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Theoretical Study of the Cavitation Mechanism
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Abstract—A numerical model is constructed that allows signals of diagnostic ultrasonic pulses scattered on
stones and bubbles to be obtained. The model is based on numerical simulation of the equations of elasticity,
which describe the propagation of a small-amplitude perturbation in a solid medium, and on the Nolting–
Nepiras equation, which describes the dynamics of a gas bubble. The Doppler processing of the obtained sig-
nals is performed with the subsequent construction of an ultrasound image. Results show that the cavitation
of gas bubbles produces the twinkling artefact.
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INTRODUCTION
Ultrasound (US) studies play an important role in

modern medicine [1]. An example is the diagnostics of
urolithiasis, the formation of kidney stones. One prob-
lem is that some stones are difficult to detect by stan-
dard modes. Detection can be improved using the so-
called twinkling artefact. These are twinkling regions
(nonstationary multicolor mosaic structures) that
sometimes occur during ultrasonography at the border
of an observed image of a kidney stone in the Doppler
mode [2, 3].

The mechanisms that underlie the twinkling arte-
fact during ultrasonography are still a subject of
debate. The artefact could be caused either by the
acoustic treatment, the reflection of an ultrasound
pulse from a stone, or by hardware effects associated
with processing the signals collected by the detectors.
Studies of the twinkling artefact with different types of
stones show that the effect depends on the morpho-
logical and biochemical composition of the stones
and varies from measurement to measurement. The
intensity of the artefact also depends on the pulse
repetition frequency in an ensemble in the Color
Doppler mode. It is still not entirely clear what
causes the twinkling artefact.

A possible reason for the occurrence of a f lickering
picture in the Doppler image of a stone is the sporadic
activity of submicron bubbles located in crevices on
the rough surface of the stone. The experiment per-
formed in [4] confirmed it is not a hardware–software
effect, but the acoustic treatment that causes a twin-
kling artefact. One of the most important results from
the experiment in [4] was the complete suppression of
the Doppler signal when the static pressure was raised

to 8.5 MPa, and the restoration of the signal when the
pressure returned to its initial value. Since other possi-
ble reasons for the artefact (e.g., the force of radiation,
reflection from the rough surface, or intrinsic f luctua-
tions from the phase jitter [5]) are not sensitive to an
increase in static pressure, the above observation
strongly suggests it is bubbles that are the source of the
Doppler shift.

The aim of this work was a numerical analysis of
the cavitational mechanism, specifically to construct a
model that would allow us to test the hypothesis of the
contribution from the activity of bubbles to the Dop-
pler signal.

MODEL
The simulation process can be divided into several

consecutive stages: (1) calculating the acoustic field
during the propagation of ultrasound pulses in an
inhomogeneous medium, which in the considered
problem is a kidney with a solid inclusion in the form
of a kidney stone; (2) simulating the dynamics of bub-
bles upon the specified acoustic treatment calculated
at the first stage; (3) calculating additional scattering
signals that occur due to the emission of acoustic
waves by oscillating bubbles; (4) constructing ultra-
sound images in the Doppler mode.

At the above stages of simulation, we used different
simplifications that were based on physical features of
the considered processes. The bubbles were assumed
to be negligibly small when compared to the size of the
stone, and to the wavelength of the probing signal.
This allowed us to analyze the scattering by the kidney
stone, first with no bubbles and then with bubble pul-
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Fig. 1. Experimental scheme in a two-dimensional geometry.
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sations in the calculated (specified) acoustic field.
Another simplification was associated with the special
geometry of the problem: the probing acoustic field
and kidney stones were assumed to be axially symmet-
ric. This allowed us to simulate elastic waves in the
stone and the surrounding f luid using a two-dimen-
sional model. One more simplification was assuming
that the bubbles were spherical in order to describe the
dynamics using the Nolting–Nepiras model [6].

Simulating the Propagation of an Ultrasound Pulse
Ultrasound diagnostics is based on the pulse echo

imaging of inhomogeneities in human tissue. Ultra-
sound signals of different durations and frequencies
can be used, depending on the chosen mode of study.
Conventional signals are microsecond pulses in the
megahertz frequency range.

