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Histotripsy: The Next Generation
of High-Intensity Focused Ultrasound
for Focal Prostate Cancer Therapy
Theodore J. Dubinsky, MD , Tanya D. Khokhlova, PhD, Vera Khokhlova, DSc, George R. Schade, MD

This article reviews the most current methods and technological aspects of high-
intensity focused ultrasound (HIFU), which is termed histotripsy. The rationale
for focal therapy for prostate carcinoma rather than prostatectomy, which is
being used extensively throughout Europe and Asia, is presented, and an argu-
ment for why HIFU is the modality of choice for primary therapy and recurrent
disease is offered. The article presents a review of the technical advances includ-
ing higher ultrasound beam energy than current thermal HIFU which allows for
more accurate tissue targeting, less collateral tissue damage, and faster treatment
times. Finally, the article presents a discussion about the advantage of ultrasound
guidance for histotripsy in preference to magnetic resonance imaging guidance
primarily based on cost, ease of application, and portability.
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A s male life expectancy has increased over the last 25 years, the
age at which prostate cancer is detected has decreased on
average by 10 years.1 Prostate carcinoma is the most

commonmalignant neoplasm in men.2,3 These trends have exposed
the limitations in the conventional treatment of prostate carcinoma,
including a considerable risk of recurrence and long-term
genitourinary morbidity,4,5 which have a substantial detrimental
impact on the quality of life.6–8 The development ofmultiparametric
magnetic resonance (MR) imaging9 and MR-ultrasound
(US) fusion-guided biopsies10–12 has substantially improved the
patient selection process.

Numerous publications have emerged this year reporting a
wide array of patient selection criteria, MR guidance alone, and
neural networks. Kim et al13 found that it was possible to substi-
tute fusion biopsy for systemic biopsy to find substantial prostate
carcinoma. Marra et al14 concluded that transperineal biopsy
instead of transrectal guidance would avoid infection. Haskins
et al15 found that registration between US and MR images was
improved by neural networking. However, Bonekamp et al16

recently found that up to 18% of substantial cancers were missed
by multiparametric MR mapping. Hwang et al17 found that fusion
biopsy improved the detection rate of carcinoma in patients with
prostate-specific antigen levels of less than 10 ng/mL. All of these
methods allow patients to choose focal therapy combined with
active surveillance rather than higher-risk invasive surgical or radia-
tion therapy procedures for low- to intermediate-risk carcinomas
that are contained within the prostate capsule.18–20
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It is now commonly believed that the index
lesion, defined as the largest lesion detected at imag-
ing, is the one that will be responsible for disease
progression.21–24 To avoid overtreatment of these
lesions25 and reduce costs,26 alternative curative ther-
apies that offer rates of cancer control equivalent or
better to radical prostatectomy and external radio-
therapy are being attempted with greater frequency,
particularly in Europe. Such alternative focal therapy

treatments offer the advantage of decreased morbidity
and therefore an improved quality of life.27,28 At least 7
different energy sources29 have been used for focal pros-
tate therapy, including cryoablation,30 brachytherapy,
high-intensity focused ultrasound (HIFU) ablation,31,32

focal laser ablation,33 irreversible electroporation, vascu-
lar-targeted photodynamic therapy,34 and stereotactic
ablative radiotherapy.35

Research into the use of HIFU has been ongo-
ing since the 1990s, and at this time, more than
65,000 patients with prostate cancer have been
treated with HIFU in Europe.1,36 Compared to the
other modalities, HIFU ablation offers advantages
over other therapies, especially the lack of substan-
tial injury to tissues outside the treatment zone.37 A
major advantage is that HIFU is completely nonin-
vasive and does not require the insertion of probes
into the target tissue.38 High-intensity focused US
procedures are performed transperineally or via a
transrectal approach (Figure 1). Transurethral HIFU
has been described, but this procedure is not per-
formed routinely (Figure 2). The literature suggests
that HIFU is superior to other methods because
there is less posttreatment morbidity after HIFU in
comparison to the other techniques.39,40

Figure 2. Diagram of a transurethral US-guided HIFU system.

