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Accurate measurement of high-amplitude, broadband shock pulses in air is an important part

of laboratory-scale experiments in atmospheric acoustics. Although various methods have been

developed, specific drawbacks still exist and need to be addressed. Here, a schlieren optical method

was used to reconstruct the pressure signatures of nonlinear spherically diverging short acoustic

pulses generated using an electric spark source (2.5 kPa, 33 ls at 10 cm from the source) in

homogeneous air. A high-speed camera was used to capture light rays deflected by refractive index

inhomogeneities, caused by the acoustic wave. Pressure waveforms were reconstructed from the

light intensity patterns in the recorded images using an Abel-type inversion method. Absolute

pressure levels were determined by analyzing at different propagation distances the duration of

the compression phase of pulses, which changed due to nonlinear propagation effects. Numerical

modeling base on the generalized Burgers equation was used to evaluate the smearing of the

waveform caused by finite exposure time of the high-speed camera and corresponding limitations

in resolution of the schlieren technique. The proposed method allows the study of the evolution of

spark-generated shock waves in air starting from the very short distances from the spark, 30 mm, up

to 600 mm. VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4921026]

[OU] Pages: 3244–3252

I. INTRODUCTION

High-amplitude (>1 kPa) and short duration (tens of

microseconds) acoustic pulses are widely used in down-

scaled laboratory experiments to simulate sonic boom propa-

gation through atmospheric inhomogeneities,1–7 problems of

architectural acoustics,8 urban acoustics,9 and outdoor sound

propagation.10 The most common ways to generate such

pulses in air are to use various spark sources: electrical

sparks,11–13 focused laser beams,14 or explosive-type materi-

als.15 Spark-generated pulses are commonly called

“N-waves” because of their shape.16 However, the actual

waveform of such pulses, particularly their rarefaction phase,

can be very different from the symmetric shape of an N-

wave. In the case of shock waves produced by instantaneous

energy release, the peak negative pressure is much lower

than peak positive pressure and the duration of rarefaction

phase is longer than the duration of compression phase.17,18

Nevertheless, the N-wave model is widespread to describe

pressure signatures of shock pulses during their propagation

in air.11,12,19 Even if the waveform is not restricted to have

the N-wave shape in simulations of pulse propagation

through homogeneous12 and turbulent media,20 the N-wave

assumption is still often used to set a boundary condition to

the model. This simplified assumption may introduce errors,

for example, in the simulation of pulse propagation through

a caustic, in which the resulting waveform resembles the

derivative of an initial wave.1,20 Accurate measurement of

high-amplitude and short-duration acoustic waveforms at

distances close to the source is therefore critical to accu-

rately determine the boundary condition for the modeling.

Propagation of spark-generated acoustic pulses in homo-

geneous air has been studied experimentally by several

teams, particularly by Wright and co-workers11,21,22 and

Yuldashev and co-workers.12,19 Although several methods

have been proposed to characterize acoustic fields produced

by sparks, certain measurement limitations still exist.

The most common approach is to measure pressure

signatures using acoustic microphones. However, the band-

width of commercially available high-frequency condenser

microphones does not typically exceed 150 kHz at �3 dB

level, while the spectrum of shock pulses extends up to

1 MHz; in addition, calibration of microphones at high fre-

quencies is often not accurate. A microphone response and

the resulting waveform distortions are also dependent on the

microphone mounting. This results in significant distortions

of the measured waveforms and steep shock fronts.12,19 In

most cases there is no possibility to theoretically estimate

these distortions. Moreover, waveform measurements are

impossible close to a spark source because maximum
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pressure is out of a condenser microphone linear range. In

