
927

ISSN 1062-8738, Bulletin of the Russian Academy of Sciences: Physics, 2017, Vol. 81, No. 8, pp. 927–931. © Allerton Press, Inc., 2017.
Original Russian Text © M.M. Karzova, P.V. Yuldashev, P.B. Rosnitskiy, V.A. Khokhlova, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2017,
Vol. 81, No. 8, pp. 1028–1033.

Numerical Approaches to Simulating Nonlinear Ultrasound Fields 
Generated by Diagnostic-Type Transducers

M. M. Karzova*, P. V. Yuldashev, P. B. Rosnitskiy, and V. A. Khokhlova
Faculty of Physics, Moscow State University, Moscow, 119991 Russia

*e-mail: masha@acs366.phys.msu.ru

Abstract⎯Two theoretical approaches for simulating nonlinear focused ultrasound fields generated by a diag-
nostic convex array are compared. The first model is based on the three-dimensional Westervelt equation and
describes the full structure of the array field with high accuracy. However, it requires great computational
resources and is technically difficult. The second model is based on an axially symmetric form of the para-
bolic KZK equation for estimating the strength of nonlinear effects in the focal region of a beam, which
reduces the computational time by a factor of several hundreds. To establish the boundary conditions to the
KZK model, the radius and the focal length of a circular piston source are defined such that the simulated
field on the beam axis in the linear case fits the real structure of the field in the focal region. It is shown that
the parabolic model can be used to accurately describe the spatial and temporal structure of the field gener-
ated by a diagnostic transducer in the focal region of the beam along its axis and in the plane of the beam’s
electronic focusing.
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INTRODUCTION

In modern diagnostic and therapeutic medical
applications of ultrasound, technologies that employ
acoustic radiation force of an ultrasound beam to
affect solid concrements or biological tissues have
begun developing rapidly [1–4]. One example of this
is the new technology for moving small stones out of
kidneys [1, 2]. The acoustic radiation force is also used
in innovative ultrasound imaging techniques for gen-
erating shear waves in biological tissue, and for shifting
tissue to observe its relaxation [3, 4]. Under clinical
conditions, this force impact can be induced by con-
ventional diagnostic transducers that function in the
long-pulse mode with increased intensity, compared
to the standard imaging modes [1, 2]. In this work, we
compare two theoretical models for describing nonlin-
ear focused ultrasound fields generated by a typical
diagnostic transducer in the form of a convex array.

THEORETICAL MODELS

We use two theoretical models to determine the
parameters of the spatial and temporal structure of a
nonlinear focused ultrasound field generated by a
diagnostic transducer when it is calibrated in water.
The first model is based on the Westervelt equation,
which is written in the moving coordinate system [5]:

(1)

Here, p is the acoustic pressure; z is the direction along
the beam axis; , where t is time;

 +  + ; x and y are spa-
tial coordinates that are transverse to z; and , , β,
and δ are density, speed of sound, nonlinearity, and
the thermoviscous absorption in the medium, respec-
tively. The physical parameters in Eq. (1) that corre-
spond to propagation in water are kg m−3;

m s−1; = 3.5; = 4.33 × 10−6 m2 s−1.
Equation (1) considers nonlinear diffraction effects
and thermoviscous absorption.

The numerical algorithm for simulating Eq. (1) was
based on the second-order operator splitting and used
a combined time-frequency approach to describe dif-
ferent physical effects at each step of the numerical
grid along the beam axis [6]. The diffraction operator
is calculated with respect to the frequency-domain
representation for each of the harmonics using the
analytical solution for an angular spectrum. Two algo-
rithms were used to calculate the nonlinear operator:
at short distances from the source, computations were
performed in the frequency-domain representation
according to the fourth-order Runge–Kutta method.
When the amplitude of the tenth harmonic starts to
exceed  1% of the fundamental frequency amplitude,
they were performed in the time-domain representa-
tion using a conservative Godunov-type scheme [7].
Absorption was calculated using exact analytical solu-
tions for each of the harmonics. The parameters of the
numerical schemes were chosen as follows: the step
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along the beam axis dz = 0.075 mm; the steps along
the transverse coordinates dx = dy = 0.02 mm; and
the maximum number of harmonics was 750.

