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Abstract—The article discusses the possibility of using a plane piezoelectric transducer with a large wave
dimension as the source of a reference plane ultrasonic wave, which can be used to calibrate hydrophones in
the megahertz frequency range. In the experiment, the source was a piezoceramic disk with a diameter of
100 mm and a thickness resonance frequency of about 1 MHz. A method was developed for determining the
sensitivity of the transducer in the transmit mode by measuring its electrical impedance. A methodology is
proposed for finding the parameters of the plane wave component of the emitted acoustic pulse from a known
electrical signal on a generator. It is shown that the acoustic pulse profile measured by a calibrated hydro-
phone near the source agrees well with the theoretically predicted signal.
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1. INTRODUCTION

The problem of calibrating sources and receivers is
conventional for acoustic research, in particular, in
ultrasound applications in medicine, as well as in
hydro- and aeroacoustics problems. An important
characteristic of any electroacoustic transducer is its
sensitivity, which is the relationship between its elec-
trical and acoustic signals. For an acoustic receiver
(hydrophone or microphone), sensitivity is under-
stood as the ratio of the electric voltage arising on it to
the acoustic pressure at the location of this receiver in
its absence. Since any receiver has a finite size, its
response to an acoustic field depends on the structure
of the field at its location. This is why sensitivity is
introduced with respect to a wave with a given struc-
ture; a plane incident wave is usually used. It is clear
from the foregoing that the ability to create a plane
wave with known parameters is fundamental in prob-
lems of calibrating receivers. Conventionally, the
plane-wave mode is created by placing the receiver in
the far field of the acoustic source. The disadvantage
of this approach is the need for measurements at large
distances from the source; i.e., the corresponding set-
tings cannot be compact. In addition, in far field mea-
surements, significant wave attenuation occurs.
Lastly, the relationship between the electrical signal at
the source and the corresponding acoustic signal at the
receiver depends on many parameters, which reduces
the calibration accuracy.

Currently, a large number of methods have been
developed for calibrating acoustic sensors and finding
acoustic field parameters: the reciprocity and self-rec-
iprocity methods [1, 2], a method for determining
acoustic power by measuring the radiation force [3],
the variable load method [4], etc. Each of the methods
has its advantages and disadvantages. One attractive
method for calibrating acoustic pressure sensors is to
measure in a reference sound field, i.e., in a field with
known characteristics. In this case, the main problem
is now to develop a device capable of creating the indi-
cated reference field. In this paper, we propose one
variant of this calibration method. It is shown that an
ultrasonic transducer, the emitting element of which is
a f lat piezoceramic disk, can be used as the source of
the reference field.

If the diameter of a uniformly polarized f lat
piezoceramic plate is much larger than the wave-
length, then when a pulsed electric voltage is applied
to its conducting sides, it changes the plate thickness
according to the “piston” law: at all points of the plate
(with the exception of small areas near the edge), its
surface is displaced equally, thereby emitting a plane
wave. Owing to this, there is a region of the space near
the surface of the transducer in which an acoustic field
in the form of a traveling plane wave is realized over a
finite time interval [5]. The specified plane wave can
be used as the reference field for calibrating acoustic
receivers. Note that an acoustic field close to a plane
wave can also be created using multielement arrays,
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including synthesized ones [6, 7]; however, in prac-
tice, using single-element emitters is much simpler.

It is convenient to use a large-diameter plane
piezoelectric plate not only because it can generate a
plane wave, but also because the electrical and acous-
tic processes in it can be described by a one-dimen-
sional model of an electroacoustic transducer [8, 9].
With this approach, the transducer is described as a
six-terminal network. In this model, the voltage  and
current  uniquely associated with acoustic vari-
ables—acoustic pressure  and vibrational speed

 on the inner and outer sides of the transducer,
respectively. Knowledge of the piezoelectric and
mechanical characteristics of the plate and the wave
propagation medium makes it possible to calculate the
value of the radiated acoustic pressure on the trans-
ducer’s surface. Because there is a region of the travel-
ing plane wave near the plate surface, the same sound
pressure (only delayed in time) will be measured by a
sensor placed at any point in this region. This makes it
possible to calibrate the acoustic receiver using a
piezoelectric transducer emitting a reference acoustic
field. Note that implementation of the described
approach requires precise knowledge of the parame-
ters of the piezoelectric transducer.