addition, the pressure level is so high that it can damage

microphones. Note also that acoustic measurements could be

performed using piezoelectric dynamic pressure sensors,

which are appropriate in the case of very high amplitude

pressure waves (>100 kPa), but their main disadvantage is

low sensitivity (14.5 mV/kPa) and resolution (for example,

3.4 Pa for the model 113B28 PCB Piezotronics).

An alternative method to measure shock pulses pro-

duced by sparks is to use optical methods instead of micro-

phones. The basic principle of these methods is that the

acoustic wave introduces variations of air density and corre-

sponding variations of optical refractive index; as a result,

the light beam deflects from its initial direction when passing

through an acoustic signal. Among optical techniques, shad-

owgraphy, schlieren, and interferometry methods can be

used to measure shock waves. In a previous work, an optical

focused shadowgraphy technique12 was used to visualize the

front shock of spark-generated waves. An estimation of the

front shock width and rise time was then obtained, thanks to

numerical simulation of optical beam propagation through

the shock. A good agreement with the measurements was

shown.12 Although the shadowgraphy technique provided a

good temporal resolution of the high amplitude front shock

of the pulse, it was not sufficiently sensitive to restore

the whole waveform or even the rear shock of the pulse. The

reason is that shadowgraphy method is sensitive to the

second derivative of pressure, i.e., it captures sharp changes

of pressure at the front shock, while smooth variations of

pressure in the pulse are missed. Holographic interferometry

has been used to visualize explosion-type waves, but the

resolution and the accuracy of the restored waveforms were

significantly lower than in the microphone measurements.23

Laser interferometry can also be used to measure high-

amplitude and short duration acoustic pulses in air, however,

to our knowledge, no quantitative analysis has been per-

formed to this day for shock waves.24

Optical schlieren methods are commonly used to ana-

lyze acoustic field structure qualitatively.25,26 The goal of

this paper is to demonstrate that the schlieren method is

capable to reconstruct absolute pressure signatures of spark-

generated acoustic pulses in homogenous air. A high-speed

camera was used to capture light rays deflected by refractive

index inhomogeneities caused by an acoustic wave. The

reconstruction algorithm was based on the fact that the distri-

bution of light intensity in the measured schlieren images is

associated with the acoustic wave by the Abel-type trans-

form. This transform contains an unknown normalization

constant which does not permit us to determine absolute

pressure values, only the shape of an acoustic signal can be

reconstructed. Absolute pressure levels were obtained by

analyzing lengthening of the compression phase of the pulse

with distance caused by amplitude-dependent nonlinear

propagation effects. To determine the duration of the com-

pression phase, the propagation of spherical diverging

N-wave was simulated using the generalized Burgers equa-

tion and the effect of smearing the waveform during the

exposure time of the high-speed camera was evaluated.

Further content of the paper is organized as follows. The

experimental system is described first, followed by a proce-

dure of reconstruction of the acoustic pressure waveforms

from schlieren images (Sec. II). The measured dimensionless

waveforms are analyzed at different distances starting from

30 mm and up to 600 mm from the spark source in Sec. III A.

Simulation results for distortion of the measured waveforms

caused by a finite exposure time of the camera are presented

and discussed in Sec. III B. The elongation of the compres-

sion phase duration as a function of propagation distance is

then analyzed to obtain absolute pressure values for the

measured pulses (Sec. III C). Advantages and limitations of

the optical schlieren method combined with the proposed

reconstruction procedure and absolute pressure calibration

are compared with measurements performed using acoustic

microphones and optical focused shadowgraphy technique

(Sec. IV).

II. MATERIALS AND METHODS

A. Experimental arrangement for optical
measurements

A top view of the experimental setup designed for

optical measurements of spark-generated acoustic waves in

homogeneous air is shown in Fig. 1. A spark source with a

21 mm gap between tungsten electrodes and with an applied

voltage of 15 kV produced high amplitude pressure pulses

that readily turned to a shock waveform when propagating

from the spark (Fig. 1).6 The repetition rate of the pulses was

1 Hz; the wavefront was assumed to have a spherical geome-

try. Acoustic pulses introduced variations of air density and,

as a result, variations of the optical refractive index which

are schematically shown in Fig. 1 by gradients of the gray

color. These variations were visualized using the schlieren

method. The schlieren system was composed of a quartz

tungsten halogen (QTH) continuous white light source

mounted in the geometrical focus of a spherical mirror with

1 m radius of curvature, a beam splitter, an optical knife (a

razor edge), and a high-speed Phantom V12 CMOS camera.

Light beam was transmitted through the beam splitter and

through the test zone of the acoustic pulse propagation.

FIG. 1. (Color online) Illustration of the experimental setup, the view is

from the top along the z axis. Acoustic pulses are produced by a 15 kV spark

source located at z¼ 0. Corresponding variations of the optical refractive

index are schematically shown by gradients of the gray color. A schlieren

optical system used to visualize the pressure wave consists of QTH continu-

ous light source, a beam splitter, a spherical mirror, an optical knife, and a

high-speed camera (Phantom V12 CMOS). Solid lines with arrows illustrate

the trajectory of the light beam in the absence of acoustic wave.
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Then, the light reflected from the mirror, intersected the test

zone once again, and propagated back to the beam splitter

(solid lines with arrows in Fig. 1).

Spatial variations of the light refractive index n caused

by the acoustic wave led to deviation of a part of light rays

from the initial propagation direction. Light rays that were

not deflected by acoustic pressure inhomogeneities were

blocked by the optical knife located in the focal point of

the beam. Deflected rays bent around the razor edge were

captured by a high-speed camera to form a schlieren

image. Double passing of the light beam through the test

zone provided better contrast of the image. The brightness

of these images corresponds to modulation of the light in-

tensity and is proportional to the gradient of acoustic

pressure.27

B. Theoretical background: Reconstruction of an
acoustic waveform from a schlieren image

In this section, the algorithm for reconstructing pressure

signatures from schlieren images and corresponding assump-

tions for its correct interpretation are presented. The pro-

posed method includes two steps. First, the waveforms of

acoustic pulses were obtained from schlieren images. Then,

the absolute pressure values were determined by analyzing

the change in duration of the compression phase of the

pulses at different distances from the source.

Acoustic pressure p can be related to the perturbation of

the optical refractive index n. The refractive index n is

related to the air density q0þq via the Gladstone–Dale con-

stant K (Ref. 28): nþ n0 ¼ 1þ Kðq0 þ qÞ, where q0 is the

ambient density, and q is the density perturbation caused by

the acoustic wave, n0 is the ambient refractive index. Under

our experimental condition, the density perturbation can be

regarded as a linear function of acoustic pressure p:

q ¼ p=c2
0, where c0 is the ambient sound speed; higher order

terms can be neglected as the acoustic pressure is small com-

pared to the ambient atmospheric pressure patm: p/patm

� 0.01. The refractive index therefore can be expressed as

n ¼ K
p

c2
0

: (1)

Variation of the refractive index n produces a phase shift u
of the light beam. In the xy plane, shown in Fig. 1, the phase

shift accumulates while the light propagates along the y axis.

