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Abstract—A theoretical study of the growth of a spherical vapor bubble in a spherically symmetric superheated
region is described. The modeling of bubble dynamics is based on considering the hydrodynamic and thermal
processes inside a bubble and the surrounding liquid.
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INTRODUCTION
A high-intensity focused ultrasound beam can

overheat the medium of its propagation and initiate
boiling. Corresponding conditions appear in such
regimes of ultrasound therapy as thermal destruction
and hystotripsis [1]. Absorption of a focused beam
produces a localized heated region of millimeter size
that coincides with the focal region of beam. If the
medium is overheated, i.e., its temperature exceeds
that of boiling and it has a microscopic bubble (cavita-
tion nucleus), this bubble can grow to millimeter size
in several milliseconds under vapor pressure, or even
faster. Such rapid growth increases the mechanical
stresses around the bubble resulting in the emission of
audible sound. These sounds can be useful in con-
trolling some types of therapy. In addition, bubbles of
millimeter size that form upon boiling are strong
acoustic diffusers and thus create regions of increased
brightness in an ultrasound image. This is extremely
useful for reliable visualization of the region of impact.
The aim of this work was a theoretical study of vapor–
gas bubble dynamics in a locally overheated liquid
under conditions of spherical symmetry.

BASIC EQUATIONS
As in the approach described in [2], the theoretical

part is based on equations of mass, momentum and
energy balance, and equation of state, along with the
laws of heat and mass transfer [3, 4]. In deriving equa-
tions of bubble dynamics, it is assumed that the liquid
being pushed by an expanding bubble is incompress-
ible. Although the overheated regions formed by a
high-intensity focused ultrasound beam are ellipsoids,
it is logical to simplify the problem by considering
spherically symmetric overheated regions. In such an

approximation, and because the initial nucleus of
boiling is in the center of overheated region, the prob-
lem becomes spherically symmetric. The equation for
liquid motion around a bubble has a Rayleigh–
Plesset-type form for the radius of the bubble [5, 6].
The heat transfer model considers both the liquid and
the gas phases. The acoustic pressure created by a
growing bubble can, like other parameters characteriz-
ing its growth, be calculated using a set of equations
that joins them with one another.

Equations of Basic Parameter Evolution
Let us consider a set of first order differential equa-

tions for four independent variables that depend only
on time: bubble radius , velocity of the bubble wall

, pressure inside the bubble  and number of vapor
moles inside the bubble  [2]:
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The denotations used in equations (1)–(4) are
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introduced:  is the inner pressure;
 – is the pressure on the

bubble wall;  is a surface tension coefficient;  is the

speed of sound;  is the speed of
sound on the bubble wall;  is an empirical constant
(  for water);  is density;  is the pressure
away from the bubble; and  is viscosity. The gas com-
ponent of the bubble is described by other parameters:

 is the adiabatic exponent;  is the heat conductivity
of the gas;  is temperature (which is assumed to be
constant inside the bubble, except for a boundary layer
near its wall);  is the thickness of the thermal bound-
ary layer;  is the molar weight of the vapor; R is the
universal gas constant;  is the partial pressure of the
vapor; and  is the pressure of the saturated vapor.
The enthalpy of the liquid on the bubble’s wall is
expressed as

(5)

Equations for the Temperature 
on the Bubble’s Boundary

To consider a nonuniformly overheated liquid, we
must add an equation for the evolution of the liquid’s
temperature  on the bubble boundary to fix (1)–(4).
This can be obtained by solving the heat conductivity
and energy balance equations on the bubble’s bound-
ary. The latter can be written as

(6)

Here,  is the heat conductivity of the liquid;
 is the spatial derivative of the liquid’s tem-

perature on the bubble boundary; and  is the heat of
vaporization. As in Eq. (3), the temperature gradient
in the boundary layer is approximated by finite differ-
ence .

The solution to the problem of heat conductivity in
the liquid can be written as a sum of two solutions of
simpler problems: initial and boundary. The tempera-
ture will then consist of two corresponding parts:

. Let us assume the initial distribution of
the temperature in the overheated region is Gaussian:

, where  is a radial coordi-
nate;  is the radius of the overheated region; and

is the temperature in the center of region. Using
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the approximations in [5, 6], we obtain the following
expressions for temperature:

(7)

(8)

We introduce new variables here: 

and . In addition,  is the ini-

tial radius of the bubble;  is the heat
conductivity coefficient; and  is the heat capacity at
constant pressure. The solutions to Eqs. (7) and (8)
allow us to calculate the spatial derivative of the liq-
uid’s temperature on the bubble’s boundary:

. Since this value is also determined accord-
ing to Eq. (6), the expression for  can also be calcu-
lated numerically as well.