Figure 1. Diagram of a transrectal US-guided HIFU system.
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Thermal Versus Mechanical HIFU

High-intensity focused US can produce thermal and
mechanical effects on tissues, depending on the treat-
ment parameters.41 Thermal HIFU ablation is the only
method implemented clinically currently. Mechanical
ablation is still being developed and is experimental at
this time, although it shows great promise. Thermal
ablation by HIFU works by absorption of continuous
US waves. In current clinical applications (HIFU), tis-
sue is destroyed by heating a small focal area between
60�C and 80�C for 1 second or longer, which results in
coagulative necrosis at that spot. All current clinical
HIFU devices for prostate ablation (Focal One
[EDAP, Lyon, France], Sonablate [Sonacare, Char-
lotte, NC], and TULSA-Pro [Profound Medical,
Toronto, Ontario, Canada]) rely on these thermal
effects to achieve ablation. Formation of vapor and cav-
itation bubbles in thermally denatured tissue typically
accompanies such treatments and represents a useful,
although indirect, way of visualizing the treated area
on US imaging. All current clinical HIFU devices
for prostate thermal ablation are miniaturized to be
endoluminal, and the treatment is administered either
transrectally (Focal One and Sonablate) or trans-
urethrally (TULSA-Pro), under US and MR guidance,
correspondingly. These devices are illustrated in
Figure 1.

Mechanical ablation of tissue is a more recently
discovered regimen of HIFU and is termed histo-
tripsy.42 Histotripsy uses short (microseconds- to
milliseconds-long), infrequent, high-amplitude bursts
of HIFU waves that induce bubble activity at the
HIFU focus to fractionate tissue down to subcellular
components.42 The intensity of each pulse in these
sequences is higher than what is used in thermal
HIFU ablation, whereas the time-averaged intensity is
lower because the bursts are delivered at a low pulse
repetition frequency.43 The bubble activity may be
initiated in 1 of 2 ways: by vapor bubble formation or
by cavitation cloud formation at the focus, with the
corresponding techniques termed boiling histotripsy
and shock wave scattering histotripsy. The major dif-
ference in the techniques is the intensity and duration
of HIFU bursts. In boiling histotripsy, the pulses are
emitted for a duration of 1 to 10 milliseconds every
0.1 to 1 seconds (1.0–10 Hz), whereas in cavitation
cloud histotripsy, the pulses are 3 to 20 microseconds

in duration, higher in amplitude, and repeated every
1 to 10 milliseconds (100–1000 Hz; Figure 3).44,45

Both techniques rely on nonlinear distortion of
the sound waves and the subsequent formation of US
shock waves at the HIFU focus to destroy tissue. Spe-
cifically, in boiling histotripsy, every millisecond-long
pulse of HIFU superheats the tissue at the focal point,
producing a millimeter-sized vapor bubble cloud in
several milliseconds.46 The interaction of the vapor
cavity with the remainder of the HIFU pulse fraction-
ates the tissue.47 In mechanical histotripsy, a dense cav-
itation bubble cloud is formed during each HIFU
pulse, and its collapse fractionates tissue at the focus.36

Although the physical mechanisms of achieving bubble
activity are different,48 the outcome of both histotripsy
techniques is the same: tissue fractionation.41

One of the key advantages of histotripsy tech-
niques over thermal ablation that has been demon-
strated in a number of studies is tissue selectivity, with
cells being more sensitive to histotripsy damage than
extracellular matrix and connective tissue structures
(eg, blood vessels and ducts).49 Furthermore, because
it is being nonthermal in nature, histotripsy treatment
is not affected by heat sink effects50 and perfusion, a
substantial problem for thermal ablation methods.51

Currently, mechanical HIFU technology, as applied
to prostate ablation, is predominately at the phase of
preclinical animal studies.52–55 In the very first study in
humans, prostate hypertrophy was treated by the cavita-
tion histotripsy technique in 25 patients with an extra-
corporeal HIFU device (Vortx Rx [Histosonics, Inc,
Ann Arbor, MI]).56 A transient improvement in symp-
toms was observed in that study, and no intraoperative

Figure 3. Schematic showing the pulse periodic timing for cavita-
tion and boiling histotripsy (reprinted with permission from Acous-
tics Today; https://acousticstoday.org/issues/2012AT/Oct2012/
index.html#?page=28).
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complications and only 1 case of urinary retention
occurred.56 The treatment effect was less dramatic than
expected because of a limited acoustic window and chal-
lenges in targeting the prostate by the device in the
extracorporeal setting.