Thus, to calculate the emitted acoustic field, it is
necessary to have information about such parameters
of the transducer as the piezoelectric and elastic mod-
uli, electromechanical coupling coefficient, dielectric
constant, density, and geometric dimensions of the
plate. In this paper, we propose an algorithm of
actions that allows, based on electrical and acoustic
measurements, to specify the characteristics of the
transducer and then calculate the acoustic pressure in
the plane wave zone by an analytical method. The
results were verified by measuring the acoustic holo-
gram of the transducer [10, 11] and the field on the
source axis with a calibrated hydrophone.

2. IMPLEMENTATION OF THE PLANE
WAVE MODE NEAR A PISTON SOURCE

OF FINITE SIZE
We consider a transducer whose active element is a

circular plane piezoceramic disk of thickness l and
radius R. Quantity l determines the resonance fre-
quency of thickness oscillations of the transducer:

, where  is the longitudinal wave velocity
in the plate. Let us consider plate oscillations in the
one-dimensional approximation. The acoustic field
created by such a plate with a uniform distribution of
the normal vibrational velocity over the surface is
found by solving the problem of a harmonic piston
source [12].

We introduce the following quantities, which char-

acterize the harmonic acoustic field:  is
the vibrational velocity vector, the Cartesian compo-
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nents of which can be represented in complex form; in

particular,  where  is the com-

plex amplitude of the normal vibrational velocity com-
ponent; here it is assumed that the z axis is oriented
perpendicular to the source surface. It is also possible
to represent in complex form the acoustic pressure:

, where  is the complex pressure

amplitude. Subscript 1 denotes the backing — the
medium with which the inner surface of the piezoelec-
tric plate comes in contact (in the experiment
described below, it was air), and subscript 2 denotes
the ambient medium (radiation was produced in
water). Given that 

 (circular piston source), from the solu-
tion to the wave equation of the problem in the ambi-
ent medium, an expression is obtained for the depen-
dence of the complex pressure amplitude on the plate
axis of symmetry on distance z to it [12, 13]:

(1)

where  and  are the density, sound
speed, and wavenumber in the f luid. If the source were
infinitely large ( , then under the assumption
of small absorption in expression (1), only the term

 would remain, which corresponds to a plane
wave [13]. However, with the finite dimensions of the
plate, it is impossible to separate the components of
the harmonic signal coming from the edges of the
source from the plane wave. On the other hand, for
pulsed excitation of the transducer, the nonstationary
solution for the field, due to the linearity of the prob-
lem, reduces to the superposition of solutions for the
spectral components. For an ideal lossless and non-
dispersive medium, we obtain from expression (1) the
following analytical solution for the acoustic pressure
on the axis:

(2)

where  is the surface velocity of the source. From
expression (2) it can be seen that at a distance  from
the center of the plate, in the case of the onset of exci-
tation of a pulse signal at moment , there is a time

interval  within which there is a
plane wave signal, while the edge wave described by
the second term has not yet reached the measurement
point. Thus, within the specified interval, a mode of a
plane acoustic wave propagation is realized in its pure
form. Figure 1a shows the dependence of the duration
of the time interval of the plane wave as a function of
distance  from the center of the plate for two source
radii: 5 and 2.5 cm. The graph clearly shows that in
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Fig. 1. (a) Estimate of time interval during which plane wave pulse is realized on axis of symmetry of transducers with radii of
5 and 2.5 cm as function of distance to center of transducer; (b) estimate of dimensions of plane wave region in directions along
and across beam axis for plane wave intervals of 20, 10, and 5 μs. 
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order to generate a plane wave, it is necessary to use a
transducer with large dimensions, and in this case,
measurements must be made near the radiating sur-
face. It is also important to note that the smaller the
distance from the piezoelectric plate to the hydro-
phone, the greater the contribution to the measured
signal made by electrical interference from the trans-
ducer. Thus, it is important to position the hydro-
phone optimally to achieve the maximum duration of
the plane wave pulse and to avoid electrical interfer-
ence.

Of interest is also the estimation of the region of
existence of the plane wave mode when the hydro-
phone moves in the direction transverse to the beam
axis. The plane wave mode is implemented within the
time interval between the moment of arrival of the first
signal (the signal of the “direct” wave propagating per-
pendicular to the surface of the emitter) and the
moment of arrival of the signal from the nearest point
on the edge of the emitter. It follows that if

—the distance from the axis—then the
plane wave mode will be realized during a time interval
with a duration

(3)

The requirement for realization of the plane wave
mode within an interval of a given duration  limits
the position of the hydrophone. Figure 1b shows the
region of realization of the specified mode, calculated
by formula (3) for a transducer with a radius R =
50 mm for three different time intervals T: 5, 10, and
20 μs. It can be seen that the smaller the required time
interval, the more extended the region of space in
which the plane wave mode is realized.

