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The irregular reflection of weak acoustic shock waves, known as the von Neumann reflection, has

been observed experimentally and numerically for spherically diverging waves generated by an

electric spark source. Two optical measurement methods are used: a Mach-Zehnder interferometer

for measuring pressure waveforms and a Schlieren system for visualizing shock fronts. Pressure

waveforms are reconstructed from the light phase difference measured by the interferometer using

the inverse Abel transform. In numerical simulations, the axisymmetric Euler equations are solved

using finite-difference time-domain methods and the spark source is modeled as an instantaneous

energy injection with a Gaussian shape. Waveforms and reflection patterns obtained from the simu-

lations are in good agreement with those measured by the interferometer and the Schlieren meth-

ods. The Mach stem formation is observed close to the surface for incident pressures within the

range of 800 to 4000 Pa. Similarly, as for strong shocks generated by blasts, it is found that for

spherical weak shocks the Mach stem length increases with distance following a parabolic law.

This study confirms the occurrence of irregular reflections at acoustic pressure levels and demon-

strates the benefits of the Mach-Zehnder interferometer method when microphone measurements

cannot be applied. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5084266

[JDM] Pages: 26–35

I. INTRODUCTION

Irregular reflection is a classical phenomenon of shock

wave physics first observed by Ernst Mach in 1875.1 In

Mach’s reports, reflection of shock waves is categorized in

two types: the two-shock configuration (regular reflection)

and the three-shock configuration (Mach reflection). In the

second case, the reflection pattern consists of three shocks:

the incident and reflected shocks, which intersect above the

surface, and the Mach stem, which connects the point of

intersection to the surface. In 1943, these experimental

observations were theoretically studied by von Neumann,

who formulated two- and three-shock theories.2

Nowadays, a whole field of research is devoted to the

study of irregular reflection of shock waves. The main fea-

ture of irregular reflection is the number of shocks in the

reflection pattern, which is not equal to two. Basically, irreg-

ular reflection can be broadly divided into two types: Mach

reflection and von Neumann reflection.3 The shock strength

can be characterized by the acoustic Mach number Ma,

defined as the ratio of the maximum particle velocity of the

acoustic wave to the speed of the ambient sound in the prop-

agation medium. The Mach reflection effect is typical for

strong shocks (Ma> 0.47) and has broad classification of

possible reflection configurations.3,4 The von Neumann

reflection concerns weak acoustic shocks and occurs in the

framework of the von Neumann paradox, whereas the three-

shock theory either has no physically acceptable solutions or

no solution at all.3,5 The von Neumann reflection differs

from the Mach reflection by the absence of slope discontinu-

ity between the reflected shock and the Mach stem.6 In the

following, the “Mach stem” refers to the single shock that

forms between the surface and the point where the incident

shock and the reflected shock start to separate. Note that

irregular reflections may exist for all shock pressure ranges

and can be observed in gases, liquids, and even in solids.7,8

In this paper, we focus on the reflection of weak acous-

tic shock waves in the framework of the von Neumann para-

dox. In Ref. 6 the different reflection types of weak plane

step-shock, saw-tooth wave, and N-wave have been studied

in detail using numerical simulations based on the 2D

Khokhlov-Zabolotskaya (KZ) equation.9 Three possible

types of nonlinear reflection were reported for weak acoustic

shocks: nonlinear regular reflection, characterized by the

presence of two shocks with different angles of incidence
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and of reflection, the von Neumann reflection, and the weak

von Neumann reflection with no reflected shock at all. The

type of reflection depends on the shock amplitude, the graz-

ing angle h of the plane incident wave, and the nonlinearity

coefficient b of the propagation medium. Mathematically,

this categorization is determined according to the critical

parameter a introduced first in Ref. 10 as a ¼ sin h=
ffiffiffiffiffiffiffiffiffiffiffi
2bMa

p
.

The transition from regular to irregular reflection types is

reported to occur when the value of the critical parameter

decreases to a ¼
ffiffiffi
2
p

for the step-shock and to about 0.8 for

the plane N-wave.6 These different reflection types have been

experimentally observed in water for plane ultrasound saw-

tooth waves.7 The same categorization of reflection types has

also been found for shear shock waves in soft elastic solids.8

Except those generated in shock tubes, shock waves are

generally not plane and have a more complicated morphol-

ogy, often being closer to cylindrical or spherical waves.

Examples would be focused ultrasound shock waves which

are widely used in ultrasound therapy, sonic booms produced

by aircraft, shock waves produced by supersonic projectiles,

or blasts. For the last case, the shock wave has a spherical

morphology and diverges spherically. However, to our

knowledge, the irregular reflection of spherical weak acous-

tic shock waves has not been studied to the same extent as

plane waves and strong shocks. The formation of the Mach

stem for spherically diverging shock waves produced by a

spark source was first observed numerically in Ref. 11. In our

previous works, the reflection of spherical N-waves generated

by sparks over flat rigid surfaces was studied numerically and

experimentally using the Schlieren technique.12,13 In this

paper, previous experimental and numerical observations are

improved and extended to longer propagation distances. In

addition, waveforms in irregular reflection patterns are mea-

sured for the first time in air at pressure levels up to 10 kPa.