High-Intensity Focused US as a Primary
Treatment Option

At this point in time, no preference has been found in
the United States regarding the safety and effectiveness
of primary whole- or partial-gland HIFU or patient pref-
erences related to the safety and effectiveness of out-
comes from HIFU therapy.57,58 Appropriate patient
selection is essential for successful focal therapy.42,45,47,59

Patients with localized prostate carcinoma60,61 with low-
to intermediate-risk disease,62 particularly those with
lower pre-HIFU prostate-specific antigen levels, and
favorable Gleason scores seem to have better out-
comes.63 Noninvasive treatment options with HIFU vary
from focal ablation to hemiablation to entire prostate
ablation. High-intensity focused US has been investi-
gated in each of these roles in numerous studies outside
the United States. Capogrosso et al64 reported that in
patients older than 70 years, whole-gland HIFU was a
feasible alternative for treatment in elderly men with
local intermediate-risk prostate carcinoma who were
unfit for surgery. In a direct comparison of partial-gland
ablation versus radical prostatectomy with robot assis-
tance in low- to intermediate-risk prostate carcinoma,
Garcia-Barreras et al65 concluded that when confined to
the prostate, partial-gland ablation offered good onco-
logic control with fewer adverse effects compared to radi-
cal prostatectomy. In a study of 55 men undergoing
hemiablation, Albisinni et al53 found that HIFU was
associated with faster recovery of continence, and the
risk of erectile dysfunction was significantly lower. van
Velthoven et al52 had similar results in 50 patients. In a
study of 67 patients, Feijoo et al66 concluded HIFU
hemiablation of unilateral organ-confined prostate can-
cer was satisfactory for cancer control. In a meta-analysis
of 167 articles comprising 366 patients, Albisinni et al67

found that salvage treatment-free survival, reported
potency, and continence were all higher with HIFU
hemiablation therapy then prostatectomy.

Long-term data are still not available for evalua-
tion of HIFU therapy.68,69 However, in the largest

study to date with 569 patients and 5-year follow-up,
Dickinson et al37 indicated that HIFU was a reason-
able choice for the treatment of nonmetastatic pros-
tate cancer. Heterogeneity in patient selection and
insufficient evidence are the major limitations at this
time for concluding that focal treatment therapy with
HIFU is as effective as more-traditional invasive ther-
apy, although as more studies emerge, it is clear that
focal HIFU therapy in the appropriate circumstances
is very promising.70,71

Comparison With Other Focal Therapies

Multiple direct comparisons have also been performed
between HIFU and other focal therapy modalities for
the primary treatment of prostate cancer. Donis Canet
et al72 found that in reviewing 14 studies from the litera-
ture with a total of 350 patients treated with cryotherapy
and 1107 treated with HIFU, both provided comparable
functional results, although the oncologic results were
poorer with cryotherapy. In their review of the literature,
Ganzer et al35 concluded that posterior prostate lesions
were most amenable to focal therapy using HIFU; cryo-
therapy was better for anterior tumors; and apical
lesions were best treated with focal brachytherapy. The
major competitor to the use of HIFU is active surveil-
lance: in other words, watching and waiting rather than
treating.73,74 Barayan et al75 found that active surveil-
lance of unfavorable disease features in patients with
localized low- to intermediate-risk prostate carcinoma
would prevent unnecessary treatment, including HIFU
hemiablation. Although no definitive study exists to
prove which is the best therapy, HIFU is the only one
that is truly noninvasive, not requiring the placement of
probes into the patient.

