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1. INTRODUCTION

Ultrasonic visualization is actively used in nonde�
structive testing and medicine [1, 2]. Image construc�
tion is based on analysis of echo pulses that arise when
short probing pulses are scattered by inhomogeneities
of the medium. In medical diagnostics, ultrasound
propagates in weakly inhomogeneous soft biological
tissues, in which scattering is rather weak; therefore,
the image construction is based on weak scattered sig�
nals. High�intensity signals are artificially restricted
when processing scattering data. As a result, scatterers
of different strengths may have identical images (in the
form of bright regions).

There are diagnostic situations in which it is impor�
tant to visualize and differentiate both weak and strong
scatterers. An example of such objects is vapor–gas
bubbles of different sizes, from microns to millimeters,
which arise in a biological tissue during therapy using
high�intensity focused ultrasound. When the acoustic
cavitation threshold is exceeded, gas bubbles with
dimensions that range from several microns to several
tens of microns arise in the medium, and if ultrasound
heats the tissue up to boiling, larger vapor–gas bubbles
appear that may grow and reach diameters of several
millimeters [3, 4]. Both small cavitation bubbles and
large bubbles that appear during tissue boiling are
strong scatterers; therefore, they are displayed in an

ultrasonic image in the B mode as bright spots with a
size that exceeds the scanner resolution. As a rule, the
form of these spots gives no definite information on
the bubble size; thus, it is difficult to determine the
phenomenon, either the cavitation or boiling, that
occurred in the tissue in the region of therapeutic
action. Depending on the bubble size and features of
the bubble dynamics in an acoustic field, various bio�
logical effects arise; therefore, the ability to distinguish
between bubbles of different sizes using ultrasonic
images thereof is of practical significance.

Note that micron�sized cavitation bubbles can
scatter ultrasound in the resonant manner [5, 6], but
larger bubbles that are produced during boiling behave
more likely as stationary empty cavities for megahertz�
frequency waves in water. In order to reveal the depen�
dence of a backscattering signal on the bubble size, it is
necessary to simulate the process of ultrasonic pulses
being scattered by a stationary empty cavity. Numerical
simulation of this process can use the known theoretical
model of scattering of a plane acoustic wave by a per�
fectly soft sphere [7]. This model is an important exam�
ple of exactly solved diffraction problems.

There are a few studies devoted to diagnostics of
strongly scattering objects with dimensions on the
order of the instrument resolution or even smaller,
despite the fact that such objects may appear in certain
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situations in the bodies of human beings or animals
and influence biological processes. Therefore, acous�
tic microscopy studies are noteworthy, in which
images are obtained by scanning the investigated
region with a high�frequency single�element trans�
ducer, which is coupled to an acoustic lens. Some
aspects of the formation of images of spherical scatter�
ers were considered in a number of studies in this field
[8, 9]. Similar, although not identical problems arise
when visualizing bubbles using the multielement
transducers of medical diagnostic scanners. This study
refers just to this field of investigation.

2. EXPERIMENTAL STUDY OF REFLECTION 
FROM A FLAT INTERFACE

An experimental study of ultrasound scattering by a
millimeter�sized gas bubble under ordinary conditions
is rather difficult, since a bubble reaches the surface
very quickly under the action of the buoyancy force,
and the use of holding accessories inevitably distorts
the spherical shape of the scatterer. Therefore, when
investigating scattering, it is desirable to replace a gas
bubble with a sphere of a mechanically stiff but acous�
tically soft (in comparison to water) material. Styro�
foam with a density much lower than the water density
is one such material. To test the possibility of using
styrofoam as the material for the acoustic model of a
gas medium, a number of experiments on comparing
the reflection properties of styrofoam and air were car�
ried out. The goal was to verify whether the acoustic�
wave reflection coefficient for styrofoam in water is
indeed close to the coefficient of reflection from air

and this value is close to –1. In a general case, the
coefficient of reflection from such media may differ
from this value [10].