Constructing images in the Doppler mode is based
on irradiating a studied medium with a periodic train
of pulses (an ensemble) and receiving signals scattered
by inhomogeneities. Theoretical investigations of the
propagation of ultrasound pulses in soft biological tis-
sues conventionally use an approach that considers the
acoustic properties of the tissue to be similar to those
of classical f luids, the dynamics of which is described
by the equations of f luid dynamics. But kidney stones
are solid bodies, so their shear elasticity must be taken
into account. The separate description of the stones
and soft tissues results in the need to introduce bound-
ary conditions. However, we may assume the entire
area of interest is one inhomogeneous medium [7].
Inhomogeneity means a change in the elastic modulus
and density upon moving from one region of the
BULLETIN OF THE RUSSIAN ACADE
medium to another. In this approach, the boundary
conditions at the internal interfaces are met automati-
cally. This simplification also allows us to use the same
equations for two media.

The amplitudes of ultrasound signals in our simu-
lation were selected to be close to the values used in
ultrasound diagnostics (no more than 1 MPa). The low
amplitudes allows us to consider the problem using a
linear approximation, and to use equations of elasticity,
which include equation of motion and Hooke’s law [8]:

(1)

(2)

where  are the components of the particle velocity
vector in the medium,  and  are the Lamé parame-
ters,  are the components of the stress tensor, and

are the components of the external force per unit
volume.

As noted above, the scattering of ultrasound pulses
by a stone was studied using an axisymmetric approx-
imation in a two-dimensional geometry. A cylinder-
shaped stone with an incident plane acoustic wave
propagating along its axis was considered. The
medium surrounding the stone was represented by
water (density ρ = 1000 kg m−3; Lamé parameters μ =
0, λ = 2.25 GPa), and U30 concrete (ρ = 1700 kg m−3;
μ = 3.83 GPa, λ = 7.25 GPa) was used as the stone
material [9]. The probing ultrasound pulse was a qua-
siharmonic signal that had a Gaussian envelope with a
central frequency of 5 MHz.

The numerical model that we developed allowed us
to study the scattering process, and to construct the
corresponding ultrasound image; it may therefore be
considered a virtual ultrasound scanner. The acoustic
waves scattered by the stone and propagating in the
opposite direction in this scanner were recorded by a
multielement periodic array of receivers positioned in
a line perpendicular to the axis of symmetry and pass-
ing through it (Fig. 1). In the figure, the receiving
array is denoted by the dotted line to the left. The
parameters of the receivers were selected to be similar
to those in a Philips/ATL HDI L7-4 ultrasound trans-
ducer (width w = 0.25 mm; clearance between receiv-
ers g = 0.05 mm; total number of receivers M = 128)
[10]. The boundary of the area of calculation con-
tained a perfectly matched layer (PML, see Fig. 1) in
order to avoid parasitic reverberation caused by reflec-
tions from the boundaries.

Simulation of the equations of system (1)–(2) that
included the above simplifications was performed
using the staggered-grid finite-difference approach
[11]. To approximate the derivatives, we used a cen-
tered template that considered the structure of the
equations and resulted in the need to specify certain
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Fig. 2. (a) Pressure in the region of a bubble; (b) time
dependence of the radius of the bubble.
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physical values on grids that were staggered along the
corresponding coordinates. Let us clarify the above
using the equation for the component of stress tensor

 as an example. We assume that coordinates (z, r, t)
are specified discretely with increments (  and
indices (i, j, k). The centered time derivative between
the layers with indices k and k + 1 determines the
value in the layer with index k + 1/2, where the values on
the right side of the equation must be specified. The
derivatives with respect to r and z are matched in a similar

manner. As a result, equation  = 

becomes the finite-difference expression

A similar procedure was performed for the rest of the
equations in system (1)–(2).

Dynamics of a Spherical Bubble

There are several models for describing the dynam-
ics of cavitation bubbles. In this work, we used the
Nolting–Nepiras equation, which describes the oscil-
lation of a spherical bubble with ideal gas in an incom-
pressible f luid:

(3)

Here,  and  are the bubble radius and its
initial value;  is the density of the surrounding f luid;

 is atmospheric pressure;  is the coefficient of sur-
face tension;  is the dynamic viscosity of the f luid;
γ is the specific heat ratio of the gas in the bubble; and
pac(t) is the acoustic pressure of the ultrasound pulse,
which is a combination of an incident wave and a wave
scattered by a stone. In the simulation, it was assumed
that the bubbles were located near the stone surface.