In practice, in addition to an edge wave, delayed
signals appear in the f luid caused by excitation of
Lamb waves in the piezoelectric plate [14, 15]. Lamb
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waves are generated at the edge of the piezoelectric
plate, where the condition of uniformity of the plate is
violated. Propagating towards the center of the plate,
they emit an additional signal into the f luid, which can
be even stronger than the edge wave. However, like an
edge wave, this signal is delayed with respect to the
direct wave and therefore does not hinder the forma-
tion of the plane-wave mode.

It is noteworthy that such factors as the finite band-
width of the signal and the diffusion of the waveform
with time lead to the fact that the signal duration at the
measurement point can exceed the width of the speci-
fied time interval of the plane wave.

To verify the above considerations, a number of
acoustic signal measurements near the surface of the
transducer were carried out with a calibrated hydro-
phone. The piezoceramic disk had a diameter of
100 mm, its thickness was about 2 mm, and the reso-
nance frequency was 1.12 MHz. An HGL-0200 hydro-
phone (Onda, USA) was used, the axis of which was
oriented perpendicular to the plane of the transducer
surface. The hydrophone was located on the axis of
symmetry of the source at various distances from its
center. A short pulsed electrical signal with a given
shape was applied to the transducer. As an example,
Fig. 2 shows records of a signal received by a hydro-
phone at distances of 10, 50, and 100 mm from the
transducer. As can be seen from the graphs, at a short
distance, the plane and edge waves are almost com-
pletely separated, and with distance from the trans-
ducer, a zone appears where they overlap. It is also
seen that the shape and amplitude of the plane wave
component remain unchanged at different distances
from the transducer surface, which corresponds to the
nature of the plane wave. Therefore, the signal on the sur-
face of the transducer will have precisely the same plane
wave component.

A plane wave with constant amplitude and shape
was experimentally recorded. Thus, if we determine
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Fig. 2. Sweep of signals in coordinates of traveling wave recorded by hydrophone on emitter axis at distances of (a)
10, (b) 50, and (c) 100 mm. Gray color indicates region of recording of edge wave. 
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the relationship between the electrical signal supplied
from the generator to the transducer and the plane
acoustic wave emitted by it, we can use the f lat trans-
ducer as a device for calibrating hydrophones or other
transducers in the receiving mode. In this case, cali-
bration using generation of a plane wave does not
imply precise location of the measuring device—it is
sufficient to place it in the region of generation of the
plane wave and the perpendicular to the emitted sur-
face [16].

3. ONE-DIMENSIONAL MODEL
OF A PIEZOELECTRIC TRANSDUCER

The electrical signal supplied to the piezoelectric
transducer differs in shape and duration from the
acoustic signal emitted into the ambient medium. The
amplitude of the acoustic signal depends linearly on
the amplitude of the electrical signal, as well as on the
features of electroacoustic conversion. As the parame-
ter determining the relationship between electrical and
acoustic signals, the sensitivity of the transducer in the
transmit mode can be chosen, . The expression for
sensitivity can be obtained by considering the process
of electroacoustic conversion in the one-dimensional
approximation and in harmonic mode.

From the literature [8, 9] it is known how to relate
the pressures  and vibrational velocities  on
the inner and outer surfaces of the piezoceramic plate
to the electrical parameters—the voltage on the  and
power of the flowing current . Such a relationship can
be written in matrix form, which allows the transducer to
be represented as a six-terminal network:

(4)
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where ω is the angular frequency of harmonic exci-
tation of the system,  is the impedance of the
piezoceramic plate,  is the wavenumber,  and

 are the density and sound speed in the piezoelectric
plate material,  is the surface area of the transducer,

 is the capacitance of the clamped transducer, and 
is a coefficient describing electroacoustic conversion.
Quantities  are related to the electromechan-
ical coupling coefficient , the z component of the
piezoelectric modulus  and dielectric constant of
the blocked transducer  as follows:

(5)

where  F/m is the electric constant.
The elements of the columns in formula (4) are the

complex amplitudes of the corresponding quantities,
and it is assumed that the total quantities vary in har-
monic law as . The system of equations (4)
makes it possible to calculate the operation of a piezo-
electric transducer both in the transmit and receive
modes. We are interested in the transmit mode. We
assume that the acoustic impedances  on the inner
and outer sides of the piezoelectric plate are known:

(6)
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the form

(7)

ρz c=�

ωk c= ρ
c

S
0C h

0  and    C h
Tk

3ze
ε

2
0 0 3 0

3 0

εε , εε ,
,εε

T z

z

C S l k e c
h e

= = ρ
=

12
0ε 8.854 10−≈ ×

( )~ exp ωi t−

1 2, z z

1 1 1 2 2 2, .p z p z= − = −v v

( )

( )

( ) ( )

= − − +

= − − +

= − − ω










+



� �

� �

1 1 2 0
1 2

2 1 2 0
1 2

1 2
0

1 2 0

(1 sin ) ω

1

cotan ,

cotan  ω
sin

1

,

ω
.ω  

z zp i kl p i kl p i h S I
z z
z zp i p i klp i h S I
z kl z

p pU i h i h i I
z z C
ACOUSTICAL PHYSICS  Vol. 66  No. 5  2020



CREATING A REFERENCE PLANE ULTRASONIC WAVE 453
From the first and second equations of system (7), we
express  and  through the current :

(8)

Substituting these expressions in the third equation of
system (7) and taking into account formulas (5), we
obtain the following relationship between the complex
amplitudes of the voltage across the transducer and
corresponding current:

(9)

This ratio of the complex amplitudes of voltage and
current is the electrical impedance of the element .
Note that the voltage  and current in formula (9)
corresponds to the values directly on the piezoelectric
conducting plates. In practice, to supply a signal to the
piezoelectric plate, an electric cable is used, one end of
which is connected to the conducting sides of the
piezoelectric plate, while at the second end there is a
connector to which the generator supplies electric
voltage. Therefore, the voltage and current at the input
to the transducer are the voltage  and current  at the
end of the cable, which differ from the corresponding
values directly on the piezoelectric plate,  and .
Taking into account the influence of the cable, the
expression for the transducer’s impedance is
as follows [17]:

(10)

where  is the wave impedance of the cable,  is its
length,  is the velocity of electromagnetic wave prop-
agating in the cable. When deriving relation (10), it was
taken into account that the electrical cable is a trans-
mission line, i.e., a waveguide for electromagnetic
waves. The cable properties are determined by its
length L, the propagation velocity of electromagnetic
waves in it , and the wave impedance .

From (10), it is clear that if the transducer were a
matched load with an impedance  then the
impedance would be equal to  regardless of the
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cable length. This is generally not the case. For exam-
ple, if the cable is short (its length is much shorter than
the length of the electromagnetic wave), then the tan-
gent in formula (10) can be replaced with its argument,
which gives , where

 and  have the meaning of the
linear inductance and linear capacitance of the cable,
respectively. The typical values of these quantities for
a 50-Ω cable are  and

 [18]. At low load  a short
cable behaves like an inductance , and
under heavy load  like capacitance

. As a rule, however, an intermediate
case is realized, therefore, for a correct description, it
is necessary to use the more general formula (10).

Cable output voltage  due to voltage on the piezo-
electric plates  in the following way:

(11)

The ration  can be considered the trans-
fer function of piezoelectric conversion in the emis-
sion mode. The expression for it follows from formulas
(8) and (11):

(12)

In practice, it is not always possible to work with
harmonic signals and, in addition, each transducer
takes some time to establish a stationary harmonic sig-
nal emitted into the ambient medium, which may not
be sufficient due to the narrowness of the time window
in the plane wave mode in an experiment. Therefore,
it is proposed to work with short pulsed signals and use
the above theory for the harmonic mode for the spec-
tral components of the emitted pulsed signal of inter-
est to us, which can be found using Fourier transform:

  where 
and  are time-dependent signals whose spectral
amplitudes are  and , respectively.

Thus, the six-terminal model establishes the rela-
tionship between the voltage on the generator and the
acoustic pressure on its surface. If the transducer
parameters are known, then the characteristics of the
radiated sound wave can be immediately determined
from the electrical signal supplied to the transducer.
Indeed, if we measure the parameters of the indicated
electrical signal, then we can calculate the time depen-
dence of the acoustic pressure on the surface of the
emitter in a one-dimensional approximation and

( ) ( )0 0ω 1 ωс сZ Z i L i C LZ= − −+

с с сR= v+ ( )1с с сC R= v

0.275  H mс = μ+

110  pF mсC = 0 сZ R!