Since the phenomenon is symmetrical with respect to the

plane z¼ 0, the light rays are assumed not to deviate from

the xy plane. Neglecting light reflection by acoustic inhomo-

geneities and taking into account double crossing through

the test zone, one can write the phase as uðxÞ ¼ 2 � ð2p=
kÞ
Ðþ1
�1 nðx; yÞdy, where k is the optical wavelength. Radial

symmetry of the wavefront allows us to rewrite the expres-

sion for the phase as

u xð Þ ¼ 2 � 2p
k

ðþ1
0

2n r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
dy

¼ 2 � 2p
k

ðþ1
x

2n rð Þrdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2
p : (2)

Equation (2) is the direct Abel transform of the function

n(r).29 Inversion of the Abel transform (2) and the relation-

ship s ¼ ku=2p between the optical path length s and the

phase u gives

n rð Þ ¼ � 1

2p

ðþ1
r

ds

dx

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p : (3)

In the experiments, the light intensity distribution I is

the quantity measured in the perpendicular image xz plane of

the schlieren arrangement. For a schlieren system, the light

intensity of the image formed behind the optical knife is pro-

portional to the angle of deviation of rays.27 Taking into

account the spherical symmetry of the wavefront, the angle

of light deviation in the test zone can be written as e¼ @s/
@r1, where r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

is the radial coordinate in the

image plane xz. Thus, the light intensity I(r1) in the schlieren

image is

I r1ð Þ ¼ �C
@s

@r1

; (4)

where C is an unknown constant and the sign minus is intro-

duced to account for the knife orientation. For example, if

the knife blocks the light from the opposite side of the beam,

the same schlieren image is formed but the bright areas of

the image are replaced by the dark ones and vice versa.

Integrating the intensity in Eq. (4), one can obtain the optical

path length s as

s r1ð Þ ¼
1

C

ðþ1
r1

I r0ð Þdr0; (5)

where r0 is a dummy integration variable. Due to the radial

symmetry of the optical path length s in the plane xz,

one could write Eq. (5) in the one dimensional (1D) case of

z¼ 0,

s xð Þ ¼ 1

C

ðþ1
x

I r0ð Þdr0: (6)

Combining Eqs. (1), (3), and (6) one obtains the follow-

ing relation between the pressure signature p and the schlie-

ren image intensity I:

p rð Þ ¼ � c2
0

2pKC

ðþ1
r

d

dx

ðþ1
x

I r0ð Þdr0

 !
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � r2
p : (7)

Equation (7) contains the unknown constant C, which makes

it impossible to reconstruct absolute pressure levels directly

from the images. Nonetheless, dimensionless pressure wave-

forms can be reconstructed by calculating the integral

p rð Þ �
ðþ1

r

d

dx

ðþ1
x

I r0ð Þdr0

 !
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � r2
p : (8)

In order to determine the absolute pressure values in the

reconstructed waveforms, the lengthening of the N-wave

with distance caused by nonlinear propagation effects was
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analyzed. The analytic solution of the 1D simple wave equa-

tion generalized for spherically divergent waves was used.30

The duration of the compression phase T at a distance r of a

shock wave having an amplitude p0 and a compression phase

duration T0 [Fig. 2(a)] at the distance r0 is given by

TðrÞ=T0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0 lnðr=r0Þ

p
; (9)

where r0 ¼ ½ðcþ 1Þr0p0�=2cpatmc0T0. Here c is the heat

capacity ratio equal to 1.4 for air. In acoustics, Eq. (9) is

associated with nonlinear propagation of an ideal spherically

divergent N-wave, but it also remains valid for nonsymmetri-

cal shock waves if only the compression phase is considered.

Equation (9) therefore, can be applied to determine the pres-

sure amplitude p0 from the duration of the compression

phase in the waveforms measured at different distances from

the spark source. In the schlieren experiment, the spatial

extent d of the compression phase of the wave was measured

instead of the duration. However, since the acoustic wave

does not change greatly over a propagation distance equal to

its wavelength, the duration of the compression phase can be

related to its spatial extention via the sound speed: d¼ Tc0.

In our experiment, the duration of the compression

phase in the reconstructed dimensionless waveforms was

distorted because of a finite exposure time of the high-speed

camera, i.e., the shock front was smeared. To simulate the

averaging effect induced by the camera, numerical simula-

tions based on the Burgers equation generalized for relaxing

homogeneous atmosphere were performed (numerical model

is described in detail in the earlier studies in Ref. 12). An

ideal spherically diverging N-wave was numerically propa-

gated from the source. Then, for each distance where the

measurements were taken, the pressure was averaged over

all waveforms (100 waveforms total) which passed through

this point during the exposure time. The parameters of the

initial N-wave in the numerical model were: the peak pres-

sure p0¼ 2500 Pa at a distance from the spark source

r0¼ 105.6 mm; the shock rise time, defined as the time dur-

ing which the acoustic pressure increased from 10% to 90%

of the peak positive pressure,1 was chosen according to the

quasi-stationary solution of the Burgers equation as 0.07 ls;

the duration of the compression phase T0 (or the half dura-

tion) of the initial N-wave, defined as the time between the

points of the positive half peak at the front shock and zero

pressure values, was chosen T0¼ 17 ls. Finally, for each dis-

tance, the averaged waveform was compared with the origi-

nal ideal N-wave at the same distance. The correction to the

duration of the compression phase of the averaged wave

caused by the exposure time of the high-speed camera was

found.