The schematic of the first experiment is illustrated
by photographs in Fig. 1. A flat ultrasonic transducer
with a diameter of 38 mm (Model V392�SU, Olym�
pus, Waltham, MA, USA) was oriented so that its nor�
mal was directed vertically upward. It was placed in a
bath with degassed water at a distance of 5.5 cm from
the free water–air interface. The transducer was
excited with a high�frequency voltage from a signal
generator (Model 33120A, Agilent Technologies Inc.,
Santa Clara, CA). The voltage at the transducer was
recorded with an oscilloscope (Tektronix 520A, Bea�
verton, Oregon, USA). A pulse consisting of 20 cycles
was radiated at a frequency of 1 MHz, and a surface�
reflected echo signal was recorded.

The flat side of a styrofoam block was then placed
horizontally on the water surface with an immersion
depth of 1–2 mm, and a styrofoam�reflected pulse was
recorded in a similar way (Fig. 1). The cross�sectional
size of the reflecting surface (~10 cm) was much larger
than the ultrasonic beam diameter (~4 cm). Note that
in order to avoid the formation of an air layer between
styrofoam and water, the styrofoam block was initially
fully submerged in water and turned so that the reflect�
ing side could be vertical for some time. This surface
was then wiped to remove bubbles that stuck to it, and
only after this was the reflecting surface finally posi�
tioned horizontally. The typical result of observations
is shown in Fig. 2. The virtually complete coincidence
of both the amplitudes and phases of two reflected
pulses indicates that the coefficients of reflection from

Air
Styrofoam

Tr a n s d u c e r

Water

Fig. 1. Experiment on comparing coefficients of wave reflection from flat air–styrofoam interfaces.
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the water–air and water–styrofoam interfaces are
close to each other and that styrofoam actually
behaves as an acoustically soft material.

The fact that the reflected signal is averaged over
the transducer surface can be regarded as a certain
drawback to the described experiment. In order to lift
this restriction, we performed another experiment, in
which the measured signals were not spatially aver�
aged. The measurements were performed with the
same transducer used as the ultrasound source, but the
reflected signal was received with a separate hydrophone.
The normal to the source had a horizontal direction. Just
like in the above�described experiment, measurements
were performed in two stages, with the styrofoam block
and without it, but other characteristics were compared,
namely, the 2D wave amplitude and phase distributions
in the reflected and freely propagating beams at the same
distance from the source.

When studying the acoustic properties of styrofoam
the plane reflecting surface was set at an angle of 45°
to the direction of the incident beam so that the
reflected beam continued to propagate in the horizon�
tal direction normally to the initial incident beam. The
2D transverse wave amplitude and phase distributions
were measured in the vertical plane, which was per�
pendicular to the reflected beam axis, beyond the zone
of the incident beam. Measurements were performed
with a hydrophone with a sensitive area of 0.15 mm in
diameter (Model GL�0150, SEA, CA, USA). Note
that the ultrasound wavelength at the operating fre�
quency was 1.5 mm; i.e., the sensor could be consid�
ered a point sensor. The hydrophone was installed on
a computer�controlled micropositioning system
(Velmex Inc., Bloomfield, NY, USA), which allowed
the field to be spatially scanned with an accuracy of up
to 2.5 µm. The scanning pitch was 0.5 mm. After these
measurements of the reflected beam parameters, the
styrofoam block was taken out of the water and the
hydrophone was oriented toward the source and
placed at such a distance from it that the front delay of
the received signal on the beam axis coincided with the

delay recorded for the styrofoam�reflected signal in
the first part of the experiment. Subsequently, the field
was scanned again in the transverse plane; thus, the
2D wave amplitude and phase distributions for the
freely propagating beam were determined.