Since microphones disturb the pressure field and do not

measure shocks accurately, optical methods must be used to

observe reflection patterns and wavefront geometry. In aero-

acoustics, optical methods are commonly used to visualize

the structure of shock waves.14 The basic principle of these

methods is that acoustic waves induce variations in air den-

sity and consequently variations in the optical refractive

index. As a result, the light beam deviates from its initial tra-

jectory and acquires an additional optical phase difference

when passing an acoustic wave.

In previous studies on shock wave reflections, optical

methods were mainly used only for visualizing reflection

patterns to determine the type of reflection.15–18 Irregular

reflection patterns and Mach stem formation can even be

observed in one hundred-years-old photographs of pressure

waves propagating in small room models.19 However, in

most cases, optical methods only provide a visualization of

the location of shocks and do not provide a quantitative mea-

sure of pressure waveforms. It is recalled that the response

of microphones does not allow for the detection of very rapid

pressure variations during the passage of shocks. Also note

that using microphones in a field with shocks will distort it

and create additional reflections. Recently, it has been shown

that in a homogeneous atmosphere it is possible to accurately

reconstruct pressure signals from an electric spark source

using optical techniques, in particular from Schlieren images

or from interferometer measurements.20,21 In addition, the tem-

poral resolution of the interferometric method is 0.4 ls, which

is 6 times higher than the resolution of a 1/8-in. condenser

microphone (2.5 ls). This ability to reconstruct the pressure

signature of acoustic shock waves using optical methods

allows the study of waveforms at points of reflection, where

usual microphone-based techniques cannot be applied.

The goal of this paper is to demonstrate that the interfer-

ometric method is capable of measuring waveforms in regu-

lar and irregular reflection patterns. The method is applied to

a laboratory experiment where short shock pulses of about

35 ls duration are generated by an electric spark source.

Validation of the interferometric method is performed by

comparison with the results of numerical simulations based

on the axisymmetric Euler equations and with reflection pat-

terns obtained using the Schlieren technique. According to

the categorization given in Ref. 6, three nonlinear reflection

types shown in Fig. 1(a) are observed. These types are the

regular reflection with unequal incident and reflected angles,

the von Neumann reflection, and the weak von Neuman

reflection. The interest here is focused on the von Neumann

reflection type in which the Mach stem formation occurs. In

this paper, we also pay attention to the evolution of the

Mach stem length in the reflection process.

The content of the paper is organized as described as fol-

lows. Two experimental configurations based on the interfer-

ometry and Schlieren techniques are described first (Secs. II A

and II B, correspondingly). Then, the numerical model is

FIG. 1. (Color online) (a) Scheme illustrating the transition of nonlinear reflection types for weak acoustic shocks—1: regular reflection, 2: von Neumann

reflection (irregular reflection), 3: weak von Neumann reflection (irregular reflection). (b), (c) Diagrams of experimental arrangements for measurements of

reflection patterns in air: Mach-Zehnder interferometry method (b) and Schlieren technique (c).
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presented (Sec. II C). In the results section, reconstructed

waveforms from interferometric measurements (Sec. III A)

and reflection patterns (Sec. III B) are analyzed and compared

with simulated ones. Finally, the evolution of the Mach stem

over the propagation distance is shown up to 70 cm from the

spark source (Sec. III C). The results are summarized in Sec. IV.

II. MATERIALS AND METHODS

A. Mach-Zehnder interferometry method

A Mach-Zehnder optical interferometer is used to mea-

sure the pressure signature of shock waves. The method has

been presented in detail in Ref. 21, here we only describe the

experimental setup and summarize the optical signal proc-

essing performed for reconstructing the pressure waveforms.

The experimental setup includes acoustical and optical

parts [Fig. 1(b)]. The sound source is an electrical spark

positioned at a height of zs¼ 21 mm above a plane rigid sur-

face made of PVC. Considering the ratio of air and PVC

impedances, the transmission is negligible and the surface is

considered as perfectly reflecting. The spark source is made

of two tungsten electrodes separated by a gap of 20 mm and

supplied by an electrical voltage of 15–20 kV. The spark

generates spherically divergent pressure waves that are simi-

lar to N-waves or blast waves.

The optical part is the Mach-Zehnder interferometer. As

shown in Fig. 1(b), the main components are: a laser source

(He-Ne laser, wavelength k¼ 632.8 nm, nominal power

10 mW); two beam splitters (one separates the laser beam

into two beams, and the second one collimates the two

beams back into one); two mirrors; and a photodiode sensi-

tive to the light intensity that results from the interference of

the two beams (NT53–372, Edmund Optics, surface

3.2 mm2, bandwidth 16 MHz).