The second model used simplifying assumptions
regarding the parabolic approximation with allowance
for diffraction effects and the axial symmetry of the
beam. A nonlinear ultrasound beam in this case was
described by the Khokhlov–Zabolotskaya–
Kuznetsov (KZK) equation [8]

(2)

where r is the radial coordinate.
Numerical simulations of Eq. (2) also used opera-

tor splitting procedure. The diffraction operator was
calculated with respect to the spectral representation
using an implicit scheme at distances of up to 10% of
the focal depth, and then at greater distances using the
Crank–Nicolson method. To allow for dissipative and
nonlinear effects, we used the same numerical algo-
rithms as in solving the Westervelt equation (1). The
step along the radial coordinate in our numerical com-
putations was 0.0025 mm, the step with respect to
coordinate z along the beam axis was 0.02 mm, and the
wave spectrum was up to 1000 harmonics. The algo-
rithm was adapted for parallel computing using the
OpenMP software, which enabled us to shorten the
calculation time to several tens of minutes, while the
simulation of the three-dimensional Westervelt equa-
tion (1) took several days.

SETTING BOUNDARY CONDITIONS
The boundary condition in simulating Westervelt

equation (1) corresponded to the parameters of the
standard diagnostic ultrasound transducer whose
geometry is given in Fig. 1 (a Philips C5-2 convex
array). The emitting surface of the transducer was a
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region of the cylindrical surface with height ly. Its sur-
face contained 128 array elements, varying the phase
of which could focus the beam in the xz plane to depth
Fx. The signal can be radiated in the mode of feeding a
different number of the central elements of the array.
In this work, we consider a clinically important case of
feeding 40 active elements of the array, which was used
in pilot experiments on repositioning kidney stones,
and a case of using the entire surface of the array
(128 elements). For an ultrasound beam not to diverge
in the plane yz, the transducer has an embedded
acoustic lens that focuses the field to depth Fy.

The geometrical parameters of the transducer were
determined earlier by fitting the boundary conditions
while calculating the Rayleigh integral so that the
results from computing the linear field along axis z of
the transducer and in the focal plane were in the best
agreement with the results from measurements using
a hydrophone [9]. Focal depth Fx for the electronic
focusing of the transducer was 50 mm. The surface’s
radius of curvature was R = 38 mm; its height was ly =
12.5 mm; angular size θ of one element was 5.2 × 10−2 rad;
and focal depth Fy for focusing by the acoustic lens was
86 mm for 40 elements and 70 mm for 128 active ele-
ments of the array. The initial condition in our simu-
lation was a periodic wave with frequency f = 2.3 MHz
and uniform distribution of the amplitude along
the surface. Focal depth Fx = 50 mm was ensured
by a delay of the wave phase along cylindrical coordi-
nate θ according to

 Cal-
ibration (which had been done earlier) revealed that
the voltage of 1 V applied to the array corresponded to
the amplitude of an ultrasound wave of 24.0 kPa when
feeding 40 elements of the array, and an amplitude of
18.8 kPa when using all 128 elements. At higher volt-
ages, the increase in the amplitude of the pressure at
the radiator was proportional to the voltage [9].

To set the boundary conditions when simulating
KZK equation (2), it was necessary to determine
radius r0 of the circular piston source and its focal
length F. In [10], it was shown that the structure of the
acoustic field during focusing was mainly determined
by the ratio of these quantities, r0/F. Parameters r0 and
F of the parabolic model were chosen such to ensure
the minimum difference between the distributions of
the pressure amplitude in the focal peak along axis z
that were obtained for linear (β = 0) parabolic (2) and
full three-dimensional diffraction models (1). For 40
active elements of the array, the parameters of the cir-
cular equivalent radiator were r0 = 1.2 cm and F =
7.0 cm; for 128 elements, they were r0 = 2.4 cm and
F = 5.9 cm.