Combined Therapy

Fewer articles have investigated the combined use of
varying modalities for local prostate cancer. Baumunk
and Schostak76 found that primary whole-gland HIFU
resulted in similar oncologic efficacy and side effects
compared to radical prostatectomy combined with radio-
therapy or brachytherapy. Bakarev et al77 reported that
in 32 patients, neoadjuvant hormone therapy enhanced
the efficacy of HIFU for the treatment of prostate
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carcinoma. Chiang compared radical prostatectomy,
high-dose brachytherapy, cryoablation, and HIFU for
localized prostate carcinoma and concluded that whereas
oncologic outcomes were similar, the HIFU group had
better urinary function, better sexual function, and
an improved quality of life. High-intensity focused
US–induced hyperthermia has also been investigated in
preclinical studies to trigger the release of chemothera-
peutic drugs from temperature-sensitive liposomes.78–80

In general, various forms of focal therapy are all very sim-
ilar in efficacy. The differences between them seem to be
related more to morbidity and invasiveness.

High-Intensity Focused US in the
Treatment of Recurrence

Patients with biochemical evidence of recurrence, which
can occur in up to one-third of men treated primarily with
surgery or radiation therapy,81–83 are problematic, and
treatment strategies in such patients can include andro-
gen deprivation therapy (although this is associated with
substantial side effects), radiotherapy, brachytherapy,84

proton therapy,85 and HIFU.86,87 All salvage treatments
are more toxic to the patient than the primary treat-
ment.88 Numerous strategies have been used to treat
recurrent disease. Chapelon et al89 reported that salvage
HIFU therapy after field external beam radiation therapy
was increasing, and outcomes were similar to those
achieved at surgery, with the advantage of fewer adverse
effects,90 including urinary tract infections, bladder neck
strictures, rectourethral fistulas, and osteitis pubis.82 Jones
et al91 had similar results using whole-gland HIFU. In a
study of 49 patients using a posttreatment prostate-
specific antigen nadir of 0.2 ng/mL as a cutoff value to
define biochemical recurrence, Fomkin et al92 rec-
ommended that external beam radiation therapy could be
used for salvage therapy after HIFU.

Crouzet et al93 reported that for locally recurrent
prostate carcinoma after field external beam radiation
therapy, salvage HIFU should be initiated early because
of high rates of cancer-specific and metastasis-free sur-
vival rates. Golbari and Katz94 concluded that there did
not appear to be any significant difference in overall sur-
vival for more-invasive salvage radical prostatectomy
compared to minimally invasive treatment of recurrent
carcinoma. A consensus on a trial design to study focal
salvage therapy has been published,95 but to date, no

authoritative recommendations can be made regarding
the treatment of focal recurrent disease because of the
absence of randomized data and protocols.96 Regardless,
HIFU has to be considered as a leading option for the
treatment of recurrent disease.

Magnetic Resonance Versus US Guidance
for HIFU

Magnetic resonance imaging and thermometry are used
to guide most forms of HIFU used in clinical practice
currently because temperature the elevation to date can-
not be visualized with US.74,97,98 Magnetic resonance
thermometry does image the treatment area much bet-
ter for this type of HIFU. Magnetic resonance guid-
ance99,100 has advantages over US, particularly superior
depiction of anatomic detail.101 Magnetic resonance
thermometry102 depicts the changes that occur within
hydrogen atoms when they are subjected to heat. These
changes can be recorded with phase shift imaging,103

chemical shift imaging,104 diffusion,105 spectroscopy,106

or even contrast agents added to the tissues.107

Ultrasound guidance has been used for a longer
time thanMR guidance. In a study involving 30 patients,
Burtnyk et al108 found that with MR thermometry, a
high degree of spatial resolution control to within
1.3 mm could be achieved. No intraoperative complica-
tions occurred in this study, and there were no cases of
urinary incontinence, fistulas, or rectal injury. Complica-
tions from transurethral MR-guided HIFU did include
hematuria, urinary tract infections, epididymitis, and
acute urinary retention. Normal micturation function
returned in all cases by 6 months.108 Bonekamp et al109