The principle of the interferometer is to analyze the

phase difference between the probing beam A, which crosses

the acoustic wave, and the undisturbed reference beam B.

The resulting light intensity measured by the photodiode is

I ¼ IA þ IB þ 2
ffiffiffiffiffiffiffiffiffi
IAIB

p
cos u; (1)

where IA and IB are intensities of the probing and the refer-

ence beams, correspondingly, and u is the optical phase dif-

ference between the two beams. The interferometer is first

stabilized in the absence of the acoustic wave in such a way

that the phase between the probing beam and the reference

beam is u0 ¼ p=2.

Neglecting light refraction and taking into account the

radial symmetry of the wavefront, the optical phase differ-

ence uac induced by the acoustic wave can be written as the

direct Abel transform of the perturbation of the optical

refractive index n (Ref. 21):

uacðR; tÞ ¼
4p
k

ð1
R

n rs; tð Þrsdrsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

s � R2
p ; (2)

where R is the distance between the spark and the probing

beam. The refractive index n is related to the perturbation

of the air density q via the Gladstone–Dale constant G

(Ref. 22): nþ n0 ¼ 1þ Gðqþ q0Þ, where q0 is the ambient

density and n0 is the ambient refractive index. The experi-

mental conditions are such that the acoustic pressure p is

three orders of magnitude lower than the ambient atmo-

spheric pressure. The density perturbation can therefore be

considered as a linear function of the acoustic pressure p:

q ¼ p=c2
0, where c0 is the speed of sound. Thus, the refrac-

tive index is expressed as

n ¼ Gp=c2
0: (3)

The measurement protocol is described below for the

position of the probing beam above the rigid surface upon

which acoustic waves reflect. Before each series of measure-

ment, the system is calibrated. First, two output voltages uA

and uB, which are respectively proportional to the intensities

IA and IB, are measured separately in the absence of the

acoustic wave. This is done by stopping the reference beam

with a screen when measuring uA and in the same way by

stopping the probing beam when measuring uB. Then, the

bias voltage on the photodiode is shifted from zero to the

value ð�uA � uBÞ. Once the system is calibrated, the output

voltage of the photodiode u(t) is recorded when the probing

beam is crossed by the acoustic wave. The output voltage

signal u(t) is induced by the interference of the reference and

probing beams. It is expressed using the optical phase differ-

ence u ¼ u0 þ uac as follows:

uðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
uAuB

p
sin fuacðtÞg: (4)

By combining Eqs. (1)–(4) and applying the inverse

Abel transform to Eq. (2), one obtains the following relation

between the acoustic pressure p(t) and the output voltages

uA, uB, and u:

pðtÞ¼� c2
0k

2p2G

ð1
R

d

drs

arcsin

u ts�
R�rs

c0

� �

2
ffiffiffiffiffiffiffiffiffiffi
uAuB
p

0
B@

1
CA drsffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
s �R2

p ;

(5)

where ts is a constant time shift corresponding to the position

of the front shock in the signal u(t).
In experiments, 140 waveforms are recorded at each

point in order to allow for statistical analysis of data.

Because of small variations in the parameters of the gener-

ated waveforms (arrival time, peak positive pressure, and

peak negative pressure) and because these parameters are

not linearly related, it is counterintuitive to compute an aver-

age waveform from the 140 records. A better solution is

therefore to statistically analyze waveform parameters

(arrival time, peak of positive pressure, and negative peak)

and to choose, among the 140 waveforms, the one whose

parameters values are the closest to the average values com-

puted over all waveforms. The selected waveform is herein-

after referred to as the “average” waveform. Technically, the

average waveform is such that the sum of the relative error

for the three previously mentioned parameters is the small-

est. Since the method gives access to the waveform p(t) at a

single altitude above the reflecting surface, this procedure is
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repeated for a series of probing beam positions above the

surface in order to determine the pressure field.

The horizontal distance r between the spark source and

the probe laser beam is varied from 10 up to 37 cm. Thus,

for a given spark position (zs¼ 21 mm) the angle of inci-

dence is in the range from 3.2� to 11.9� and the correspond-

ing value of the acoustic Mach number is in the range from

5� 10�3 to 2.1� 10�2.

Considering the experimental conditions (relative

humidity: 49%, temperature: 292 K, atmospheric pressure

p0: 100737 Pa), the Gladstone-Dale constant at 632.8 nm is

G¼ 2.26� 10�4 m3/kg, the speed of sound is c0¼ 343 m/s,

the nonlinearity coefficient b is 1.2, and the ambient density

q0 is 1.22 kg/m3.