ω  сZ i L≈ − +

0 сZ R@

( )ω сZ i LC≈

U
0U

( ) ( )
0 0

cos ω sin ω . c
с с

RU L i L
U Z

= −v v

2G p U=

( )

( ) ( )

+ −
=

   + + +   
   

×
−

�

�

�

1
2

1 2 1 2

0

sin cos 1

ω 1 11 sin cos

1 . 
cos ω sin ωс c с

zkl i kl
zihG

S z kl iz kl
z z z z

Z L iR Lv v

( ) ( )2 2 ω ,p t p←⎯⎯→�

^ ( ) ( )ω ,U t U←⎯⎯→�

^
2( )p t�

( )U t�

( )2 ωp ( )ωU



454 KROKHMAL et al.
therefore completely describe the plane-wave compo-
nent of the radiated acoustic field (see Section 2).
Thus, it becomes possible to create a reference plane
wave, which can be used to calibrate hydrophones by
comparing the electrical signal of the receiver and a
given acoustic signal measured in the plane-wave
mode.

4. DETERMINING THE UNKNOWN 
TRANSDUCER PARAMETERS

BY MEASURING THE ELECTRICAL 
IMPEDANCE

In practice, often, not all transducer parameters are
known, or they are known with limited accuracy, and
to obtain reliable results, these constants should be
specified. In this case, an analytical expression for the
electrical impedance of the piezoelectric transducer
(10) is useful. The impedance is easily measured in the
required frequency range [19, 20] using only an oscil-
loscope and a resistor with a known nominal value; the
obtained frequency dependence contains all the nec-
essary constants and parameters of the piezoceramic
plate. Since the number of measurement points can a
priori be made larger than the number of unknown
parameters, these parameters can be found by mini-
mizing the standard deviation of the theoretical
dependence on the experimental one. After specifying
the necessary plate constants, it becomes possible to
estimate the acoustic pressure on the transducer sur-
face.

The obtained frequency dependence of the electri-
cal impedance (10) includes the parameters of the
transducer that may be unknown in advance. Let us
suppose that the geometric dimensions of the plate
(thickness  area ) and density , which for the piezo-
electric plate of the used type PZT-4 is  kg/m3,
are known, and the remaining parameters are set only
with limited accuracy. Then the unknowns are the capac-
itance of the clamped transducer , electromechanical
coupling coefficient , and longitudinal wave velocity in
the piezoelectric , which enters into the expression for
the wavenumber and acoustic impedance.

To determine the transducer parameters, the fol-
lowing sequence of actions is proposed. The first step
is to experimentally measure the frequency depen-
dence  in water and air. Measurements should be
carried out in a wide frequency range, decreasing the
step near the resonance frequencies. Some of the
unknown parameters can be determined from the
experimental frequency dependence of the impedance
without additional calculations. Next, it is necessary
to choose the unknown parameters numerically, so
that the theoretical dependence of the impedance on
frequency (10) best coincides with the experimentally
measured dependence. The following describes the
sequence of actions that must be performed to deter-
mine all unknown parameters of the transducer based

,l  S ρ
ρ 7560=

0C
Tk

 c

( )  ωZ
on the experimental measurement of its electrical
impedance.

Step 1. Finding Resonance Frequency of the Transducer

When the experimental measurements are taken
 in water and air, the resonance frequency of the

transducer can be found from the maximum of the real
part of the impedance. Measurements in water and air,
as well as the wide frequency range that envelops both
the first and third resonances, make it possible to find
the resonance frequency of the piezoelectric plate with
a certain accuracy. In our experiments, it was

 and the error was estimated
by comparing the resonance frequencies of the first,
third, and fifth harmonics. The resonance frequency
makes it possible to calculate the unknown ratio of the
longitudinal wave velocity to the plate thickness by
formula .

Step 2. Determining the Electrical Capacitance
of the Piezoelectric Plate

At this stage, it is possible to estimate the capaci-
tance of the transducer . The method considers the
low-frequency asymptotics of the impedance,

. If we measure the impedance of the trans-

ducer in the low-frequency region, then from the
approximation of the dependence of the imaginary
part of the impedance on the frequency as a hyper-
bola, it is possible to estimate the sought capacitance
(Fig. 3a). Since the low-frequency asymptotics
depends only on the capacitance of the piezoelectric
plate, the dependences of the imaginary part of the
impedance on frequency during measurements in
water and air should be identical, which is observed in
experiment. In practice, the hyperbolic dependence is
distorted due to the occurrence of Lamb waves, but the
distortion decreases with increasing frequency. The
found capacitance of the piezoelectric plate was

 nF; the error was estimated by
comparing independent measurements in water and
air. Knowing the geometric dimensions of the plate,
from the approximation of the low-frequency asymp-
totics, the dielectric constant  can be estimated quite
accurately, which in the future will help with more
accurate selection of the remaining transducer charac-
teristics.