The parabolic approximation when describing the
diffraction effects in KZK equation (2) initially
restricted its applicability to small focal angles [11].
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Fig. 1. Geometry of a diagnostic ultrasound transducer in
the form of a convex array.
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However, it was shown in [12–15] that a certain way of
setting the boundary conditions allowed KZK equa-
tion (2) to also describe with high accuracy strongly
focused fields, along with fields that did not have full
axial symmetry as, e.g., in the case of multielement
radiators for noninvasive ultrasound surgery [16, 17].
The main goal of this work was to test the applicability
and accuracy of simple and fast numerical calculations
that use KZK equation (2) to describe strongly focused
nonlinear fields with complex geometry, where there is
no axial symmetry and the condition that focal angles be
small is not met. The model of a diagnostic transducer
with the feeding of a different number of elements was the
one most illustrative for this purpose and most import-
ant for practical applications.

RESULTS AND DISCUSSION
The distribution of the pressure amplitude along

axis z of the diagnostic transducer, calculated for the
linear propagation of a wave using the full three-
dimensional diffraction model and the parabolic
approximation, is given in Fig. 2. It is clearly seen that
the parabolic model (dotted curve) satisfactorily
describes the structure of the field near the focal peak,
but diverges from the three-dimensional model (solid
curve) in the oscillatory region of the near field of the
array (Figs. 2a, 2b) and for the case of feeding 128 ele-
ments in the region behind the focus (Fig. 2b). At the
same time, for the configuration of 40 active elements
of the array, the parabolic model predicts a higher
amplitude of the oscillating pressure of the near field
than the full diffraction model. In contrast, when all
128 elements of the array are fed into the parabolic
model, the amplitude of the pressure of the near field
is underestimated.

The good agreement between the results from lin-
ear calculations in the region of the focal peak allowed
us to suggest that the parabolic model would also cor-
rectly describe the structure of the field of the beam
near the focus in the case of nonlinear wave propaga-
tion. However, it should be noted that the initial dis-
crepancy between the results of the two models in the
structure of the near field in the linear case would be
important when considering nonlinear effects. We
suggest that overestimating the amplitude of the near
field in the parabolic model would enhance the non-
linear effects along the path of the wave propagation to
the focus. Before the shock is formed [10], it would be
expressed as a stronger increase in the peak positive
pressure in the wave profile at the focus for the para-
bolic model, as compared to the three-dimensional
model [10, 18]. Once the shock was formed, nonlinear
energy absorption at the shock front would play an
important role, and it would be difficult to predict the
qualitative difference between the results obtained
using the parabolic and three-dimensional models.

We tested the applicability of the KZK equation
and assessed its accuracy for describing the temporal

and spatial structure of the nonlinear focused field of
our diagnostic array. Figure 3 gives the results from
simulations for the feeding of 40 active elements of the
array at a voltage of 25 V. The peak positive and peak
negative pressures in the wave profile at the focus in
this case differ greatly (Figs. 3a, 3b), and the wave pro-
file according to the definition in [10] contains a
developed shock (Fig. 3c); i.e., the shock front starts at
zero pressure level. It can be seen from the figure that
the parabolic model satsifactorily describes the distri-
bution of the peak negative pressure in the focal region
on the beam axis (Fig. 3a) and in the focal region along
direction x of the arrangement of the array elements
(Fig. 3b). The peak positive pressure at the beam axis