B. Schlieren visualization

Optical visualization of the spatial distribution of the

acoustic field is performed by a Z-type Schlieren system

[Fig. 1(c)].13,14 The acoustical part of the experimental setup

is the same as in the case of interferometric measurements.

The source is 21 mm above the surface and r is in the range

from 10 to 33 cm. The optical part includes two off-axis par-

abolic mirrors (15�, 108 mm diameter, 864 mm focal length),

a continuous halogen white light source at the focus of the

first mirror, and a knife edge at the focus of the second mir-

ror in front of a high-speed Phantom V12 CMOS camera.

Schlieren images are recorded with a resolution of

650� 500 pixels, a frame rate of 18 kHz and an exposure time

of 1 ls. The brightness on images corresponds to the modula-

tion of the light intensity and is proportional to the pressure

gradient.14 In order to improve the contrast of the Schlieren

images, an averaged background image is calculated for each

set of measurements and then is subtracted from each image

containing reflection patterns.

The spatial accuracy of the Schlieren measurement is

limited by both the resolution of the image and the exposure

time of the high-speed camera. The spatial resolution is

0.15 mm per pixel. The exposure time is 1 ls, which corre-

sponds to the propagation distance of 0.34 mm for the acous-

tic wave. These two uncertainties lead to a spatial error of

0.51 mm.

C. Numerical model

In the present work, the axisymmetric Euler equations

are solved using a high order finite-difference time-domain

(FDTD) algorithm developed in the field of computational

aeroacoustics. These equations can be written in cylindrical

coordinates (r, z) as

@~q
@t
þ @ ~qvrð Þ

@r
þ @ ~qvzð Þ

@z
þ ~qvr

r
¼ 0;

@ ~qvrð Þ
@t

þ @
~qv2

r þ ~p
� �
@r

þ @ ~qvrvzð Þ
@z

þ ~qv2
r

r
¼ 0;

@ ~qvzð Þ
@t

þ @ ~qvrvzð Þ
@r

þ @
~qv2

z þ ~p
� �

@z
þ ~qvrvz

r
¼ 0;

@ ~qEð Þ
@t
þ @ vr ~qEþ ~pf gð Þ

@r
þ @ vz ~qEþ ~pf gð Þ

@z
þ vr ~qEþ ~pf gÞ

r
¼ 0;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(6)

where ~p is the total pressure, ~q is the total density, and vr

and vz are velocity components in the r and z directions,

respectively [see Fig. 1(a)]. The total energy E is defined for

a perfect gas as

~qE ¼ ~p

c� 1
þ ~q

v2

2
; (7)

where c ¼ 1:4 is the specific heat ratio for diatomic air and

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

r þ v2
z

p
:

The time integration of Eqs. (6) is performed by an opti-

mized second-order low-storage Runge-Kutta algorithm.23

Spatial derivatives are evaluated by fourth order 11-point

stencil finite-difference schemes. At the interior points, the

centered schemes given in Ref. 23 are used. At the points

near the boundaries of the computational domain, non-

centered schemes24 are used except at the r¼ 0 boundary,

where the previously mentioned centered schemes are

applied to enforce the axisymmetric condition. Both spatial

and temporal methods are optimized in the Fourier space to

minimize numerical dispersion and dissipation of the acous-

tic signal during long-range propagation. In addition, at each

time step, a selective filter with an 11-point stencil is applied

to suppress grid-to-grid oscillations.24,25 The shock captur-

ing methodology proposed in Ref. 25 and improved for the

acoustic case in Ref. 26 is employed. It consists of a second

order filter with a magnitude significant only around the

shock and negligible everywhere else. The aim is to suppress

signal components of excessively high frequencies that are

generated by nonlinear effects. The strength of this filter and

the selective filter are both set to 0.1. The boundary condi-

tion given at the flat surface, z¼ 0, is zero normal velocity.

Finally, the radiation boundary conditions derived from

asymptotic solutions of the linearized Euler equations in

Ref. 27 are used to reduce reflections of the acoustic waves

at the outer boundaries.
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Simulations are carried out for a mesh of 1500� 1500

points with spatial steps of Dz ¼ 0:1 mm and Dr ¼ 0:05 mm.

The temporal step Dt is fixed at 0.45� 10�7 s correspond-

ing to a Courant-Friedrichs-Lewy number (CFL) around

0.3. A moving window is used to reduce computational

costs.

The spark source is modeled as an instantaneous energy

release with a Gaussian shape centered at the location (r¼ 0,

zs¼ 21 mm) in an atmosphere at rest where temperature,

pressure, and density are elsewhere constant. The initial con-

ditions for the numerical simulations are then given by

~p r; z; t ¼ 0ð Þ ¼ ps exp �ln 2ð Þ
r2 þ z� zsð Þ2

w2

� �
þ p0;

~v r; z; t ¼ 0ð Þ ¼ 0;

~q r; z; t ¼ 0ð Þ ¼ q0;

E r; z; t ¼ 0ð Þ ¼
~p r; zð Þ

q0 c� 1ð Þ :

8>>>>>>>>><
>>>>>>>>>:

(8)

The amplitude ps and the half-width w of the Gaussian

source have been first adjusted to fit the interferometric

data measured in free field at different distances from the

spark source, yielding ps¼ 0.75 MPa and w¼ 2.5 mm.

