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Abstract—A method of acoustic imaging in a liquid through a solid-state lens by using phase data processing
with aberration correction is proposed. Results are presented from the theoretical modeling and the experi-
mental study of investigating objects located in water.
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INTRODUCITON
Problems of sonovision require the ultrasonic (US)

imaging of objects located at a distance from a receiv-
ing/transmitting system. One-dimensional and two-
dimensional receiving/transmitting phased antenna
arrays are now used in many applications. When a
studied domain is at a distance comparable to the
array’s diameter, high lateral resolution is achieved
due to the angular width of the aperture. However,
there are applications for which a receiving/transmit-
ting system cannot be moved closer to the domain of
visualization for one reason or another. One such
example is US imaging in a corrosive liquid, when the
array must be distant from the studied object and even
placed into another medium. Conventional US tech-
nologies then give low-quality images because both
the sounding and detection of scattered waves occur
within a relatively narrow angular range. A possible
solution in these situations is to use an acoustic lens
system located in the vicinity of a visualized object.
The range of sounding angles can be broadened con-
siderably and the receiving/transmitting system can be
located at a considerable distance from the lens with-
out loss of the spatial resolution. The use of acoustic
lenses and mirrors also allows us to control the direc-
tion of a probe pulse’s propagation and scale the
image, which lets us increase the size of the receiving
elements without loss of image quality [1]. If the
medium beyond the plane surface of the lens is opti-
cally transparent, remote optical techniques can be
used to detect vibrations and find the amplitude distri-
bution of the normal component of the vibration
velocity directly at the plane lens surface using a laser
Doppler vibrometer [2].

In this work, we propose a way of calculating the
propagation of an acoustic field to construct a US
image using pulse sounding through a thick lens while
allowing for diffraction and refraction. We use two
ways of analyzing the ultrasonic field based on
Rayleigh integrals [3, 4] and an angular spectrum [5].

We developed an experimental setup to validate the
proposed technique for constructing US images. A
piezoelectric radiator placed in a liquid on whose sur-
face a pattern of an absorbing material was mapped
served as our object of visualization. A thick solid lens
was positioned opposite this radiator. On the opposite
side, ultrasonic signals were detected using a synthetic
two-dimensional array of receivers. Synthesis was per-
formed via raster scanning of a single hydrophone
along the plane surface section. The two-dimensional
distribution of the ultrasonic field detected by this
array was used as input data for the developed theoret-
ical algorithms of imaging.

THEORY AND MODELING
When irradiating an object with a probe acoustic

pulse, the nonstationary acoustic signal scattered by
inhomogeneties is detected by receivers that form a
two-dimensional array. Imaging requires us to solve an
inverse problem that can be reduced to the direct
problem of propagation of acoustic waves from the
receiving array to the object when the phase of the
acoustic field received by the array is reversed. (For
pulse signals, the time is reversed.) With an acoustic
lens located between the object and receiving array,
the object can be imaged using a thin-lens approxima-
tion [6]. With thick lenses that have a highly curved
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surface, this approach results in aberration caused by
the difference between the real and thin lenses.

The back propagation of a wave from the array
through the lens to the domain of the object’s location
must be described more accurately to obtain a better
(aberration-free) solution to the problem of imaging.
Below, we propose using either Rayleigh integrals
[3, 4] or an angular (spatial) spectrum [5] to recalcu-
late the field in three domains. At the first step (I), we
perform calculations from the measuring surface to the
plane surface of the lens in water; at the second (II),
we calculate the propagation of the field within the
lens material from the plane to concave surface; and at
the third (III), we recalculate the field from the con-
cave lens surface in water to the plane of the object’s
location.

Extending the representation of the real wave func-
tion to the complex plane, we take the temporal part of
the wave function describing a harmonic oscillation
with frequency  in the form 

Rayleigh Integrals
Let us consider a source of harmonic oscillations

with frequency  lying on the plane  For a known
pattern of oscillations with the distribution of the nor-
mal component of vibration velocity  or acoustic
pressure  along plane , the acoustic field at any
point of a half-space with radius–vector  is described
by Rayleigh integrals as

(1)

(2)

where  is the wavenumber;  is the equilibrium

density of the medium, P is the distribution of the
acoustic pressure amplitude;  denotes the coordi-
nates of points on surface ;  is the dis-

tance between point of observation  and surface ele-
ment  with radius vector  and  is the unit nor-
mal of surface element , directed toward the
observation point. Calculating the partial normal
derivative over  and introducing an additional vec-
tor, we rewrite formula (2) as

(3)

where  is the unit vector directed from

surface element  with radius vector  toward point
of observation  [7, 8]. However, if we reverse radiat-
ing surface  and surface  on which the acoustic
pressure with radius-vector  must be reconstructed
(i.e., the back propagation of a wave is considered),
Eq. (3) will be equivalent if we substitute  for 
and  for  respectively.