Step 3. Determining the Parameters of the Electric Cable 
Connected to the Transducer

The influence of the cable and the need to take it
into account when measuring the impedance is shown
in Fig. 3b: the electrical cable changes the slope of the
imaginary part of the transducer, which is particularly
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Fig. 3. (a) Approximation of imaginary part of experimentally measured impedance by hyperbolic dependence in low-frequency
region to determine capacitance of clamped transducer, (b) comparison of experimentally measured frequency dependence of
imaginary part of transducer impedance (circles) with theoretical formula for  disregarding influence of electric cable (dashed
line) and dependence for  taking into account cable (solid line). 
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significant in the frequency range between  and .
The dependence of the imaginary part of the imped-
ance on frequency in this region is mainly due

to the hyperbolic asymptotics  and influence of

the cable. Quantity  is virtually independent of
the acoustic impedance of the ceramics  and coeffi-
cient , since the resonance factor is relatively small
in this region. Therefore, setting tabular (i.e., approx-
imate) values for unknown quantity  and using the
found parameters  and , by comparing the exper-
imentally measured imaginary part of the impedance
with formula (10), we can determine the phase delay
introduced by the cable, i.e., the ratio of its length to
the speed of electromagnetic waves . The experi-
ment used an electrical cable with a wave impedance

 Ω. Since it is easy to measure the length of the
electrical cable, to check the correctness of the calcu-
lation procedure, it is possible to calculate the velocity
of electromagnetic waves and compare the result with
the tabulated values. In our experiment, the cable
length was  m and the found phase
delay turned out to be equal

 s, which corresponded
well to the typical values for the velocity of electro-
magnetic waves in the cable [18]. The error for 
was also estimated by comparing measurements of this
quantity when the transducer was immersed in water
and air. In the experiments, the measurement results
in these two cases did not differ within the above error.

0f 03 f

( )Im  Z

0

1~
ωC

( )Im Z
z�

Tk

Tk
0C с l

сL v

50cR =

1  .00 0.001L = ±

( ) 96.359 0.002 10сL −= ± ×v

сL v
ACOUSTICAL PHYSICS  Vol. 66  No. 5  2020
Step 4. Determining the Electromechanical Coupling 
Coefficient  from Impedance Measurements in Air

From the formula for the impedance of the piezo-
electric plate (9), it can be seen that it includes the
ratios of the acoustic impedances of the media  and

to the impedance of the ceramic . If the air is on
the left and right of the piezoelectric plate, then this
ratio becomes small. Therefore, formula (9) can be
transformed as follows:

(13)

In this case, at the intercept of the imaginary part
of the transducer impedance of the abscissa axis, we
can find the unknown electromechanical coupling
coefficient  [9]:

(14)

where the frequency  corresponds to equality of the
imaginary part of the impedance of the transducer to
zero.

Since the experiment measures the transducer
impedance taking into account the cable, to estimate
the impedance of the piezoelectric plate itself and find

, the influence of the cable needs to be eliminated.
Using the found value , we transform formula
(10) and obtain the following expression for the
impedance of the plate:
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Table 1. Found transducer parameters

R, mm  kg/m3 , MHz  nF , 10–9 s , 10–3

50 7560 1.120 ± 0.002 21.19 ± 0.04 6.359 ± 0.002 0.463 ± 0.004 4.92 ± 0.08

ρ, 0f 0,C cL v Tk tan δ
(15)

Now it remains only to determine at what frequency
the imaginary part of the impedance of the transducer
in air intersects the abscissa axis and calculate the
electromechanical coupling coefficient. In our exper-
iment, these values were  MHz and