The reconstruction algorithm described above is valid

under several assumptions. First, it is assumed that the

method is valid despite the optical beam not being colli-

mated as in classical schlieren systems.27 However, this

assumption is valid, since the width of the test zone, i.e., the

zone where the light beam actually interacts with the refrac-

tive index inhomogeneities, is much smaller than the total

beam length, which is equal to twice the radius of curvature

of the mirror. Quantitatively, the width of the test zone is

estimated as 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kacr � k2

ac

q
[Fig. 2(b)] where kac is the

wavelength of the acoustic wave. For a maximum propaga-

tion distance of 50 cm and a wavelength of 2 cm, the width

of the test zone is 28 cm, which is small in comparison to

2 m of the beam length.

The second assumption is that the wave has a spherical

wavefront in the xy plane, thus the refractive index n(r) is a

function of only the radial distance r. In the experimental

conditions, generally it is true; however, for large electrode

gaps or small distances this assumption may be slightly

violated.

The third assumption is that optical beam propagation is

considered in the framework of geometrical optics [Eq. (4)].

Moreover, it is assumed that optical rays passing through the

test zone remain straight lines [Eq. (2)]. These assumptions

may be violated near strong shocks where diffraction effects

are important.12,31,32

III. RESULTS

In this section, reconstructed dimensionless waveforms

are presented and analyzed at different distances from the

spark source. To demonstrate how the exposure time of the

high-speed camera affects the waveforms, results of numeri-

cal simulation are presented. The duration of the compres-

sion phase is analyzed as a function of propagation distance,

which allows the absolute pressure values to be determined.

A. Optical data treatment

A typical schlieren image of the spark-generated pulse

measured in the xz plane is shown in Fig. 3(a). Here the aver-

aged background image was extracted to handle only the

acoustical contribution to the inhomogeneities of the refrac-

tive index n. The radial symmetry of the wavefront was used

to average the intensity signal and to greatly increase the sig-

nal to noise ratio. For this purpose the individual distribu-

tions of light intensity were calculated along 500 radial lines

as shown in Fig. 3(a). A two dimensional (2D) interpolation

was used for this calculation. Finally, these 1D distributions

were averaged to obtain the resulting signal I [Fig. 3(b)].

The inverse Abel transform is then applied to the signal [Eq.

(8)] to calculate the waveform [Fig. 3(c)]. Details about

FIG. 2. (Color online) (a) Typical waveform produced by the spark source;

p0 and T0 are the peak positive pressure and the duration of the compression

phase, correspondingly. (b) Sketch illustrating the calculation of the width

of the test zone. Location of the acoustic pulse is shown in gray.
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numerical calculation of the integral in Eq. (8) are discussed

in the Appendix.

Examples of waveforms, reconstructed at different dis-

tances from the spark source, are shown in Fig. 4. The analy-

sis of optical data gives waveforms as functions of the

distance from the source. Conversion of waveforms in time

domain was done using the ambient sound speed c0 which

was equal to 343 m/s for the experimental conditions (rela-

tive humidity 49%, temperature 292 K).

The coordinate of the peak positive pressure is consid-

ered to be the propagation distance r0 of the wave.

Analyzing dimensionless waveforms plotted in Fig. 4, one

can conclude that close to the source the acoustic wave is

very asymmetric: the negative peak is significantly lower

than the positive peak (waveform number 1 in Fig. 4) and

the rear shock is very smooth and has a long rise time (about

15 ls in time which corresponds to 5 mm in space) in com-

parison to the front shock. These features are typical for the

near field of blast waves.18 The front shock is smeared to

3 ls due to the finite exposure time of the camera.

B. Effect of the finite exposure time of the high-speed
camera on the waveforms: Numerical simulation

Accurate estimation of the compression phase duration

is a critical point of the method, since this parameter is used

to determine the peak positive pressure. This subsection

details how the compression phase duration of the real wave

can be accurately determined from the measured waveform

distorted by the averaging effect of the finite exposure time.

The camera was assumed to perform a uniform temporal

averaging of acoustic pressures arriving at this distance dur-

ing the exposure time. To simulate this process, an N-wave

was numerically propagated during the exposure time of 3 ls

and then the averaging over all waveforms was performed

for each distance.

A summary of the results of N-wave propagation model-

ing is presented in Fig. 5. The initial N-wave (solid curve) is

supposed to imitate a “real” wave, while the averaged wave

(dashed curve) is a “measured” wave. Note that in the space

representation, the N-wave is no longer symmetric: there is a

small difference between values of the peak positive and

negative pressures. This is caused by the fact that the front

shock is located farther from the source than the rear shock

and thus has smaller amplitude because of the spherical

divergence of the field. The distance between the propagated

(dotted curve) and initial pulses corresponds to 3 ls and is

about 1 mm.

The finite exposure time leads to the following effects.

First, the coordinate of the peak positive pressure and the

angles of smooth slopes (more than 3 ls in time or 1 mm in

space) of the real and measured waveforms are unchanged.

