress is
given by

Tax = (Max(o;) — min(o;))/2. (8)

The principal strains u; are related to the corresponding prin-
cipal stresses o; by wu;=(1/2u)o;+A, where A=p/(2u
+4u%/3\) is a scalar value proportional to the effective pres-
sure in the stone p=—(7,_+ 7.+ 7'09)/3.27 This means that the
maximum and minimum strains are oriented in the same di-
rections as the corresponding maximum and minimum
stresses. Note that maximum strain associated with shear
waves does not depend on p, that is, it is proportional to
maximum shear stress.

To aid interpretation of the results we will employ the
fact that the divergence of the particle velocity [Eq. (5)] can
be used to identify the disturbances that travel at the longi-
tudinal sound speed. Similarly the curl of the particle veloc-
ity VXv can be used to identify disturbances that travel at
the shear (transverse) wave speed. In our case only the 6
component @ is nonzero:

w="—"-—"". (9)

Tracking the divergence and curl allows the propagation of
different types of waves within kidney stones to be followed.

For one set of simulations we were interested in solving
the elastic equations in Cartesian coordinates. We used Eqs.
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TABLE I. Physical properties of media used in the simulations. The prop-
erties p, N\, and p were the three independent properties that were input to
the code.

p (kg/m®) ¢, (m/s) cg(m/s) N\ (GPa) u (GPa) v
Water 1000 1500 . 2.25 0 0.500
PSM-9 1150 2493 1108 4.32 1.41 0.377
Solid E30 1700 3000 1500 7.65 3.83 0.333
Fluid F30 1700 3000 15.30 0 0.500

(3)—(5) with the substitution (r, #,z) — (x,y,z) and all terms
with 1/r drop from the equations. We assumed a state of
plane strain in which case the stress in the out-of-plane axis
(v) is given by 7,=—7,+7, /v where v=N/[2(A+p)] is
Poisson’s ratio. All the other field variables can be calculated
using the same formulas given above.

A. Material properties

The model requires three material properties for each
medium—the density and the two Lame coefficients. The
most common measurements made on natural and artificial
kidney stones are the density, longitudinal sound speed, and
shear wave speed which are related to the Lame coefficients
through

IN+2 /
= ILL, Cg= ﬂ (10)
Po Po

In Table I we show the material properties used in the simu-
lations here.

In the simulations presented here we considered stones
surrounded by water, which is a reasonable approximation of
both in vitro and in vivo environments in which stones are
destroyed. The material properties over the entire grid were
therefore first initialized to that of water. In this work we
considered stones of either cylindrical or spherical shape
with homogeneous internal structure. Once the location and
geometry of the stone were specified the indices on the grid
that fell within the stone volume were identified and then p,
N, and u for those indices set to the properties of the stone.

B. Source condition

The source condition was taken to be a classic lithot-
ripsy pulse28 modified with a hyperbolic tangent function to
provide a smooth shock front:

p(t) =0.5(1 + tanh(t/tgy)) exp (= t/t;) cos 2mft + 7/3),
(11)

where #;=1.1 us and f;=83.3 kHz control the pulse shape
and gy controls the rise time which was varied from
50 to 200 ns. The source was input in one of two ways. (1)
The source was modeled as a boundary condition in a
plane placed in the fluid at a distance of 5 mm from the
stone. The source pressure was coupled into the simula-
tions by setting the normal stresses in the source plane to
T, =T, = Tgy=—Ps, Where the negative sign accounts for the
fact that in solid mechanics a compressed material has
negative stress where as in fluid mechanics a compressed
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material is under positive pressure. The shear stress in the
fluid was zero. (2) The source was modeled as an initial
condition with the pressure distributed in space, obtained
by replacing ¢ in Eq. (11) by —z/c¢,, and the particle ve-
locity was determined based on the plane wave relation-
ship v=p/(pc,). The results were insensitive to the manner
in which the source was included.

Most of the simulations considered the incident pulse as
a homogeneous plane wave (that is, the amplitude of the
pulse did not vary with r). In addition a finite-sized focal
zone was modeled by applying a Gaussian shading as a func-
tion of radial distance to the amplitude of the pulse:

px(rvz,t) = exp(_ (r/rG)z)ps(09zvt) 5 (12)

where the effective diameter (half pressure) of the focal spot
is 1.66r;. No phase correction was applied as in the focal
region of a lithotripter the wavefronts are close to planar.

lll. RESULTS

In what follows the code is first used to identify the role
that shear waves play in determining the peak stresses and
strains in a finite length cylindrical stone and a spherical
stone. The code is then compared against published experi-
mental data. Finally, the code is used to determine how the
peak stress inside a stone is affected by (1) the size of the
shock wave focal spot, (2) the size of the stone, and (3) the
shock wave rise time.