Since in this problem we consider surfaces with a
radius of curvature much larger than the characteristic
wavelength of the probe pulse, the inaccuracy of the
Rayleigh integral will be negligible and the solution
will be fairly accurate with allowance for the diffrac-
tion limit [9].

Angular Spectrum

Angular (spatial) spectrum is widely used to solve
scattering problems because of the convenience of
plane-to plane calculations of the field. We use a
plane-wave expansion of a field set on a surface and
apply a two-dimensional spatial Fourier transform
that allows us to analyze changes in the angular spec-
trum of radiation as it propagates in space [10, 11].
When using this technique, it is convenient to plot the
US pattern in a plane removed at an arbitrary distance
from the initial plane, the pressure distribution over
which is experimentally measured using acoustic
receivers. As was noted above, the presence of a lens
between these planes requires us to calculate the field
at the boundaries of domains, one of which is not f lat
(concave lens surface). It is therefore convenient to
write the formulas for calculating the field not from
plane-to-plane, but in a more general form for an arbi-
trary set of spatial points.

In contrast to Rayleigh integrals (1) and (2), which
(as was noted above) express the field as superposition
of radiation of the point sources located on surface 
at points  the angular spectrum
approach uses a plane-wave expansion. For the transi-

tion to this expansion, multiplier  under the inte-

gral can also be generally expressed as an expansion
over the angular spectrum in half-space  [12]:

(4)
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After substituting (4) into formula (1), we obtain
the expression for the amplitude of acoustic pressure:

(5)

where the angular spectrum is

(6)

To calculate the Rayleigh integral (2), the angular
spectrum method is similarly used to expand multi-

plier =

over the angular spectrum in the half-space 
where equation  is that of surface . Note
that the existence of evanescent (nonhomogeneous)
waves is considered when . These waves
have a purely imaginary wavenumber and decay expo-
nentially in the direction of positive z, but they can
also be used along with a highly sensitive receiving
facility [13]. These waves were not considered in this
work.

Calculating the Field 
in the Thin-Lens Approximation

In this work, it was more convenient to use an
angular spectrum to construct an image in the thin-
lens approximation because it allowed us to perform
fast plane-to-plane calculations of the field, since the
physical curvature of the concave surface of the lens was
ignored. The field from the receiving array surface to
the thin lens surface must therefore be calculated (I);
the effect of the focusing of the lens must be consid-
ered (II); and the field from the same lens plane to
that of the location of the studied object must be cal-
culated (III). Steps (I) and (III) are calculated using
the angular spectrum.

The lens is considered at second step (II). Using
the thin-lens approximation without aberrations, we
first calculate the focal length for the plane-concave
lens [6]:

(7)

where  and  are the speeds of ultrasound in the sur-
rounding medium and the lens material, respectively;
R is the radius of curvature of the concave surface of
the lens. We next determined the coefficient of trans-
mission for the thin lens, T(x, y), while ignoring
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reflection and losses in the paraxial approximation
(  ) [6], which represents the phase factor

(8)

Here,  and  are the complex amplitude distribu-
tions of the acoustic pressure in the lens plane at the
input and output (with respect to the receiving plane),
respectively; x and y are the orthogonal coordinates in
the lens plane;  is the coordinate in the direction nor-
mal to the lens plane; and  is the lens plane.

Constructing a Model Image
For an initial check of imaging quality, we devel-

oped a numerical model in the form of a set of har-
monic in-phase point sources at a frequency of
1.5 MHz in the focal plane of the lens. The distances
between sources were 1, 2, 3, and 4 mm (Fig. 1a).
Using this model, we calculated the field at the surface
beyond the lens, which modeled the surface of the
receiving array in the experiment. The obtained data
were then used as the boundary conditions to solve the
inverse problem of wave propagation and construct a
US image of the given set of the point sources using
the procedures described above (Rayleigh integral,
angular spectrum, and thin-lens approximation).