Second, the zero pressure position is shifted by a distance

that corresponds to half of the exposure time (see markers at

zero pressure level in Fig. 5). Finally, the whole duration of

the measured wave becomes longer than the real one for a

FIG. 3. (Color online) Illustration of the pressure signature reconstruction

from the schlieren image. The light intensity with extracted background is

shown in (a). Individual distributions of light intensity were calculated along

500 radial lines (examples are shown by dashed lines). The intensity signal

averaged over 500 radial lines is shown in (b). Reconstructed waveform is

presented in (c). All data shown in the figure are normalized by the corre-

sponding maximum values.

FIG. 4. Dimensionless waveforms reconstructed from the schlieren images

at different distances from the spark source. For every pulse, the distance r0

is defined as the coordinate of the peak positive pressure.

FIG. 5. (Color online) Effect of a 3 ls exposure time of the camera on the

reconstructed waveform. Solid curve is the initial N-wave that was numeri-

cally propagated during 3 ls; dotted curve is the wave after propagation;

dashed curve is the averaged wave, which imitates the measured waveform.

The half duration of the initial wave can be calculated as the half duration of

the averaged wave plus the half of the exposure time (1.5 ls).
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time interval equal to the exposure time. Note also that the

shock width (spatial equivalent of the rise time) obtained

from the averaged waveform (1 mm) is determined by the

exposure time (3 ls). To evaluate the duration of the

compression phase correctly using the averaged wave, one

should calculate the duration between the peak positive and

zero pressure levels and add half of the exposure time, i.e.,

1.5 ls in our case (lower right corner of Fig. 5). This method

to properly evaluate the duration of the compression phase

of the pulse is found to be applicable for all distances where

the measurements were taken. Note, that nonlinear distor-

tions of the propagated wave (dotted curve) are not signifi-

cant and the correction to the half duration of the measured

wave can be obtained based on the assumption of linear

plane wave propagation.

C. Estimation of the peak positive pressures from the
pulse elongation

Using the results presented in the previous subsection,

the duration of the compression phase was calculated as a

function of the propagation distance for reconstructed

dimensionless waveforms. To estimate the coefficient r0 in

Eq. (9), experimental data for ðT=T0Þ2 � 1 were linearly fit-

ted as a function of ln(r/r0) using the least squares method

(Fig. 6). The origin of the graph in Fig. 6 corresponds to

T0¼ 13.5 ls and r0¼ 70.5 mm. Fifteen sparks were used to

obtain the data presented in Fig. 6. The value of 0.486

was obtained for the coefficient r0 with a standard deviation

of 0.013. The corresponding peak positive pressure was

p0 ¼ 2cpatmc0Tr0=½ðcþ 1Þr0� ¼ 3:72 kPa: Finally, pressure

amplitudes were found for all distances and thus pressure

signatures were fully reconstructed. Note that the temporal

correction of 1.5 ls to the duration of the compression phase

was quite substantial—without taking into account the

reconstructed pressure amplitudes would be up to 10%

higher.

Reconstructed peak positive pressures at different dis-

tances from the spark source are shown in Fig. 7 (markers).

The power law p ¼ p0ðr=r0Þ�1:2
provides a good approxima-

tion of the peak pressure as a function of distance. Reed pro-

posed in Ref. 33 this relation for blast waves and it is in

good agreement with experimental values starting from

about 100 mm from the source. The discrepancy between the

Reed relation and experimental values closer to the spark

source could be explained by less applicability of either the

data processing method or the Reed relation. Nevertheless,

both dependencies predict extremely high peak positive

pressure close to the spark (about 12 kPa at the distance of

30 mm).

Examples of the reconstructed pressure signatures at

different distances from the source are shown in Fig. 8. One

can observe that close to the source the duration of the

compression phase of the wave is about two times smaller

than the duration of the rarefaction one (waveform at

r0¼ 36 mm). As the acoustic wave propagates further from

the source, it becomes more symmetric and the rear shock

becomes steeper, the rise time reaches 3 ls, which is equal to

the resolution time. The durations of compression and rare-

faction phases of the wave equalize. Waveforms start to

resemble an N-wave only starting from the distances of

about r0¼ 500–600 mm, but even at the distance of

r0¼ 532 mm (last subfigure) the wave is still not fully sym-

metric, the peak positive pressure being 1.2 times higher

than the peak negative pressure. The measured front shock

rise time is limited by the exposure time of the camera and

equals to 3 ls which corresponds to a 1 mm shock thickness

for all measured waveforms.

IV. DISCUSSION

The optical schlieren method presented in this paper

provides the attractive possibility to obtain quantitative in-

formation about characteristics of the high-amplitude and

FIG. 6. Experimental (markers) data for the duration of the compression

phase T as a function of propagation distance r. The origin of the graph cor-

responds to T0¼ 13.5 ls and r0¼ 70.5 mm. Solid line is obtained by linear

fitting the experimental values using the method of least squares, the coeffi-

cient of proportionality equals 0.486 with standard deviation of 0.013.

FIG. 7. Experimental (markers) values of the peak positive pressure at dif-

ferent radial distances from the spark source. Solid curve corresponds to the

Reed formula p ¼ p0ðr=r0Þ�1:2
dependence, where p0¼ 3.72 kPa at the dis-

tance r0¼ 70.5 mm. A zoom view of the data at small propagation distances

is given in the inset.