The measurement results are shown in Fig. 3. The
phase distributions of the considered fields show that
the scanning plane was positioned along the wave front
of the beam with a high accuracy (the phase gradient is
small, about 1 rad/cm); thus, both scanning surfaces
were virtually perpendicular to the beam axis. The
cross�sectional amplitude distribution in the freely
propagating beam has a smooth circular structure.
This structure is slightly distorted in a reflected beam,
which can be explained by the presence of small irreg�
ularities on the styrofoam surface. This distortion does
not allow comparison of the local field values in two
cases. At the same time, it is possible to compare the
powers of the incident and reflected beams. For this
purpose, the total power was calculated with an accu�
racy to within the same factor, which is determined by
the hydrophone sensitivity, for each of the measured
amplitude distributions. Because the measured trans�
verse phase change was found to be small in both cases,
the power could be considered proportional to the
integral of the amplitude squared. As a result of this
calculation, the reflected beam power was found to be
approximately 91% of the incident beam power. This
value is close to 100%; i.e., styrofoam indeed reflects
as an acoustically soft material. A slight decrease in the
total power of the reflected beam can be due to the fact
that a part of the reflected signal did not reach the
scanned area because of surface irregularities on the
styrofoam plate (this is seen in the lower part of the
reflected�signal amplitude distribution in Fig. 3).

3. SCATTERING BY SPHERICAL SPECIMENS

3.1. Experiment

Since the above�described experiment with an
extended flat FM specimen confirmed that styrofoam
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Fig. 2. Acoustic pulses reflected from water–air (black line) and water–styrofoam (gray line) interfaces. A certain advance of sig�
nal arrival from styrofoam (~0.5 µs) is explained by slight immersion of the reflecting surface relative to the initial water level.
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is close to air in its acoustic properties, it can be
expected that small spherical styrofoam specimens
will scatter ultrasound as empty cavities. This was
checked with a number of experiments on obtaining
the scattering patterns for a soft�sphere model. A sty�
rofoam ball with a 5�mm radius was taken as the
model. It was fixed in a rigid frame on an acoustically
transparent thin filament (a 50 µm�diameter nylon
fishing line) with an adhesive so that it would not come
to the surface when immersed in water (Fig. 4).

The experimental setup consisted of the same ele�
ments (a generator, an ultrasonic transducer, an oscil�
loscope, a hydrophone, and a micropositioning sys�
tem) as those in the above�described experiments.
Measurements were performed in the following order.
First, in the presence of a spherical scatterer, raster
scanning of the transverse ultrasonic field structure
was performed in the region behind it. The signal
amplitude  and phase  were measured at eachtotalA ϕtotal

point; i.e., the cross�sectional distribution of the com�
plex amplitude  =  of the total
field, which consisted of the incident and scattered
fields, was found. Subsequently, analogous field scan�
ning and amplitude  and phase  measurements
were performed in the same region but in the absence
of the scatterer, and the distribution of the complex
amplitude of the incident field  = 
was determined. The complex amplitude of the scat�
tered field  was then found as the difference of the
measured quantities:  =  –  Hence, the
expression for the scattered�wave amplitude  =

 follows
from the above, thus providing a comparison to the
theory (see below). The scattered�wave phase can also
be measured, but it is much more sensitive to small
changes in both the positions of the measurement
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Fig. 3. Distributions of phase and amplitude of fields of incident and styrofoam�reflected waves.
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points and the ambient temperature than the wave
amplitude. Therefore, the corresponding distributions
may differ to an appreciable degree.

3.2. Theoretical Model for Investigating Acoustic 
Scattering by Soft Spherical Objects

As was mentioned in Introduction, the theory of
acoustic scattering by a soft sphere is known well [7].
Let us present the main formulas that were used when
comparing the theory to the experiment. Let a plane
harmonic wave of unit amplitude propagate in the
medium. Its acoustic pressure in a spherical coordi�
nate system is expressed in the form  =

 where ω is the harmonic�wave
frequency, k is the wave number, r is the distance from
the origin of coordinates, and θ is the angle between
the wave�propagation direction and the direction to
the observation point. If the complex amplitude  is
introduced according to the formula  =

 it can be represented in the form of the
series

(1)

where jn(kr) are spherical Bessel functions, and
Pn(cosθ) are nth�order Legendre polynomials. Let a
spherical scatterer be positioned at the origin. The
complex amplitude of a scattered wave is also
expressed as an analogous series:

(2)

where  are nth�order spherical Hankel func�
tions of the first kind. In the case of a perfectly soft
scatterer of radius a, the coefficients of the series are
expressed as follows:

(3)

It should be noted that the approximation of a plane
incident wave is poorly justified in the entire spatial
region, because an actual ultrasonic beam is not only
limited in the transverse direction but also has an
inhomogeneous structure. At the same time, a plane
wave can be reproduced with a high accuracy near a
scatterer if the inhomogeneity of the ultrasound field
on the scatterer scale is small. Exactly this condition
was created in the above�described experiments, in
which the scatterer was placed on the beam axis in the
region where the wave structure was close to a plane
wave. The proximity to a plane wave was checked
experimentally by scanning the field in the region
where the scatterer was located. Note that under these
conditions, expression (1) for an incident wave is sat�
isfied only locally, near the scatterer, but expression (2)
for a scattered wave can be considered sufficiently pre�
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cise globally, i.e., at large distances from the scatterer.
This allows a correct comparison of the theory and
experiment.

The complex amplitude of the scattered wave was
theoretically simulated in Fortran using formulas (2)
and (3). The developed program makes it possible to
construct the directivity patterns of perfectly soft
spherical scatterers of different radii.

3.3. Comparison of Theory and Experiment

Measurements were performed with scatterers of
different size; the results show the similarity of the
scattered�field structures. As an example, let us con�
sider a scatterer with a 5�mm radius. The dependence
of the pressure amplitude of the scattered wave on the
distance between the center of the sphere and the
scanned area on the beam axis in the forward�scatter�
ing direction was preliminarily calculated from formu�
las (2) and (3) (Fig. 5). The near�field zone, where
oscillations occur, and the far�field zone, where the
pressure slowly decreases with increasing the distance
to the scatterer, can be seen. The diffraction transition
from the near�field to the far�field zone is observed at

Radius 5 mm

Fig. 4. Styrofoam sphere with 5�mm radius on fishing line,
stretched in stiff U�shaped frame.
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a distance of 17 mm from the scatterer. On the basis of
the calculated dependence, distances of greatest inter�
est for experimental investigations of scattering pat�
terns were chosen. The first point corresponds to the
minimum of the near�field zone (10 mm), which is
characterized by a “dip” at the center of the scattering
pattern. The second point is the beginning of the far�
field zone (25 mm), and the third is in the region of the
steady�state far�field zone (50 mm).

Let us analyze the obtained transverse wave�ampli�
tude distributions at different distances from the scat�
terer (Fig. 6). At a distance of r = 10 mm, the theory
predicts a dark spot at the center (Fig. 6a), which is
caused by the diffraction in the near field. Note that
the experiment clearly confirms this feature of the
scattered field. Moreover, the measured scattered�
wave amplitude distribution at the central part of the
pattern quantitatively coincides with the theoretical
distribution. The only discrepancy is the presence of
additional side rings in the experimental patterns.
These rings weaken, as the distance r increases. The
appearance of these “spurious” rings in the experi�
ment can be explained by the influence of re�reflected
acoustic waves between the scatterer and hydrophone.
This artifact can hardly be avoided at short distances.
This effect becomes weaker at long distances, and the
experiment slightly differs from the theory. Thus,
spherical styrofoam scatterers indeed properly model
perfectly soft scatterers, such as gas bubbles.

4. ULTRASONIC VISUALIZATION OF SOFT 
SPHERICAL SCATTERERS

4.1. Schematic of Calculating the Scattering
of a Pulse Signal

From the obtained results, it can be concluded that
the acoustic properties of styrofoam are rather close to
the acoustic properties of air, thus allowing styrofoam
specimens to be used as models of gas bubbles to inves�
tigate the technique for obtaining ultrasonic images of
bubbles in water or biological tissue phantoms.