GROWTH OF A VAPOR BUBBLE 
IN A UNIFORMLY OVERHEATED LIQUID
To approximate the typical behavior of a vapor–gas

bubble, let us consider a simplified problem in which
the liquid’s temperature is constant in time and space.
The liquid is assumed to be nonviscous; i.e., . In
addition, we ignore changes in pressure inside the
bubble , i.e., the effect of vapor cooling upon
evaporation and the force of surface tension, which is
weak in comparison to the internal pressure .
Only two equations are then left: one for the bubble’s
radius (1) and one for the velocity of the bubble’s wall,
as follows from (2):

(9)

Figure 1 shows the results from our numeric mod-
eling of Eqs. (1) and (9). The initial radius of the bub-
ble in the three equations is  10 μm. Other values
of  were also considered, but the resulting curves of
the bubble’s radius vs. time during the growth stage,
when the bubble’s radius was much larger than the ini-
tial radius, were virtually independent of any value of

. The bubble’s radius was characterized by almost
linear growth and, as was expected, the rate of growth
rose with the temperature of the liquid.

This numeric result can be verified analytically by
assuming the liquid is incompressible. The equation
for enthalpy is then written as , and
the equation of bubble dynamics becomes the familiar
Rayleigh equation

(10)
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If the heat conductivity in the liquid and gas is
strong enough for the bubble’s temperature to even out
during its growth, and vaporization is fast enough for
the vapor inside the bubble to be saturated, the right
part of Eq. (10) can be considered independent of
time. It can then be solved in a manner similar to the
Rayleigh solution for a collapsing empty space [7].
The experimental curves in Fig. 1 are in good agree-
ment with the analytical solution.

When we consider the nonequilibrium vaporiza-
tion described by Eq. (4), the rate of bubble growth
slows (see Fig. 2). This is because vapor forms with a
delay; as a result, the pressure inside the bubble falls
and the speed at which the bubble grows is reduced.

The effect of heat conductivity is apparent in the
slowdown of bubble growth due to the marked drop in
vapor pressure as a result of its cooling because of its
increased volume. We performed numeric calcula-
tions with allowance for vaporization and heat con-
ductivity in different cases of liquid overheating (see
Fig. 3a) using a program based on the algorithm in [2].

Fig. 1. Dependence of a bubble’s radius on time at differ-
ent temperatures of the liquid.
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Fig. 2. Dependence of bubble’s radius on time without and
with taking non-equilibrium vaporization into account.
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EMISSION OF SPHERICAL WAVES 
BY A GROWING VAPOR BUBBLE

Growing vapor bubbles emit spherical waves. It is
known that in such cases [8], the velocity potential can
be expressed as , while pressure
is expressed through the potential as

. Allowing for
boundary condition , we obtain

. It follows that

(11)

Here, bubble radius is considered at time ,
when an acoustic disturbance that reaches the point of
observation at moment  is emit-
ted. Note that the velocity of the bubble’s wall in this
process is much slower than that of sound, so the
denominator in the second factor of the right part of
the equation can be ignored in calculations.

Figure 3b shows the acoustic pressure curves of a
growing bubble for different cases of overheating,
while the growth of the bubble itself is presented in
Fig. 3a. Calculations for different initial conditions
showed that the dependence of maximum pressure on
the manner of bubble growth excitation is negligible.

CONCLUSIONS
The set of equations presented in this work formed

the basis for modeling the growth of overheated vapor
bubbles under conditions of spherical symmetry. The
preliminary results preseneted in Fig. 1 show that even
with slight overheating to 101°C, a bubble with an ini-

tial radius of 10 μm grows to millimeter size in less than
1 ms. If the liquid’s temperature is 110°C, the corre-
sponding time is even shorter: about 0.2 ms. Allowing
for nonequilibrium vaporization and heat conductiv-
ity slows bubble growth, but it still reaches millimeter
size in several milliseconds. In hystotripsis experi-
ments, boiling temperature is reached in several milli-
seconds, and vapor–gas cavities are observed at the
same time [1]. These observations are in good agree-
ment with the numeric results from this work.
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