A cylindrical stone was chosen to match artificial stones
reported in the literature® (diameter 6.5 mm, length 7.5 mm,
and material properties identified by E30 in Table I). Figure 1
includes snapshots of the divergence and the curl, which
show disturbances propagating at the longitudinal wave and
shear wave speed, respectively. Also shown are the maxi-
mum tensile stress and the maximum shear stresses. The top
row (2.8 us) corresponds to when the leading compressive
phase of the incident wave has almost reached the distal
surface of the stone. It is seen that there are almost no lon-
gitudinal perturbations after the shock wave passage (see di-
vergence images). However, at the edges of the stone a shear
wave is produced (see curl images) and in addition an in-
verted diffracted compression wave is produced—analogous
to the edge wave from finite amplitude aperture. Because of
the higher sound speed in the stone the compression wave
inside the stone runs ahead of the wave in the fluid and so to
ensure the boundary conditions with the fluid a shear wave is
generated in the stone at the boundary. Because the speed of
the longitudinal wave is higher than that of the shear wave
the effective source of shear waves at the stone boundary is
“supersonic” and results in a conical wavefront (similar to a
sonic boom). The longitudinal wave in the stone also
launches an acoustic wave in the fluid which also has a coni-
cal wavefront. The incident wave propagating in the fluid
outside of the stone induces a stress in the stone that also
produces a shear wave in the solid but because the speed in
the fluid is the same as the shear wave speed the wavefront is
curved. Finally the passage of the pressure wave in the fluid
over the outer surface of the stone generates a surface wave
in the stone at the stone-water interface—this is a coupling
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FIG. 1. (Color) Snapshots of the divergence, curl, max tensile stress, and maximum shear stress inside a cylindrical stone at 2.6, 3.2, 3.6, 3.8, and 4.8 us after
the SW is incident on the stone. The shock wave is incident from beneath the stone.

of shear and longitudinal waves and can be seen in both the
divergence and curl images. This wave is restricted to a small
region (<0.5 mm) near the interface.

When the wavefronts reflect at the distal surface
(3.2 us) a rich interaction between compressional and shear
waves occurs. The compression wavefront is not planar
when it is incident on the distal surface, as the presence of
the fluid has “slowed down” and attenuated the outer por-
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tions of the wavefront. Therefore it reflects primarily as a
compression wave but also partially as a shear wave. The
next wave incident on the rear surface is the conical shear
wave which is close to a plane wavefront and so when it
interacts with the distal surface it does reflect as shear wave.
However, the second shear wavefront does have curvature
and so although it reflects primarily as a shear wave it also
mode converts into a compression wave. The surface wave
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FIG. 2. (Color) Snap shots of the divergence, curl, max tensile stress, and maximum shear stress inside a spherical stone at 2.8, 3.8, 5.2, and 6.2 us.

reflects too; it generates a diffracted shear wave at the corner
and also launches a shear wave along the distal surface.

We now consider what happens to the maximum princi-
pal stresses (tensile stress) and maximum shear stress in the
material. The numerical results indicate that the maximum
tensile stress does not occur due to the interaction of the
reflected compressive wave with the incoming tensile phase
(3.2 us). Rather the peak tensile stress occurs due to an in-
teraction of the reflected longitudinal wave with a shear
wave generated from the outer surface of the stone (3.8 us).
This shear wave is generated due to the interaction of the
shock wave in the water passing the outside of the stone.
This interaction also results in the highest shear stress. We
also find that a large tensile stress is developed in a region
localized near the lateral surfaces of the stone (3.6 us) due to
an interaction of a shear wave reflected from the rear surface
of the stone and the wave traveling in the fluid outside the
stone.