The set of the input data for solving the inverse
problem was calculated using ray tracing from each
point source. The ray path of propagating through the
lens was calculated by allowing for refraction accord-
ing to Snell’s law, and reflection according to the Fres-
nel formulas for the coefficient of transmission of a
longitudinal wave. Shear waves were ignored, since
only a longitudinal wave corresponded to the first
transmitted signal (pulse), which was subsequently
used to construct an image in the experiment. Form
each point of the scatterer, approximately 105–106 rays
fell on the lens surface. These were then analyzed on a
receiving plane located at a distance of 29.4 mm from
the plane lens surface. According to ray acoustics, the
intensity of rays falling into a square grid cell with a
side of  where  is the wavelength in a liquid, was
re-calculated to the amplitude of the transmitted
wave, and the delay along the ray was recalculated to
the wave phase. These calculations were performed for
all point scatterers. The obtained distributions of the
complex amplitude of each point source were then
summed, yielding the required two-dimensional field
distribution for the set of point sources.

The second stage of modeling consisted of con-
structing images of the point sources using the proce-
dures described above. The geometry of the model
coincided with that of the experiment (Fig. 2a). At
first step (I), the distribution of the acoustic pressure
at the plane lens surface was reconstructed with a lat-
eral step of 0.5 mm using Rayleigh integral (2) and

2,x �
2 2y R

( ) ( )
( )

( ) +
 = = −
 
 

2 2
2

1

, ,
, exp .

, , 2
L

L

k x yP x y z
T x y i

P x y z F

1P 2P

z
= Lz z

λ/2, λ
: PHYSICS  Vol. 85  No. 6  2021



650 PETROSYAN et al.

Fig. 2. (a) Geometry of the numerical and physical experiment; (b) picture of the experimental setup. The numbers in (a) and
(b) denote (1) the needle-shaped hydrophone, (2) the surface of the synthetic receiving aperture, (3) the plane-concave lens,
(4) the radiator with the visualized object.
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Fig. 1. (a) Specified model location of the point sources. 1, 2, 3, and 4 indicate the axes of location of sources with distances
between them of 1, 2, 3, and 4 mm, respectively; reconstructed US images of the point sources using (b) the thin-lens approxi-
mation, (c) the Rayleigh integral and (d) the angular spectrum.

–20

–10

0

10

20

–20 0 20

X, mm

–20 0 20

X, mm

–20 0 20

X, mm

–20 0 20

X, mm

Y,
 m

m
0

–20

–40

–60

–80

dB

1 2 3

4

1 2 3

4

1 2 3

4

1 2 3

4

(a) (b) (c) (d)
angular spectrum (5), allowing for refraction and the
coefficients of transmission through a water/alumi-
num interface. To consider the coefficient of transmis-
sion from medium 1 into medium 2 correctly in solv-
ing the inverse problem, the amplitude of the complex
pressure of a wave arriving at point  on the lens
surface was not multiplied by coefficient of transmis-
sion  from medium 1 into medium 2, since it
resulted from direct propagation. Instead, it was
divided by coefficient of transmission  from
medium 2 into medium 1 in the form

(9)

where  is the angle of incidence of the reverse wave
in the first medium;  is the angle of refraction in the
second medium, calculated using the Snell’s law at
point  on the interface between the two media.
The coefficient of energy transmission by back propa-
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gation was therefore greater than unity because with
time inversion, the former reflected wave propagating
back was technically added to the wave transmitted
through the interface.

At second step (II), we reconstructed the distribu-
tion of the complex amplitude of pressure at the con-
cave lens surface, the radius of curvature of which was
77 mm. In the thin-lens approximation, the distribu-
tion of the complex amplitude of the pressure obtained
at the first step is simply multiplied by corresponding
phase factor (8). For aberration-free calculations of
the field at the concave lens surface at a distance of
2 mm from its central point, we used Rayleigh integral (2)
and an angular spectrum (5). At final step (III), we
first calculated the field in the plane located at the dis-
tance of 97.5 mm from the lens (where the radiators
were located) using Rayleigh integral (3) and angular
spectrum (5). The distribution of the real amplitude of
the acoustic pressure over this plane is the US image of
the point monochromatic sources given in the model.
MY OF SCIENCES: PHYSICS  Vol. 85  No. 6  2021
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Fig. 3. (a) Image of the radiating surface of the plane radiator with a deposited plasticine object for visualization; US images of
the object at the radiator’s surface calculated using (b) the thin-lens approximation, (c) the Rayleigh integral, and (d) the angular
spectrum.
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Figure 1 shows the results from calculating the
reconstructed distribution of the amplitude of pres-
sure obtained above. We compared the US images to
the original model distribution (Fig. 1a) to determine
the quality of reconstruction and estimate the accu-
racy of our technique. In contrast to the proposed
approach, which compensates for aberrations
(Figs. 1c, 1d), they clearly distort the image when
using the thin-lens approximation (Fig. 1b), especially
at some distance from the lens axis.