, and the error  corresponded to
the frequency step when measuring the electrical
impedance of the transducer, and the error  was cal-
culated as indirect depending on the error of quantities

 and 

Step 5. Determining the Loss Tangent
of the Piezoceramics

The last unknown parameter is the tangent of the
angle of mechanical and electrical losses , which
contributes to the imaginary part of the wave vector as

follows: . Its value can be deter-

mined by the peak value of the real part of the imped-
ance in resonance regions. It is more correct to search
for the loss coefficient  in air, because in water
there are additional losses associated with radiation.
However, in both air and water, at the first resonance,
the influence of Lamb waves, which substantially dis-
tort the shape of the impedance dependence (Figs. 4a,
4c), is strong. Therefore, for an air load, it is advisable
to search for the loss tangent at the third and fifth res-
onance harmonics: the influence of Lamb waves on
them is already small (Figs. 4d, 4e). By comparing the
experimentally measured real part of the impedance in
the regions of resonance frequencies with formula
(10), the value of the loss coefficient was found :
at frequencies  and  in air, it was equal to

, where the error was esti-
mated by comparing measurements in two different
frequency domains. Within the specified error, the loss
tangent  did not change with frequency. This
value  also satisfies measurements in water at a
frequency  (Fig. 4b). Therefore, the found loss
coefficient can be applied in the entire considered fre-
quency range.

Thus, after performing the above five steps in the
expression for impedance (10), all the sought parame-
ters of the piezoelectric transducer are determined.
Constant , according to (4), is found from the above
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quantities—the dielectric constant  entering into the
transducer capacitance  and the electromechanical
coupling coefficient .

The results of comparing the experimental data
with the theoretical dependence for water and air are
shown in Figs. 5a, 5b. As a result of applying the
described algorithm of actions, the parameters of the
piezoceramic transducer used in the study were deter-
mined. They are given in Table 1.

5. MEASURING THE ACOUSTIC PRESSURE 
IN THE PLANE WAVE MODE

AND COMPARISON WITH THE CALCULATION 
IN THE ONE-DIMENSIONAL TRANSDUCER 

APPROXIMATION

During the experiment (Fig. 6), a known electrical
signal  was supplied from the frequency generator
to the transducer, which in turn emitted an acoustic
wave consisting of plane and edge components. At a
certain distance from the transducer, in the region
where these components were separated in time, a
hydrophone was placed and the received signal was
recorded. The plane wave component  corre-
sponding to the calculated time window in the fre-
quency space is related to  by (12). Thus, the

experimentally measured signal  and theoreti-
cal signal calculated from the known set voltage
on the generator  were compared. Note that the
calculated signal  corresponds only to the plane
wave emitted by the transducer, since the proposed
theory does not take into account edge effects and sur-
face waves.

The signals were emitted by a transducer, which
was a circular piezoceramic plate with a diameter of
100 mm and a thickness of 2 mm, mounted in a sealed
metal case with rings of conductive rubber located on
opposite sides of the piezoelectric plate near its edge.
Each of these rings was formed by a closed rubber cord
with a circular cross section having a diameter of
1 mm, which made it possible to ensure electrical con-
tact with the silvered surface of the plate with minimal
mechanical impact on its vibration. Because the back
load of the piezoceramic plate was air, the transducer
had a high mechanical Q-factor ( ); therefore,
the duration of the emitted acoustic wave turned out to
be several times longer than the period of the electric
signal set by the generator. The construction of the
transducer is described in more detail in [5].

ε
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Fig. 4. Comparison of imaginary and real parts of impedance experimentally measured (squares and circles, respectively) and the-
oretically calculated (gray and black solid lines, respectively) for measurements (a, b) in water and (c–e) in air at resonance fre-
quencies. 
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Fig. 5. Comparison of imaginary and real parts of imped-
ance experimentally measured (squares and circles,
respectively) and theoretically calculated (gray and black
solid lines, respectively) for measurements in (a) water and
(b) air in wide frequency range. 
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The electrical signal was formed by an Agilent
33250A generator. The amplitude of the pulses sup-
plied to the transducer was 3 V. As pulses, signals con-
sisting of one or three sine periods at the transducer
resonance frequency were used. To record a signal in
the region of realization of a plane wave, the above-
mentioned calibrated HGL-0200 hydrophone (Onda,
USA) was used. The factory sensitivity of the hydro-
phone was specified by the manufacturer with an
accuracy of 1 dB; within the error in the studied fre-
quency band, it was –262 dB to V/μPa at 1 MHz.

Figure 7 shows the records of the electric signal on
the transducer (Figs. 7a, 7b) and the corresponding
acoustic signals (Figs. 7c, 7d). The experimentally
measured signals, taking into account the sensitivity of
the hydrophone, were compared with acoustic signals
theoretically calculated by formula (12), where the
electrical signal spectrum  corresponded to the
records in Figs. 7a, 7b. The measurements showed that
for both transducers, the calculated signal describes
very well the measured signal, both its shape and
amplitude, fitting the factory sensitivity error of 1 dB.