It is convenient to reduce Eq. (3) to a system of first
order differential equations. If new variables 
and  are introduced, (3) is transformed into
a system of two equations:
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The boundary conditions are  and
. In the calculations, it was assumed that the

initial radius of a bubble in the absence of ultrasound
was  = 0.8 μm. The solution to the system was
numerically calculated using the Runge–Kutta
fourth-order approach [12]. To increase accuracy, we
used an adaptive stepsize technique based on changing
the discretization step, depending on the rate of
change in the calculated function. The result from
simulating the behavior of the bubble is given in Fig. 2.

Given the behavior of the radii of the bubbles over
time, the acoustic field they create can be calculated.
An oscillating bubble is a source of a diverging spherical
wave. The potential of the particle velocity in this wave is

 = , where  is the time function

and  is the distance calculated from the bubble’s center.
In light of the relationship between the pressure and
potential  =  and the
boundary condition  we obtain the for-
mula for the radiation of an oscillating bubble:

(4)

where τ is the time of irradiation, which is associated
with the current moment in time by the relation

The signals arriving at the receiving array from the
bubbles on the stone’s surface were calculated using (4).
The calculated amplitudes of the waves from the bub-
bles reached approximately 1 kPa. This indicated they
were not too small when compared to the pressure in
the probing pulse (approximately 0.2 MPa), and fell
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Fig. 3. (a) Image of the stone in a B-mode; (b) Doppler
image after processing of the pulse ensemble.

(a)

(b)
into the dynamic range of the receiving array; i.e., it
affected the scattered signal that was recorded.

SIMULATION RESULTS

As noted above, a radiation event in a Doppler
mode requires the use of an ensemble of periodic
pulses. In this work, we used an ensemble of 12 pulses.
The repetition frequency of the pulses was selected by
assuming that the incident and reflected signals did
not overlap. According to [4], the bubble activity on
the surfaces of kidney stones is stochastic. To satisfy
this condition in the model, calculated additives to the
signal from the bubbles were used for only several
pulses in the ensemble.
BULLETIN OF THE RUSSIAN ACADE
As in real diagnostic systems, the virtual scanner
had at the output of the receiving antenna array a set of
128 signals after the numerical simulation (in agree-
ment with the number of the receiving channels).
These signals were subsequently used to reconstruct
the ultrasound image. Prior to image reconstruction,
the signals were subjected to wall filtering [13]. This
filtration suppressed the contribution from slowly
moving scatterers, which can be represented by, e.g.,
the walls of blood vessels.

Let us briefly describe the algorithm for the Doppler
processing of scattering signals. For each transducer,
we consider discrete signal ,
where n is the pulse number in the Doppler ensemble,
n = 1, 2, …, 12; m is the number of the time count; and

 is the time discretization step. Analytical signal
 is then constructed, where  is

the quadrature additive of signal . Using the least-
squares method (LSM) for an ensemble of 12 pulses,
the filtered signal is calculated in the form

 where  =  is the part of
the signal that corresponds to slowly moving scatterers
and am and bm are coefficients calculated using the
LSM. The power Doppler amplitude, determined as
the ensemble average of the square of amplitude

, is then constructed for each

moment in time. This procedure is performed for each
of the 128 receiving elements and for each time

, producing a final Doppler signal that can be
used to reconstruct the image. For image reconstruc-
tion, we used a standard algorithm based on the sum-
mation of analytic signals with allowance for the time
delays corresponding to the points of the imaged
region (the delay-and-sum method) [14].

The results we obtained in the numerical experi-
ment are given in Fig. 3. Figure 3a shows a standard
brightness mode (B-mode) image, constructed using
the first pulse in the Doppler ensemble. Because there
were no sources of parasitic signals or other artefacts of
ultrasound diagnostics in the model, the anterior and
posterior borders of the kidney stone can be clearly
seen in the figure, allowing us to determine its loca-
tion. Figure 3b presents the result from the Doppler
processing of the signal. By considering the obtained
information on the stone’s location, we were able to
estimate the emergence of the signal near its leading
edge, where the bubbles were. Since there were no
other reasons for the occurrence of the signal in the
experimental model, we may conclude it was bubble
cavitation that caused the Doppler signal.

CONCLUSIONS
A numerical model allowed us to prove theoreti-

cally that the twinkling artefact of ultrasound diagnos-
tics can be explained by the cavitation mechanism.
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The activity of submicron bubbles on the rough surfaces
of kidney stones was constructed. Quantitative analysis
of the signals emitted by the bubbles during the irradia-
tion of stones by diagnostic pulses of existing scanners
showed that the waves from submicron bubbles can
make a significant contribution to a scattered signal.
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