Fig. 2. Distribution of the amplitude of the pressure of an
ultrasound field on the z axis of a radiator with linear prop-
agation at a voltage of 1 V (a) for 40 active elements of the
array and (b) for 128 elements.
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Fig. 3. Comparison of the results from simulating a nonlin-
ear ultrasound field irradiated by 40 active elements of a
diagnostic array at a voltage of 25 V. The distribution of the
peak positive and peak negative pressures (a) on the z axis and
(b) in transverse direction x in the focal plane z = 50 mm;
(c) wave profiles at the focus; and two-dimensional distri-
butions of the peak positive pressure, calculated using (d)
the three-dimensional Westervelt equation and (e) axially
symmetric parabolic model.
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z was overestimated by as much as 15% in the region of
the focal peak, but it correctly describes the qualitative
structure of the distribution (Fig. 3a). It is interesting
that, despite the great simplification of the axially
symmetric parabolic model, the wave profile pre-
dicted by it corresponds at the focus (z = 50 mm) to
the profile calculated using the Westervelt equation,
with an accuracy of up to 5% (Fig. 3c).

The axial symmetry of the parabolic model did not
allow us to obtain quantitative information on the
structure of the field in focal plane yz of the acoustic
lens. In this plane, the diagnostic transducer is weakly
focused, and the field structure on the beam axis is
determined mainly by the stronger electronic focusing
in plane xz. It can be seen from Figs. 3d and 3e that the
two-dimensional spatial structure of the peak positive
pressure computed using the parabolic model is in
good agreement with the similar distribution in focal
plane xz of electronic focusing that was obtained in the
three-dimensional model. When using 40 elements of
the array, the size of the active surface of the trans-
ducer in directions x and y differs by only 10%, so the
distributions of the peak pressures in focal planes xz
and yz are similar in the structure and dimensions of
the focal region (Fig. 3d).

We now consider an asymmetric case of feeding all
128 elements of the diagnostic array (Fig. 4). For this
configuration, the KZK equation predicts the forma-
tion of a developed shock in the focal wave profile at a
voltage of 40 V (Fig. 4c), while it actually formed at
22 V. This corresponds to the above situation where
the difference between the structures of the near field
calculated by both models in the linear case does not
clearly answer what would be the qualitative difference
in the structure of the nonlinear fields after formation
of the developed shock. Our simulation results showed
that the distribution of the peak positive and negative
pressures on the transducer axis (Fig. 4a) and in the
focal plane (Fig. 4b) are adequately described by the
KZK equation, with the value of the peak positive
pressure in the focus being predicted with an error of
3% and the value of the pressure jump at the shock
front being predicted with an error of 18% (Fig. 4c).
The two-dimensional spatial distributions of the peak
pressures for 128 elements differ greatly in planes xz
and yz (Fig. 4d). Though the spatial structure of the
peak positive pressure obtained using the parabolic
model is closer to the real distribution in plane xz than
in plane yz, the size of the focal region in directions x
and z was found to be wider.

The KZK equation may thus be considered suitable
for estimating the parameters of the nonlinear ultra-
sound field of a diagnostic transducer in the focal
region on the beam axis and in the plane of electronic
focusing with an approximate error of 15% in the case
of the formation of a developed shock in the wave pro-
file at the radiator focus.
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CONCLUSIONS

We found that the axially symmetric parabolic
Khokhlov–Zabolotskaya–Kuznetsov equation can be

used in numerical simulations to estimate the parameters
of the spatial and temporal structure of a nonlinear ultra-
sound filed in the region of the focal maximum on the
axis of a diagnostic transducer even with the formation of
a developed shock in the wave profile at the focus, with
the error of calculation being 15%. The boundary condi-
tions in the KZK equation should be such that the linear
distribution of the pressure amplitude on the transducer
axis in the region of the focal peak is as close as possible
to the structure of the real field.
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Fig. 4. Results from simulating the nonlinear field of a diag-
nostic transducer when feeding all 128 elements of an array at a
voltage of 40 V. The figure’s structure is similar to that of Fig. 3.
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