A comparison of the presented data shows good
qualitative and quantitative coincidence between solu-
tions obtained with the proposed approach. This con-
firms both physical consistency of the solutions and
feasibility of using it to solve the problem of recon-
structing of the acoustic field distribution in an
object’s domain and obtain the US image of its profile
using the lens system.

RESULTS AND DISCUSSION

For experimental validation of the proposed algo-
rithm, we made measurements in water using an
acoustic lens to visualize inhomogeneities at the sur-
face of the acoustic plane radiator. Inhomogeneities
were created by depositing sound-absorbing plasticine
onto its surface in a specially shaped figure. A V392
broadband radiator (Panametrics, United States) was
in the form of a circle plane piezoplate 38 mm in
diameter with a matching layer to water with a reso-
nance frequency of 1.5 MHz. It was positioned at the
focal length of the lens on the side of the concave sur-
face and coaxially with it (Fig. 2b). The plane-concave
lens 118 in diameter was made of aluminum. One sur-
face was a plane and the other was spherical with a
radius of curvature of 77 mm. The focal length of this
lens was 97.5 mm in the approximation of formula (7).
The lens was 2 mm thick at its central point. The
acoustic field was detected using a synthetic array
antenna on the other side of the lens at a distance of
BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES
29.4 mm from its plane surface. The receiving array
was synthesized by scanning with a HNA-0400 nee-
dle-shaped hydrophone (Onda, United States) con-
trolled by an UMS-3 positioning system (Precision
Acoustics, Great Britain) along a surface parallel to
the plane lens surface. The lens and radiator remained
fixed while scanning. Pulses with 5 periods and fre-
quency 1.5 MHz were excited from a 33250A generator
(Agilent, United States) to the radiator. The rate of
pulse repetition was 250 Hz. The range of scanning
was a square surface with sides of 10 cm, and the scan-
ning step in the lateral direction was 0.5 mm, which
was approximately the half-length at the center fre-
quency of the signal. The signals received by the
hydrophone were transmitted through a pre-amplifier
to a TDS5034B oscilloscope (Tektronix, United
States), where they were averaged over 48 samplings
for each spatial position of the hydrophone to reduce
noises and then saved in the computer’s memory for
further processing.

Figure 3a shows a picture of the radiator with the
deposited pattern. Figure 3b shows the result from
reconstructing a US image using the thin-lens approx-
imation. Calculations with the Rayleigh integral and
angular spectrum were made for the pulse signal used
in the experiment and a set of spectral components in
the range from 0.90 to 1.81 MHz with a step of 10 kHz.
After an inverse time–frequency Fourier transform,
the distribution of the real values of the acoustic pres-
sure was reconstructed directly near the radiator’s sur-
face with inhomogeneity in water at different
moments. The contour line of the inhomogeneity is
clearest at moments with an interval of a half-period of
the carrier frequency. Figures 3c, 3d show US images
(the real distribution of the acoustic pressure in the
logarithmic scale) calculated using the Rayleigh inte-
gral and angular spectrum, respectively, at one of these
moments when the object was seen with high contrast.
The resulting images clearly show the contour line of
the inhomogeneity and its sizes, especially when com-
: PHYSICS  Vol. 85  No. 6  2021
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pared to the image obtained in the thin-lens approxi-
mation.

CONCLUSIONS

We showed that the use of a solid plane–concave
lens allows us to obtain an aberration-free US images
of an object immersed in a liquid. A US image was
constructed by calculating the acoustic pressure with a
Rayleigh integral and an angular spectrum while con-
sidering characteristics of the lens and its actual geom-
etry. We demonstrated the effectiveness of these tech-
niques. A comparison showed the good qualitative and
quantitative coincidence between the obtained US
images and the actual tested object, confirming both
physical consistency of the solutions and the feasibility
of using the described procedure to solve problems of
sonovision in a liquid using a lens system. It should be
noted that using Rayleigh integrals and angular spec-
trum to reconstruct US images through a lens system
requires us to consider the shape of the lens. This com-
pensates for aberrations of the lens that affecting the
quality of images.

Use of this system allows us to scale the image of a
tested object and move it to a required distance. This
is useful in applied problems of US imaging in corro-
sive liquids. It allows us in particular to place the
acoustic receiving elements at a considerable distance
from a tested object in the domain of the minimized
impact of an aggressive environment.
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