However, a better agreement between experimental and

numerical results in the presence of the rigid surface has

been obtained with a lower amplitude of the model source

than what was derived by fitting the data in free field.

Therefore, the numerical source amplitude is reduced to

ps¼ 0.46 MPa. The atmospheric pressure p0 and the ambi-

ent density q0 are set from the experimental data (Sec.

II A). As in experiments, the source is 21 mm above the sur-

face, but a larger distance range is considered as r is in the

range from 0 to 70 cm.

III. RESULTS

In this section, experimental and numerical methods are

applied to study the acoustic field resulting from the reflec-

tion of spark-generated waves from a plane rigid surface in

air. Waveforms reconstructed from interferometric data are

analyzed in detail and compared with those obtained by

numerical simulations. Reflection patterns measured at dif-

ferent distances from the spark by the two optical methods

are compared with those obtained in simulations. The evolu-

tion of the Mach stem with the propagation distance is stud-

ied up to 37 cm for the experiments and up to 70 cm for the

numerical simulations.

A. Pressure waveforms: Irregular reflection

The pressure waveforms obtained at different heights h
above the rigid surface at the distance r¼ 13 cm are shown

in Fig. 2. Solid lines correspond to the waveforms recon-

structed from interferometric measurements as described in

Sec. II A. Recall that these waveforms are so-called

“average” waveforms obtained from a series of 140 record-

ings for each measurement position. The dashed lines are

simulation results, which correspond to virtual microphone

outputs. Note that the temporal resolution of the Mach-

Zehnder interferometric method (0.4 ls) is much smaller

than that of a microphone or a weak shock pressure sensor.

Another great advantage of the Mach-Zehnder interferomet-

ric method is that it does not disturb the investigation area

unlike a membrane sensor. The size of the Mach stem that

will be discussed below is in the order of the diameter of a

microphone. Thus, only such optical method is capable of

accurately capturing the details of pressure waveforms close

to reflective boundary.

As seen in Fig. 2, at a height of 2 mm above the surface,

the waveform shape is between the one of a blast wave and

FIG. 2. (Color online) Pressure waveforms of spark-generated waves measured by the Mach-Zehnder interferometer (solid curves) and obtained from numeri-

cal simulations (dashed curves) at different heights h above the rigid surface at the distance r¼ 13 cm along the surface.
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an N-wave. The positive phase begins with a steep shock

front (named “front” or “leading” shock), followed by a

gradual pressure decrease to zero after the peak pressure.

Next there is a negative phase and finally the pressure returns

back to equilibrium with a less steep pressure rise than that

of the front shock. At 4 mm above the surface, the separation

of the direct and reflected shocks starts to be observed at the

front shock. Additional measurements with a finer analysis

resolution in height confirm that only one shock is formed

up to 3 mm height above the surface. Thus, the shock

observed at h¼ 2 mm is the Mach stem. The reflection pat-

tern for this case therefore corresponds to the irregular

reflection type, and the height of the Mach stem is 3 6 1 mm.

The uncertainty is mostly related to the mechanical setup

and signal analysis while the spatial resolution of the inter-

ferometer is in the order of only 0.2 mm. Note that the height

of the Mach stem observed for this source and receiver posi-

tion (r¼ 13 cm, zs¼ 21 mm) is in strong agreement with the

equation given in Ref. 13: hM ¼ zsð0:41=aÞ2; which was

obtained from a series of simulations and experiments with

the same spark source. With the parameter values of

a¼ 1.0194 (pmax¼ 2 kPa, Ma¼ 0.0143, h¼ 10.9�) and

zs¼ 0.021 m this equation gives a Mach stem height of

3.4 mm.

For waves measured farther from the surface, from

h¼ 4 to 32 mm, it can be noted that the reflected front shock

is delayed until the delay corresponds to the duration of the

wave, then it begins to merge with the pressure rise of the

negative part (see frame at h¼ 34 mm). Similar to what is

observed with strong shocks, the interaction of these two

shocks well above the surface can be nonlinear and also lead

to the formation of a single shock front (see Fig. 2, frame at

h¼ 42 mm). Interestingly, at h¼ 44 mm, the waveform

finally resembles two cycles of a saw-tooth wave.