Figure 2 shows analogous snapshots for a spherical
stone made of the same material. At 2.8 us the longitudinal
wave has passed the stone with a part of it having reflected
off the distal surface and focused about 1.5 mm from the rear
surface. At 3.8 us the shear wave generated by the internal
compression wave traveling inside the stone (where it inter-
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acts with the surface) focuses to a point about 2 mm from the
distal surface. At 5.2 us the shear wave generated by the
wave traveling outside the stone arrives at the distal end and
results in the largest tensile stress. At 6.2 us the surface
waves reach the distal point (aphelion) of the stone and gen-
erates both a large tensile stress and shear stress at the distal
surface.

Figure 3 shows snapshots of the peak tensile strain in the
cylindrical and spherical stones at the time 3.8 us—this time
was when the highest strain occurred in the simulations. By
comparing these images to the snapshots in Figs. 1 and 2 at
the same time it can be seen that the spatial distribution of
the peak tensile strain is almost identical to that of the peak
tensile stress. That is, the same phenomenon that produces
the highest tensile stress also resulted in the highest tensile
strain in the stone. We found that evolution and distribution
of the peak compressive strain and the peak shear strain were
also equivalent to the peak compressive stress and peak shear
stress, respectively.

Therefore, for both the spherical and cylindrical geom-
etry, it is the arrival of shear waves generated by the passage
of pressure waves in the fluid outside of the stone that results
in the highest stresses and strains in the stone. In what fol-
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FIG. 3. Snapshot of the peak tensile strain (%) at 3.8 us for the cylindrical
stone (upper) and spherical stone (lower). The distribution of the tensile
strain corresponds closely to the equivalent tensile stress shown in Figs. 1
and 2, respectively.

lows data are only presented for the principal stresses but the
results equally well apply to the principal strains.

The results from the simulations were compared to mea-
surements of the stress induced by a lithotripsy shock wave
in a photoelastic material (PSM-9).° In the photoelastic im-
ages the number of fringes is proportional to the difference in
the principal stresses in the material (which is equivalent to
the maximum shear stress). In the water the presence of the
pressure waves leads to a shadowgraph effect. We simulated
the experimental setup solving the stress equations on a two-
dimensional Cartesian grid assuming plain strain as dis-
cussed in Sec. II using the nominal material properties re-
ported in Ref. 9 (reproduced in Table I). In Fig. 4 we
compare the images of the measured fringes with the predic-
tion of the peak shear stress from the model described here
(rotated and scaled to match the published photoelastic im-
ages) and it can be seen that the features depicted in the
photoelastic measurements are captured by the elastic wave
model. For example, at 10 us (experiment time 186 us) the
head wave in the fluid, the high stresses near the equator of
the stone, and the circular distribution of stress near the distal
wall of the stone are in good agreement. The simulations do
appear to properly capture the stress field of this experiment.
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The observation that the interaction of the shock wave
with the outer surface of the stone leads to high tensile stress
implies that for lithotripters with small focal zones (less than
the diameter of a stone) there will not be strong generation of
shear waves and so the constructive interference of large
stresses may not occur. We considered the effect of the di-
ameter of the focal zone by introducing Gaussian shading to
the incident shock profile and keeping the pressure amplitude
on axis (r=0) the same. In Fig. 5 we show the dependence of
the peak principal stresses as a function of the diameter of
the focal zone of the shock wave. The peak stress was deter-
mined by detecting the maximum stress for each point in the
grid over the course of the simulation and then taking the
largest of the maximum stresses within the volume of the
stone.

All of the peak stresses decreased dramatically as the
focal zone diameter decreased. For the spherical stone, as the
focal diameter decreased from 11 to 4 mm all of the peak
stresses were reduced by at least 50%. For the cylindrical
stone the peak stresses had halved once the focal diameter
was 5 mm. The result was consistent for stones of properties
covering the range reported for natural stones: c¢; between
2500 and 4000 m/s and v between 0.33 and 0.37 (data not
shown).

We found that the generation of high stresses in the
stone was not strongly dependent on the stone size. Figure 6
shows the peak stresses as a function of the diameter of a
spherical stone for the case of an incident plane wave. There
was little change in the peak stress as a function of diameter.
We note that this is in disagreement with the results of the
pressure simulations (where the stone modeled as an effec-
tive liquid) which predicted that the peak negative pressure
(equivalent to tensile stress) in the stone should decrease
dramatically for stones less than 4 mm in diameter.”” The
explanation for this discrepancy is that the pressure code
does not capture shear waves in the stone, which play a
dominant role in determining the peak stress. In Fig. 7 the
spatial distribution of the peak tensile stress is shown for
spherical stone treated as either a fluid or an elastic solid.
There are both quantitative and qualitative differences in the
spatial distribution and the amplitude of the stress in the
stone. This is further evidence of the importance of shear
waves in determining the state of stress in the stone.