J. Acoust. Soc. Am., Vol. 137, No. 6, June 2015 Karzova et al.: Schlieren method to measure N-waves 3249



short duration acoustic pulses generated by a spark in a ho-

mogeneous atmosphere. The time resolution of the method

is mainly limited by the exposure time of the high-speed

camera, which was 3 ls in our case. This resolution is not

sufficient to describe the fine structure of shock fronts, but

this method allows the rare fraction phase of the wave to be

reconstructed. The optical schlieren method has advantages

and disadvantages compared to two other techniques used in

aeroacoustic measurements: microphone and optical focused

shadowgraphy methods.

First, let us compare the schlieren method with meas-

urements by condenser microphones. Microphone measure-

ments usually start from 150 to 200 mm away from the

source where the pressure levels are not very high and the

response of the microphone is linear (maximum pressure

level for a condenser microphone Bruel & Kjaer 1/8 in.

type 4138 is approximately 2000 Pa or 160 dB re 20 lPa).

In contrast, there is no restriction on the minimal distance

from the spark in the schlieren method: one can obtain a

schlieren image even at 30 mm from the spark and the cor-

responding waveform could be reconstructed. Possibly, the

data processing methodology is not highly accurate at

distances very close to the spark, but nonetheless one can

obtain an approximate waveform that could not be meas-

ured using microphones. Note also that in microphone

measurements it is impossible to estimate distortions

induced by the wave diffraction on the microphone, micro-

phone mounting and its frequency response. Smearing

of the schlieren image during the exposure time of the

high-speed camera is the main cause of distortion. This dis-

tortion is quite predictable quantitatively (as discussed in

Sec. III B).

The schlieren method has also some advantages with

respect to the focused shadowgraphy technique described in

Ref. 13. The contrast of shadowgrams (images obtained

using the focused shadowgraphy technique) is proportional

to the second spatial derivative of pressure, while the con-

trast of schlieren images is proportional to the gradient of

pressure.27 The focused shadowgraphy technique allowed

visualizing the front shock of the pulse12 with a time

resolution better than 0.5 ls, which permitted to describe its

fine structure. However, if this method is well suited to mea-

sure shocks, it is not sufficiently sensitive to measure the

pressure decrease following the peak pressure nor the rear

shock. The schlieren method is more sensitive to low ampli-

tude pressure variations, and therefore makes it possible to

estimate the whole waveform except the fine structure of the

front shock (limitation due to the resolution of the camera).

It should be possible to combine these two methods: first the

front shock could be obtained using the focused shadowgra-

phy technique and it could then be replaced in a waveform

obtained by the optical schlieren method.

The accuracy of the schlieren method is subject to

ongoing investigations. Four main sources of error are iden-

tified. First, the distortion due to the exposure time of the

camera; second, assumptions of geometrical optics and

spherical symmetry in data processing; third, the low fre-

quency noise associated with slow variations of background

intensity between snapshots, which is substantial at large dis-

tances from the spark. Finally, although the spark source

produces pulses with a good repeatability, their initial ampli-

tude and duration changes from pulse to pulse. This leads to

dispersion in experimental data (Fig. 6). With the current

experimental setup, the uncertainty on the peak positive

pressure estimation is on the order of 10%.

The measurement and the reconstruction methods

reported here are important for the characterization of spark

sources, especially at distances close to the spark, where

direct acoustic measurements using acoustical condenser

microphones are impossible because of the high pressure

level. Although the experiments were performed in a homo-

geneous atmosphere, this method could be used also for the

visualization and reconstruction of acoustical waveforms

close to boundaries. This is the direction of our future

studies.

V. CONCLUSION

The propagation of nonlinear spark-generated acoustic

pulses in homogenous air was studied experimentally using

FIG. 8. Reconstructed temporal wave-

forms generated by the spark source.

The radial position r0 of the positive

peak is noted in each subfigure.
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the optical schlieren method. This method allowed recon-

structing dimensionless waveforms at distances from 30 to

600 mm from the source. Analysis of schlieren images was

based on the assumption of spherical geometry of the acous-

tic field and the geometrical optics approximations. The

reconstruction of dimensionless acoustic waveforms was

performed using the Abel-inversion transform. To evaluate

the smearing of the waveform during exposure time of the

camera, the propagation of a spherical diverging N-wave

was simulated using the generalized Burgers equation. A

method to evaluate the duration of the compression phase

taking into account exposure time of the camera was pro-

posed. The analysis of the elongation of the compression

phase duration as a function of the propagation distance

allowed to reconstruct the absolute pressure values. The time

resolution of the method was restricted by the exposure time

of the camera and thus the fine structure of the front shock

could not be resolved using the method. The comparison

between the optical schlieren method and two other known

techniques for measurements of spark-generated shock

waves was discussed. The present method has two main

advantages. First, it allows reconstruction of the pressure sig-

natures at distances close to the spark source (about 30 mm),

where measurements using condenser microphones are

impossible. Second, it provides the reconstruction of the

whole waveform with the good accuracy that has not been

achieved using the focused shadowgraphy method.13
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APPENDIX: NUMERICAL CALCULATION OF THE
INVERSE ABEL TRANSFORM

Consider the numerical calculation of the integralÐþ1
r ðd=dxÞð

Ðþ1
x Iðr0Þdr0Þðdx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p

Þ in Eq. (8), which is

used to reconstruct the dimensionless waveform from the

schlieren image. Inner integral AðxÞ ¼
Ðþ1

x Iðr0Þdr0 is calcu-

lated using trapezoidal numerical integration while the outer

integral contains a singularity at x! r and could not be

calculated in this way. To avoid singularity, the integrand

is approximated using a cubic spline interpolation and then

calculated numerically.