The simulated waveforms (dashed lines in Fig. 2) are

consistent with the measurements with good accuracy, espe-

cially for the front shock. The negative part is slightly less

identical. Concerning the simulations, the Gaussian-

envelope injection of energy used to simulate the spark

source is a simplified model that accurately reproduces the

positive impulse. However, it does not take into account nei-

ther the presence of electrodes nor hot gases generated dur-

ing the discharge. Thus, the negative part of the initial

pressure waveform is simulated less accurately. Above the

surface, the initial difference in shape of the negative phase

between the measured and simulated waveforms propagates

and leads to a slight difference in the negative peak pressure

(Fig. 2, see h¼ 2 mm and h> 36 mm).

Concerning the experimental method, one source of

uncertainty is related to the value of distance R, which is

used in the signal processing [Eq. (5)]. Actually, for mea-

surement positions above the surface, the path lengths of the

incident and reflected waves are different. However, this dif-

ference remains less than 10% for the configurations consid-

ered in the present study, so when applying Eq. (5) the value

of R is chosen as the length of the direct path from the source

to the measuring probe. However, as seen in Fig. 2, the dif-

ference between the simulated and measured pressure wave-

forms remains small, and does not exceed 10% for most part

of the waveforms—which is comparable to the repeatability

error of the spark source.

The simplified model of the spark source as a Gaussian

energy injection combined with a nonlinear Euler equation

propagation code yields time waveforms very close to the

waveforms obtained from interferometric data and appropri-

ate signal processing. Therefore, the methods are validated

and applied to study the problem of irregular reflections.

B. Irregular reflection patterns

Interferometric and Schlieren techniques lead to differ-

ent representations of the reflection patterns. The Schlieren

technique provides photographs that show the location of the

shock fronts in a plane, while the interferometric method

provides information in the time domain (Figs. 3 and 4).

Each Schlieren photograph captured by the high-speed cam-

era is obtained with a single spark. In Schlieren images, the

wave propagates from left to right and the wavefront is

located on the right side of each image (Fig. 3). The contrast

depends on the density gradient: the whitest areas corre-

spond to the strongest pressure gradients. Thus, the different

steepness of the front shock and the negative phase pressure

rise leads to a different brightness. The reflection of the pres-

sure rise of the negative phase is also visible, but as it is less

steep, it is less bright. The reflection patterns obtained

numerically correspond to the simulation of a single spark.

The Schlieren pictures obtained numerically (Fig. 3, bottom)

represent the gradient of the density of air, but in both r and

z directions, while in the experiment, the gradient is only in

the r direction.

The Schlieren images in Fig. 3 show the reflection pat-

terns captured at different distances r along the surface.

They show the dynamic character of irregular reflection: the

Mach stem formed by the interaction of the direct and

reflected front shocks develops during its propagation along

the surface. Unlike the front shock, the reflection of the neg-

ative phase is always regular because of its smaller ampli-

tude and smoother pressure rise. As expected, Fig. 3 shows a

distinctive feature of nonlinear reflection: the angle of inci-

dence and the angle of reflection are not equal.3

The Schlieren technique immediately provides an image

of reflection patterns. However, the images do not show the

pressure field but rather the density gradient of the air in a

direction determined by the orientation of the knife edge.

The method described for the case of the free field in Ref. 20

to estimate the pressure from the image does not apply here

due to the geometry of the wavefront. In addition, the resolu-

tion in the temporal and spatial domains is limited by the set-

tings of the camera and the optics. Thus, it is interesting to

reconstruct the reflection patterns from interferometric data.

In the same way that the reflection patterns are plotted

from hydrophone measurements,7 the reflection patterns can

be plotted in the spatio-temporal domain from the wave-

forms obtained with the Mach-Zehnder interferometer. The

time domain reflection pattern is obtained from the average

waveforms measured at different heights above the surface

by converting the pressure amplitude into color and tracing

the resulting horizontal color bar at the corresponding height.
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This means that each reflection pattern in the left column of

Fig. 4 is obtained from a series of about three thousand

sparks: 140 waveforms at each values of height h ranging

from 2 up to 44 mm with a 2 mm step. Recalling that the

spark source produces pulses with good repeatability28 (var-

iations in peak pressure and duration of about 10%), a reflec-

tion pattern obtained from average waveforms should be

identical to that of a single spark. Unlike the reflection

scheme obtained in the spatial domain with the Schlieren

technique, the front shock appears on the left side of the

image since it corresponds to the shortest propagation time

(Fig. 4). Note that the color scale in the patterns obtained

from the interferometric measurements represents the pres-

sure, while the color scale of the Schlieren images represents

the density gradient of the air in one direction and does not

give information about pressure levels. The numerical inter-

ferometric spatio-temporal reflection patterns (Fig. 4, right

column) are obtained from the pressure-time waveforms in

Fig. 2 exactly as it was done for the experimental data.