We finally considered the effect of shock rise time on the
stresses induced in the stone. The rise time was controlled
using the tanh(#/1gy) term in Eq. (11) and the waveform was
scaled to ensure the same peak pressure. The calculated peak
stresses in the cylindrical stone are shown in Fig. 8. We see
that as shock rise time increased all of the peak stresses
(tensile, compressive, and shear) in the stone decreased. This
occurs due to two effects: (1) The leading compressional
wave in the stone suffers more from diffraction due to the
longer rise time and so the peak pressure of the tensile wave
reflected off the back of the stone (“spall wave”) is about
31 MPa for a 50-ns rise time but only 12.9 MPa for a
200-ns rise time. (2) The spatial extent of the shear waves
generated by the passage of the wave outside the stone is
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FIG. 4. Comparison of the photoelastic images from PSM-9 (Fig. 9 from Ref. 9) with predictions of the maximum shear stress in the stone and the pressure
in the surrounding fluid. Experimental data are shown in the middle two rows. The top row shows snapshots from the simulation corresponding to the upper
row of experimental data. The bottom row shows snapshots from the simulation corresponding to the lower row of experimental data.

related to the spatial extent of the shock front. For a shock
front with a 50-ns rise time the resulting shear wave had a
length of 0.36 mm and for a 200-ns rise time the length was
0.66 mm. These lengths were determined from measure-
ments of the shear stress predicted by the FDTD simulations.
In the latter case the shear wave was so extended in space
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that near the surface it was difficult to isolate it from the
surface wave. The shorter length shear wave (associated with
short rise time) is focused more efficiently along the axis of
the stone and so results in stronger focusing and higher
stresses than the longer length shear wave (associated with
longer rise time). Therefore a shorter rise time shock wave
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FIG. 5. Peak stresses (tensile, compression, and shear) as a function of
diameter of the focal zone. Top: spherical stone 6.5 mm in diameter. Bot-
tom: cylindrical stone 6.5 mm in diameter and 7.5 mm long.

yields larger stresses because the shear waves generated at
the lateral side of the stone focus more strongly and the
“spall wave” is higher in amplitude.

IV. DISCUSSION AND CONCLUSIONS

We used a finite-difference time-domain solution of the
linear elasticity equations to determine the evolution of the
state of stress and strain inside kidney stones subject to a
lithotripter shock wave. The model accounted for all wave
interactions at fluid-elastic boundaries and the interaction of
the various types of waves that the solid structure can sup-
port. From the model it was possible to determine the peak
stresses and strains (compressive, tensile, and shear) in the
stone, which are often important indicators of material fail-
ure.

The key conclusion from the simulations is that the peak
stresses and strains in a kidney stone are critically dependent
on the presence of shear waves. In particular for the studies
here we found that the passage of the shock wave in the fluid
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FIG. 6. Peak stresses (tension, compression, and shear) inside a spherical
stone as a function of stone diameter. The peak stresses are relatively insen-
sitive to stone diameter.
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surrounding the stone generated shear waves or surface
waves at the “equatorial” surface of the stone which propa-
gated into the stone and interfered constructively with other
waves to generate the peak stresses. This conflicts with the
conclusions of Mihradi ef al."' that the classical spall or Hop-
kinson effect is responsible for the peak tensile stresses in the
stone. The probable explanation for this is that the waveform
they used did not have a short shock front and as we show in
Fig. 8 the peak tensile stress is reduced dramatically as the
rise time increases.

Therefore, to obtain efficient generation of high stress
inside a kidney stone it is desirable to have a high-amplitude
pressure wave passing on the outside of the stone. This con-
clusion is identical to that of squeezing that has been postu-
lated by Eisenmenger,3' however the rationale for our con-
clusion is different. In squeezing it is postulated that the
pressure wave in the surrounding fluid acts as a compressive
hoop stress which, based on a static model for stress, gener-
ates splitting of the material. In our model the shock wave in
the fluid launches shear waves and surface waves which con-
structively interfere to generate high stresses. The role of
shear waves generated at the outer surface of the stone has
also been identified using ray tracing,9 but, although ray trac-
ing can identify possible wave-wave interactions, it cannot
predict the amplitude of the stresses induced by the waves. In
this work we were able to show quantitatively that the role of
the shear wave generated by the external shock wave is dra-
matic. In particular, as the diameter of the focal spot of the
shock wave reduced from 11 to 4 mm, the peak stresses re-
duced by at least a factor of 2. This result was robust to
stones of different size and material properties. We note that
the stone geometries simulated here had cylindrical symme-
try which should maximize the constructive interference on
axis. This effect may be less pronounced for natural stones
with more complex geometries but we still anticipate that
shear wave effects will play an important role.