performed a review in 30 patients undergoing MR-
guided US ablation of the prostate and found that
immediate posttreatment contrast MR imaging under-
represented the entire thermal ablation volume com-
pared to that seen 12 months after the procedure.
Burtnyk et al108 found 0.9-mm accuracy and precision at
necropsy in 8 patients undergoing transurethral prostate
ablation using MR thermographic guidance. Chin
et al110 concluded that MR-guided transurethral abla-
tion for localized prostate carcinoma was feasible, safe,
and technically precise for whole-gland ablation. Ram-
say et al111 found that MR-guided HIFU could treat up
to a 70-cm3 volume of tissue. Robotic systems have been
developed for MR-guided HIFU treatment.112
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The major advantages of real-time US guid-
ance113 over MR is that the HIFU units can be
smaller, portable, and less expensive and can allow
for treatment of larger and multiple tumors, since the
patient does not have to hold still as much as with
MR guidance, and greater tissue selectivity.50,114

Operator dependence and the absence of clear feed-
back on the completeness of ablation beyond
echogenicity changes that may or may not be accu-
rate are limitations of US-guided HIFU. Sophisti-
cated mathematical techniques115,116 as well as
advanced US technology such as that reported by
Lyka et al,117 in which prostate motion registration
optimizes targeting, have been used for the perfor-
mance of fused and transrectal US examinations at
biopsies and could be applied to HIFU monitoring as
well. Algorithms have been produced that are clini-
cally available, such as the Tissue Change Monitoring
system on the Sonoblate system, which allows real-
time US imaging to monitor HIFU treatment.118,119

It has been noted that during treatment of prostate
cancer with HIFU, the resulting edema causes the
prostate to enlarge, which changes the targeting of
the treatment zone. Endorectal compression of the
prostate under US guidance appears to improve
whole-gland and lesion-targeted therapy.120 Auto-
mated segmentation has been developed for US-
guided HIFU treatments.121

As opposed to thermal HIFU, the bubble activity
during histotripsy can be seen with B-mode US as a
hyperechoic region, obviating the need for MR guid-
ance.50 Furthermore, the loss of the tissue structure in
the liquefied region can also be observed with B-mode
US as a hypoechoic region and therefore facilitates
feedback on ablation completeness. Visualization can
be enhanced with color Doppler imaging to produce
twinkle artifacts.122,123 Combined with the preferential
tissue selectivity mentioned earlier, histotripsy ablation
of the prostate appears very promising. An important
consideration of such treatment is the limited acoustic
window, if applied extracorporeally, and the need to
miniaturize the HIFU transducer for transrectal appli-
cations. Whether it is possible to attain the HIFU
intensity needed for histotripsy with such a miniature
transducer has been an open question until recently.
Recent developments in transducer design indicate
that such a system can be designed, and these studies
are currently under way.124

Conclusions

Improvements in technology, particularly histotripsy,
allow HIFU to be monitored under US guidance,
which would have substantial advantages over MR
guidance, particularly related to cost and portability.
High-intensity focused US and histotripsy have been
shown to be beneficial for the treatment of focal pros-
tate lesions and to have fewer side effects and compli-
cations, and overall, the patients have a better quality
of life then patients undergoing more-invasive treat-
ments such as radical prostatectomy. However, no
randomized clinical studies in humans have been per-
formed as of this time. Further refinements in power
production, beam steering, and acoustic beam resolu-
tion will continue to make US-guided HIFU more
feasible, safe, and technically precise for both primary
and salvage therapy. Much of the published literature
concludes that further research including prospective
randomized trials would be necessary to investigate
potential advantages of focal therapy including HIFU
for the treatment of prostate carcinoma,125–129 and
longer-term data are needed to evaluate the oncologic
efficacy and functional outcomes.130 However, it is
clear that the future of prostate therapy will continue
to be directed toward focal therapy, and at this time,
HIFU appears to be the most promising modality on
the horizon.
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