For both optical methods, strong agreement is observed

between the measured and simulated reflection patterns

(Figs. 3 and 4). The front shock is reflected according to the

irregular type of reflection and the Mach stem is formed near

the surface. At the r¼ 13 cm position, the Mach stem is

short, only about 3 mm as previously mentioned, but grows

with the propagation distance and reaches the height of

13 mm at r¼ 33 cm (Fig. 4). The highest pressure levels are

located just behind the Mach stems near the surface. At

r¼ 13 cm, there is also an overpressure zone formed at the

top of the figure, where the front shock of the reflected wave

interacts with the rear shock of the incident wave (at approx-

imately t¼ 400 ls). As mentioned previously in Sec. III A,

nonlinear interaction of shocks can also occur in this area in

the same manner as the formation of the Mach stem on the

reflecting surface.

C. Evolution of the Mach stem

In the reflection process, the length of the Mach stem

changes with the propagation distance. In the context of blast

wave studies, empirical models have been developed to pre-

dict the variation of the Mach stem length generated by the

reflection of strong shock waves.29 These models describe a

parabolic29 or a cubic30 growth of the Mach stem height.

Recent studies reporting experiments of weak shock reflec-

tion but at a larger scale than the present experiment showed

a good agreement with a cubic law.18 Although in our previ-

ous study with the same source a linear trajectory was

reported,13 that study was done for a small range of propaga-

tion distances r from 7 up to 13 cm. In the present study, the

length of the Mach stem is analyzed from the three sets of

data and at greater distances: with the Schlieren technique in

the range from 10 up to 33 cm; with the interferometer in the

range from 10 up to 37 cm, and with simulations up to

70 cm. The results are plotted in Fig. 5. Both optical methods

and numerical simulations return approximately the same

length of the Mach stem. The extension of the study to greater

distances showed that the evolution of height of the Mach

stem actually follows a parabolic law as expected from Ref. 29

rather than a linear law as done in Ref. 13. With the source

parameters and positions considered in this study, a parabolic

approximation hM ¼ 0:104r2 þ 8:43 �10�3r � 4:905� 10�4

is valid from r¼ 0.1 m up to 0.7 m, the maximum propagation

distance where the simulations were carried out (inset of

Fig. 5). Note that the distance of 70 cm corresponds to

about 60 wavelengths.

FIG. 3. Geometry of the reflection patterns visualized by Z-type Schlieren system (top row) and simulated numerically as a gradient of the density field (bot-

tom row).
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The Mach stem starts to be formed at a distance

r¼ 10 cm. At this distance, the peak positive pressure of the

incident wave is 3 kPa. Estimating the value of the acoustic

Mach number using its definition Ma ¼ pmax=ðcp0Þ for the

plane wave gives Ma¼ 0.0214. The value of the critical

parameter is estimated from a ¼ sin h=
ffiffiffiffiffiffiffiffiffiffiffi
2bMa

p
, where the

angle h corresponds to the angle of incidence of the plane

wave. The transition from the regular type of reflection to

the irregular one occurs for the value of the critical parame-

ter a � 0:92: This value agrees with our previous results12,13

and also with corresponding transition for the plane N-wave

obtained in numerical simulations based on the 2D KZ

equation.6

Although the critical parameter a introduced in Refs. 6,

10 determines the reflection type only for plane waves, it

includes two main physical effects involved in the Mach

stem formation for waves of non-planar morphology. The

first effect is the influence of the incident angle h: for smaller

angles the incident and reflected shocks are closer to each

other and their nonlinear interaction that results in formation

of only one shock can occur at smaller shock amplitudes

than for larger incident angles. The second effect is the influ-

ence of the acoustic Mach number Ma which determines the

strength of nonlinear effects. Since the Mach stem formation

is a nonlinear phenomenon, it presents itself at smaller dis-

tances r for stronger shock waves. Both decrease of the inci-

dent angle and increase of the shock wave amplitude lead

eventually to the Mach stem formation. Thus, the evolution

of the Mach stem is strongly dependent on the evolution of h
and Ma.

For example, in the case of idealized plane step-shocks,

both h and Ma are constant along the propagation distance

and hence the length of the Mach stem does not change. In

the propagation of acoustic plane waves, like saw-tooth

waves or N-waves, the shock amplitude decay occurs due to

nonlinear absorption at the front shock while the incident

angle h remains constant. For this case the length of the

Mach stem gradually decreases to zero since the value of the

critical parameter a monotonically increases.

In the current paper, spherically diverging waves are

considered. Such spherical morphology leads to continuous

decrease of the incident angle h. The evolution of the Mach

stem is therefore determined by the competition between the

influence of the incident angle h and the decrease in ampli-

tude due to both attenuation at the shock front and spherical

divergence. To estimate the evolution of the Mach stem over

long distances r one can use an approximation for grazing

angles: sin h � tg h ¼ zs=r: Pressure decay for the current

spark source has been studied previously in Refs. 20, 21, 28

and is described by the equation p ¼ prefðr=rrefÞ�a; where

pref is the pressure amplitude at the propagation distance rref

and the coefficient a¼ 1.2. In previous papers concerning

spark sources,31–33 the coefficient a is reported to be in the

range of 1.2 to 1.4. Based on the knowledge of the pressure

decay and angle approximation at long distances r the criti-

cal parameter a can be estimated as a ¼ sin h=
ffiffiffiffiffiffiffiffiffiffiffi
2bMa

p

� ra=2�1zs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0=2bprefra

ref

q
; i.e., it is proportional to ra=2�1.