Note that the investigated integral multiplied by

the factor (�1/p) is the Abel inversion transform that is writ-

ten in general form as29 BðrÞ ¼ �ð1=pÞ
Ðþ1

r ðdA=dxÞðdx=ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p

Þ. One uses the next property of this inversion:

A ¼
Ðþ1

x ð2rBdr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2
p

Þ ¼ �2
Ðþ1

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2
p

ðdB=drÞdr:
Calculating the derivative, one finds dA=dx ¼ 2

Ðþ1
x ðdB=

drÞðxdr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2
p

Þ: It follows that ðdA=dxÞjx¼0 ¼ 0: Let us

approximate A(x) using cubic spline interpolation:

AðxÞ¼ anþbnðx�xnÞþcnðx�xnÞ2þdnðx� xnÞ3

¼ anþbnxþ cnx2þdnx3 (A1)

and assume that the function A(x) is given at the nodes of the

uniform grid xn ¼ D � n; n ¼ 1;…;N, where D is the mesh

spacing.

First, consider calculation for r¼ 0: Bðr ¼ 0Þ
¼ �ð1=pÞ

Ðþ1
0
ðdA=dxÞðdx=xÞ: Split the integral for the sum

of terms

B r ¼ 0ð Þ ¼ � 1

p

ðD

0

dA

dx

dx

x
� 1

p

Xn¼N�1

n¼1

ð nþ1ð Þ�D

n�D

dA

dx

dx

x
:

(A2)

Substituting the cubic spline approximation (A1) with

b0 ¼ 0 [because ðdA=dxÞjx¼0 ¼ 0] in Eq. (A2), one obtains

B r ¼ 0ð Þ ¼ � 1

p
2c0Dþ

3

2
d0D

2

� �
� 1

p

Xn¼N�1

n¼1

bnln
b

a

� ��

þ 2cn b� að Þ þ 3

2
dn b2 � a2ð Þ�;

a ¼ n � D; b ¼ nþ 1ð Þ � D: (A3)

Second, consider calculation for r ¼ m � D; m ¼ 1;
…;N � 1: Let Aðx ¼ N � DÞ ¼ 0 because AðxÞ ! 0 if x
!1: Replace the integral by the sum of integrals over the

segments: Bðr¼m�DÞ¼�ð1=pÞ
Pn¼N�1

n¼m

Ð ðnþ1Þ�D
n�D ðdA=dxÞðdx=ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2�r2
p

Þ: Using cubic spline approximation (A1) for every seg-

ment, one obtains

B r ¼m �Dð Þ ¼ �1

p

Xn¼N�1

n¼1

In; where

In ¼ bn b0 � a0ð Þ þ 2cnc sh b0ð Þ� sh a0ð Þ
� 	

þ3c2dn

2
b0 � a0 þ 1

2
sh 2b0ð Þ� sh 2a0ð Þ
� 	
 �

;

a0 ¼ arcch
a

c

� �
; b0 ¼ arcch

b

c

� �
; c¼m �D: (A4)

Thus, using Eqs. (A3) and (A4) it is possible to calculate

the Abel inversion transform numerically by summing the

results for each segment. However, the light intensity I is

equal to zero for distances x beyond the location of the pulse

and therefore numerical integration requires a finite window.

In numerical simulations, the size of spatial window was

equal to the size of the schlieren image and the spatial step

was 8 lm.

1B. Lipkens and D. T. Blackstock, “Model experiment to study sonic boom

propagation through turbulence. Part I: Model experiment and general

results,” J. Acoust. Soc. Am. 103, 148–158 (1998).

J. Acoust. Soc. Am., Vol. 137, No. 6, June 2015 Karzova et al.: Schlieren method to measure N-waves 3251



2B. Lipkens and D. T. Blackstock, “Model experiment to study sonic boom

propagation through turbulence. Part II: Effect of turbulence intensity and

propagation distance through turbulence,” J. Acoust. Soc. Am. 104,

1301–1309 (1998).
3B. Lipkens, “Model experiment to study sonic boom propagation through

turbulence. Part III: Validation of sonic boom propagation models,”

J. Acoust. Soc. Am. 111, 509–519 (2002).
4B. A. Davy and D. T. Blackstock, “Measurements of the refractive and

diffraction of a short N wave by a gas-filled soap bubble,” J. Acoust. Soc.

Am. 49, 732–737 (1971).
5P. Blanc-Benon, S. Ollivier, K. Attenborough, and Q. Qin, “Laboratory

experiments to study N-waves propagation: Effects of turbulence and/or

ground roughness,” in 17th International Symposium on Nonlinear
Acoustics, Manchester, UK (2005), Vol. 838, pp. 651–654.