In addition, we found that peak stresses increased as the
rise time of the shock wave decreased. As rise time increased
from 50 to 200 ns the peak stresses decreased by approxi-
mately 30%. This was attributed to two processes: (1) the
spatial extent of the shear wave increased and so the shear
wave could not focus as efficiently on axis and (2) the com-
pressive wave in the stone was affected by diffraction and
the amplitude of the tensile wave reflected from the distal
surface was less. We speculate that this finding may explain
clinical reports that stones trapped in the ureter are difficult
to break.”> When the shock wave passes through the tissue
the absorption of the tissue will lengthen the shock rise time
to around 100 ns.* For stones in the collecting system of the
kidney there is a volume of urine surrounding the stone and
as the shock wave propagates through the urine it can “heal,”
recover a very short rise time, due to nonlinear distortion.
The “healing” distance can be calculated as the shock forma-
tion distance™ and for a lithotripter shock wave in water is
less than 5 mm. Therefore, even a small amount of fluid
around the stone will allow the shock rise time to recover.
For stones in the ureter there is little or no urine surrounding
the stone and therefore the shockwave cannot heal and will
impact the stone with a relatively long rise time. We ac-
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knowledge that the difficulty in breaking stones in the ureter
can also be explained by invoking cavitation.

We note that there are limitations of the model employed
here including the use of cylindrical symmetry, homogenous
stones, and linear elasticity. The use of cylindrical symmetry
can be relaxed at the cost of higher computational burden
and the use of an absorbing boundary condition, such as the
Beringer PML, will likely be required. Extension to inhomo-
geneous stones is relatively straightforward as it simply re-
quires altering the material properties of the stone but this
was beyond the scope of this study. The linear approximation
is justified within the stone as the propagation distances are
quite short. Nonlinear distortion is cumulative and is impor-
tant over the range of propagation through the tissue to the
stones (greater than 100 mm) but less important in the stone
(propagation distances less than 10 mm). Further, incorpora-
tion of nonlinear elasticity is confounded by a paucity of data
for the higher order elastic constants of kidney stones. Most
information on the properties of kidney stones results from
ultrasonic measurements which invoke linear elasticity
theory or axial loading which cannot determine all the higher
order constants. However, it is not unreasonable to assume
that most kidney stones are brittle in nature and therefore can
be reasonably approximated using linear elasticity up to the
point of failure. Also alternative failure criteria could be em-
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FIG. 8. Variation of peak stress inside a cylindrical stone as a function of the
shock rise time. All the peak stresses decreased as the rise time increased.
The second set of curves show calculations carried out on a 10-um grid
which show approximately a 10% increase in peak stresses for a rise time of
50 ns.
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FIG. 7. Comparison of the spatial dis-
tribution of the peak tensile stress in
spherical stone. Left stone modeled as
a fluid with sound speed 3000 m/s
(F30 from Table I). Right: stone mod-
eled as an elastic solid with longitudi-
nal wave speed 3000 m/s (E30 from
Table 1).

ployed, such as von Mises and Tresca conditions or fracture
toughness, rather than the maxiumum stresses and strains
calculated in this work. Finally, we note that viscoeleasticity
can be incorporated into the model—which could be of par-
ticular importance to the binder phase of kidney stones."”

In conclusion the results indicate that lithotripters with
large focal widths and short rise times will result in high
peak stresses inside the stone. If direct stress is responsible
for stone comminution, then a large-focal-zone short-rise-
time lithotripter should result in the best comminution of the
stone. We note that the gold standard in clinical lithotripsy is
the Dornier HM3 which has these characteristics. However,
the trend among current clinical lithotripters is towards small
focal zone lithotripters (diameters less than 5 mm) with high
pressure amplitudes but not necessarily short rise times. The
results from our simulations indicate that these characteris-
tics may not be advantageous.
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