When deriving (12), which relates the acoustic
pressure to the voltage on the generator, no restrictions

U

ACOUSTICAL PHYSICS  Vol. 66  No. 5  2020
on the signal duration were used. Thus, for operation
of the transducer in quasi-harmonic mode, it is also
possible to estimate the amplitude of the emitted har-
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Fig. 6. Diagram of experiment on emission and reception
of plane wave. 1, generator; 2, piezoelectric transducer; 3,
hydrophone; 4, oscilloscope.
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monic wave. Figure 8 compares the calculated acous-
tic pressure for a plane wave with the experimentally
measured pressure when an electric signal was applied
Fig. 7. Electrical signal measured at the transducer with the sha
sine period at resonance frequency and (b) three sine periods at 
imentally measured pressure signal (black line) with theoreticall
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to the transducer for a duration of 60 sine periods at
the transducer resonance frequency. With a suffi-
ciently large diameter of the transducer and, conse-
quently, a large time window corresponding to the
plane wave propagation mode, the amplitude of the
received signal has time to stabilize at a constant level,
and it can easily be compared with the calculated one
in the region where the oscillation amplitude is con-
stant over several periods. The oscillations that occur
afterwards, corresponding to the arrival of edge waves,
also stabilize after some time, and the total pressure
amplitude at the measurement point can be found by
comparing the amplitudes of the established plane
wave and total fields.
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resonance frequency; (c, d) comparison of corresponding exper-
y calculated one (gray line). 

t, s

–5

0

5
(d)

2.51.5 2.0
×10–5

p,
 k

Pa

t, s

0

–1

–2

1

2
(b)

310 2
×10–5

U
, V



CREATING A REFERENCE PLANE ULTRASONIC WAVE 459

Fig. 8. Comparison of experimentally measured signal (black line) with theoretically calculated one (gray line) for quasi-har-
monic electrical signal (60 sine periods at resonance frequency set on generator). 
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When the transducer is excited in a continuous
sinusoidal signal mode, we are interested in the rela-
tionship between the amplitudes of the emitted acous-
tic wave  and electrical voltage at the input of the
transducer . Figure 9 shows the frequency depen-
dence of the sensitivity calculated in by formula (12) in
emission mode  for the studied piezoelec-
tric transducers. The indicated dependence makes it
possible to determine the emitted acoustic pressure
from the electric voltage measured on the emitter, i.e.,
to use the transducer as a reference source in some
finite frequency range. A natural limitation in forming
the desired emitted signals is the resonance nature of

2  p
U

2   G p U=
ACOUSTICAL PHYSICS  Vol. 66  No. 5  2020

Fig. 9. Ratio of pressure emitted by transducer to voltage
on transducer as function of signal frequency. 
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the transducer’s sensitivity. Due to the high mechani-
cal Q-factor, the spectrum of the pulsed acoustic sig-
nal is rather narrow and, therefore, the amplitudes of
the experimentally measured and theoretically calcu-
lated signals can be compared only for spectral com-
ponents near the resonance frequency. To calibrate the
hydrophone in a broad frequency band, it is necessary
to either use a transducer with broad resonance (this is
possible via correct selection of the backing), or sev-
eral transducers with different resonance frequencies.

Thus, the proposed method makes it possible to
use a plane piezoelectric transducer with a large wave
dimension to emit a plane acoustic wave of known
amplitude and shape. This feature is attractive for cal-
ibrating hydrophones [21–24].

6. CONCLUSIONS

The study demonstrated the possibility of using a
plane piezoelectric transducer with a large wave
dimension as the source of a plane wave field with a
known temporal profile. In the case when the charac-
teristics of the transducer for some reason are
unknown, a method has been proposed for determin-
ing these characteristics by measuring the electrical
impedance.

The use of a piezoelectric transducer as the source
of the sound field of a known plane wave is possible in
a wide frequency range, since it is always possible to
choose a piezoelectric plate whose thickness reso-
nance corresponds to the required frequency interval.
The use of a matched backing and matching layers, as
well as the use of gradient piezoceramic plates [25],
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when the piezoelectric characteristics vary linearly in
thickness, as well as ultrasonic piezoelectric transduc-
ers with controlled characteristics [26], makes it possi-
ble to smooth the resonant peaks and increase the
operating frequency range. Thus, the stated results and
methods are a good basis for calibrating hydrophones
and calculating the amplitude of the emitted fields.
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