6M. Averiyanov, S. Ollivier, V. Khokhlova, and P. Blanc-Benon, “Random

focusing of nonlinear acoustic N-waves in fully developed turbulence:

Laboratory scale experiment,” J. Acoust. Soc. Am. 130(6), 3595–3607

(2011).
7E. Salze, P. Yuldashev, S. Ollivier, V. Khokhlova, and P. Blanc-Benon,

“Laboratory-scale experiment to study nonlinear N-wave distortion by

thermal turbulence,” J. Acoust. Soc. Am. 136, 556–566 (2014).
8V. Grillon, X. Meynial, and J. D. Polack, “What can auralisation in small

scale models achieve?,” Acta Acust. 82, 362–364 (1996).
9J. Picaut and L. Simon, “A scale model experiment for the study of sound

propagation in urban areas,” Appl. Acoust. 62, 327–340 (2001).
10M. Almgren, “Acoustic boundary layer influence on scale model simula-

tion of sound propagation: Experimental verification,” J. Sound Vib. 110,

247–259 (1986).
11W. M. Wright, “Propagation in air of N waves produced by sparks,”

J. Acoust. Soc. Am. 73, 1948–1955 (1983).
12P. Yuldashev, S. Ollivier, M. Averiyanov, O. Sapozhnikov, V. Khokhlova,

and P. Blanc-Benon, “Nonlinear propagation of spark-generated N-waves

in air: Modeling and measurements using acoustical and optical methods,”

J. Acoust. Soc. Am. 128, 3321–3333 (2010).
13L. Orenstein, “The rise time of N-waves produced by sparks,” Technical

Report, Appl. Res. Lab., Univ. Texas Austin, ARL-TR-82-51 (1982).
14Q. Qin and K. Attenborough, “Characteristics and application of

laser-generated acoustic shock waves in air,” Appl. Acoust. 65, 325–340

(2004).
15A. Loubeau, V. W. Sparrow, L. L. Pater, and W. M. Wright, “High-fre-

quency measurements of blast wave propagation,” J. Acoust. Soc. Am.

120, EL29–EL35 (2006).
16J. W. M. DuMond, E. R. Cohen, W. K. H. Panofsky, and E. Deeds, “A

determination of the waveforms and laws of propagation and dissipation

of ballistic shock waves,” J. Acoust. Soc. Am. 18, 97–118 (1946).

17M. N. Plooster, “Shock waves from line sources. Numerical solutions and

experimental measurements,” Phys. Fluids 13, 2665–2675 (1970).
18H. L. Brode, “Blast wave from a spherical charge,” Phys. Fluids 2,

217–229 (1959).
19P. V. Yuldashev, M. V. Averiyanov, V. A. Khokhlova, S. Ollivier, and P.

Blanc-Benon, “Nonlinear spherically divergent shock waves propagating

in a relaxing medium,” Acoust. Phys. 54, 32–41 (2008).
20M. Averiyanov, P. Blanc-Benon, R. O. Cleveland, and V. Khokhlova,

“Nonlinear and diffraction effects in propagation of N-waves in randomly

inhomogeneous moving media,” J. Acoust. Soc. Am. 129(4), 1760–1772

(2011).
21W. M. Wright and J. L. McKittrick, “Diffraction of spark-produced acous-

tic impulses,” Am. J. Phys. 35, 124–128 (1967).
22W. M. Wright and N. W. Medendorp, “Acoustic radiation from a finite

line source with N-wave excitation,” J. Acoust. Soc. Am. 43, 966–971

(1968).
23T. Mizukaki, “Application of digital phase-shift holographic interferome-

try to weak shock waves propagating at Mach 1.007,” Shock Waves 20,

19–27 (2010).
24G. Smeets, “Laser interference microphone for ultrasonics and nonlinear

acoustics,” J. Acoust. Soc. Am. 61, 872–875 (1977).
25B. Andr�e, T. Castelain, and C. Bailly, “Broadband shock-associated noise

in screeching and non-screeching underexpanded supersonic jets,” AIAA

J. 51(3), 665–673 (2013).
26B. Andr�e, T. Castelain, and C. Bailly, “Experimental exploration of under-

expanded supersonic jets,” Shock Waves 24, 21–32 (2014).
27G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing

Phenomena in Transparent Media (Springer-Verlag, Heidelberg, 2001),

pp. 27, 39–52, 338–340.
28W. Merzkirch, Flow Visualization (Academic, New York, 1974), pp.

126–134.
29R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-

Hill, New York, 2000), pp. 351–353.
30A. D. Pierce, Acoustics: An Introduction to Its Physical Principles and

Applications (Acoustical Society of America, New York, 1989), pp.

603–605.
31J. Panda and G. Adamovsky, “Laser light scattering by shock waves,”

Phys. Fluids 7, 2271–2279 (1995).
32P. Yuldashev, M. Averiyanov, V. Khokhlova, O. Sapozhnikov, S. Ollivier,

and P. Blanc-Benon, “Measurement of shock N-waves using optical meth-

ods,” in 10eme Congres Francais d’Acoustique, Lyon, CD (2010).

Available online at https://tel.archives-ouvertes.fr/CFA2010-APU4/hal-

00539747v1 (Last viewed 6 March 2015).
33J. W. Reed, “Atmospheric attenuation of explosion waves,” J. Acoust.

Soc. Am. 61, 39–47 (1977).

3252 J. Acoust. Soc. Am., Vol. 137, No. 6, June 2015 Karzova et al.: Schlieren method to measure N-waves

https://tel.archives-ouvertes.fr/CFA2010-APU4/hal-00539747v1
https://tel.archives-ouvertes.fr/CFA2010-APU4/hal-00539747v1

	s1
	l
	n1
	n2
	n3
	s2
	s2A
	f1
	s2B
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	s3
	s3A
	f2
	s3B
	f3
	f4
	f5
	s3C
	s4
	f6
	f7
	s5
	f8
	app1
	dA1
	dA2
	dA3
	dA4
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33