For the given range of the coefficient a this dependence

means that the critical parameter a decreases monotonically

FIG. 5. (Color online) Evolution of the length of the Mach stem over the

propagation distance r. Data are obtained from optical experiments using

the Mach-Zehnder interferometer and Schlieren system as well as from

numerical simulations. The parabolic approximation 0:104r2 þ 8:43� 10�3r
� 4:905� 10�4 given in meters was found to fit the trajectory.

FIG. 4. (Color online) Reflection patterns measured by the Mach-Zehnder

interferometer (left column) and obtained in numerical simulations based on

axisymmetric Euler equation (right column). Reflection patterns are shown

at different distances r along the surface.
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with the propagation distance r. From this analysis one can

conclude that the influence of the angle is more important

than the decrease of the shock amplitude over the propaga-

tion distance. Thus, the reflection type remains irregular at

long distances r up to a distance after which nonlinear effects

are negligible.

In simulations and experiments at the laboratory scale,

we indeed observe only the growth of the Mach stem until it

is difficult to be distinguished. At long range, the weak von

Neumann reflection is therefore obtained. We believe that

the Mach stem evolves in the same way as described for

strong shocks produced by explosions, for which its height

only increases with the distance before the Mach stem even-

tually disappears as the grazing angle tends to zero.

IV. CONCLUSIONS

In this work, optical techniques were applied to measure

the irregular reflection patterns of weak shock waves above

a rigid plane surface. The Schlieren optical method, which is

sensitive to the density gradient, provides the structure of the

reflection pattern in the spatial domain. Mach-Zehnder inter-

ferometry with associated signal processing makes possible

the reconstruction of pressure-time waveforms with spatial

and temporal resolution that would not be achievable when

using microphones. Having detailed knowledge of the char-

acteristics of the source, it was possible to calibrate a source

model based on an initial energy deposition. This source

model, combined with a solver based on axisymmetric Euler

equations, simulates the experiments with good precision.

Both waveforms and reflection patterns obtained from opti-

cal measurements are in a good agreement with numerical

simulations, providing a cross validation of both techniques

to investigate nonlinear phenomena involving weak shocks.

Thus, an instantaneous release of energy with a Gaussian

shape is a suitable model for simulating spherical acoustic

waves generated by a spark source, and a solver of the Euler

equations is validated as a predictive tool to study nonlinear

acoustic propagation and reflection phenomena. This

approach can be generalized and applied to study problems

with more complex geometries than a point source above a

reflecting plane rigid surface.

Thanks to the temporal and spatial resolution of the

Mach-Zehnder interferometer, it was possible to measure

accurately the Mach stem height. The dynamics of irregular

reflection were also observed over about 60 wavelengths,

and the growth of the Mach stem was found to correspond to

a parabolic law with the propagation distance along the sur-

face—in the same manner as reported for stronger shocks. In

the case of a spherical wave, it is expected that the height of

the Mach stem, once formed, will increase until the incident

wave and the reflected wave merge when the angle of inci-

dence decreases to zero.

The present study was based on using a source that was

well-known to the authors since it had been used in several

previous experimental works. This choice allowed for cross-

comparison of experimental and numerical data with already

analyzed databases. However, the results are not limited to

the current configuration but can be extended and

generalized. From a metrological point of view, this study

demonstrates that the spatial and temporal resolution of the

Mach-Zehnder interferometric technique makes it possible

to study phenomena at scales too small for microphones, in

particular when shock waves are involved. From a physics

point of view, these results show that irregular reflection

occurs once the pressure waves are strong enough to gener-

ate shock waves and once the grazing angle is sufficiently

low for a given peak pressure level. This phenomenon, well-

known in the case of more intense shocks, can be observed

for pressures on the order of 1 kPa, and must therefore be

considered in nonlinear acoustics. Furthermore, given that it

is impossible to observe this phenomenon using micro-

phones, it is generally not considered in acoustics.

Therefore, further experimental and numerical investigations

with high temporal and spatial resolution techniques must be

carried out to study nonlinear shock interactions at acoustic

levels (peak pressure level between 1 and 10 kPa), and in

cases with more complex geometries and surface character-

istics, including rough and curved surfaces.

Connecting the results obtained in the present laboratory

experiment with experiments at moderately larger scale18 or

with much strong blast waves is another perspective.
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