In most problems of ultrasound diagnostics, pulse
signals  are used. A typical signal has the form of
a tone burst with a Gaussian envelope. Such a signal
can be written as

(4)

Here, p0 is the typical pulse amplitude, t is the time, τ0
is the pulse duration, and ω0 is the center cyclical fre�
quency. To calculate the scattered field using formulas
(2) and (3), an incident pulse must be represented as a
Fourier integral, which is a superposition of harmonic
waves, and the scattering of each spectral component
must be individually considered. The resulting scat�
tered wave at any spatial point is then a superposition
of scattered waves at each frequency at this point.

In practice, instead of the Fourier integral, a finite
number of terms of Fourier series are used; for this
purpose, the signal periodically continues with a cer�
tain period T and the coefficients of the corresponding
series are calculated:

(5)

After substitution of (4) into (5), the following expres�
sion for the amplitudes of the harmonics is obtained in
the limit of :

(6)

where  is the frequency of the corre�
sponding harmonic. Incident wave (4), which repre�
sents a diagnostic ultrasonic pulse, is a superposition
of plane waves at different frequencies with known
amplitudes. In spherical coordinates, an incident

plane wave has the form  =  where  =

 km =  thus, the problem reduces
to the above�considered classical case of a plane har�
monic wave. In this study, the described algorithm was
used for theoretical analysis of diagnostic pulses scat�
tered by soft spherical scatterers. Typical values of the
parameters used in ultrasonic medical diagnostic sys�
tems were used in the calculations: pulse duration τ0 =
2 µs, center frequency  = 3 MHz, and pulse
repetition period T = 100 µs.

4.2. Image Construction Algorithm

To construct an ultrasonic scatterer image, a pro�
gram analogous to those used in an ultrasonic scanner
with an N�element transmit–receive phased array was
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developed using Matlab software. Although the devel�
oped algorithm is basically standard, it is briefly
described here for clarity, because different developers
of ultrasonic scanners usually add specific techniques
to implement the general algorithm.

Image construction is partitioned into several
stages. At the first stage, scattering signals at each of N
transducers are found from the results of numerical
calculation of a diagnostic pulse scattered by a soft
sphere. A pulse in the form (4) was used as the incident
wave. The delay is calculated for each n = 1, …, N:

(7)

where (x0, z0) are the scatterer coordinates in the visu�
alization plane and (xn, 0) are the coordinates of the
nth transducer. The first stage results in a data array in
the form of a set of scattered signals that arrived at the
transducers:

(8)

At the next stage, the signals are digitized with a pitch
of ht = 50 ns; as a result, a 2D scattering data array is
formed:

(9)

To ensure extraction of the initial signal envelope,
an analytical signal is introduced:  =  +
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 where U(t) is the initial (in�phase) signal and
V(t) is its quadrature component, which is related to
the initial signal via the Hilbert transform. An orthog�
onal signal complement V(n, m) is found for each U(n, m).
As a result, we have a complex array of analytical sig�

nals  =  +  The envelope is described
by the magnitude of the analytical signal.

To construct an image, a mesh is introduced on the
(x, z) plane with a pitch of h = 0.5 mm. For each point
(xl = lh, zk = kh) that is specified by a pair of indices
(l, k) and for each element n of the antenna array, the
delay time is found:
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Fig. 6. Theoretical and experimental scattering patterns for soft spherical scatterer 5 mm in radius positioned at distances of (a)
d = 10 mm, (b) 25 mm, and (c) 50 mm from center of scatterer on planes (a) 10 mm ≤ x, y ≤ 10 mm; (b, c) 15 mm ≤ x, y ≤ 15 mm.
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weighted value  is constructed from the values of
the functions for these indices:

(11)

The final stage of the algorithm is the summation of
the delayed signals from all array elements and the cal�
culation of the pattern brightness Blk at a given point of
the image as the square of the total magnitude of the
analytical signal:

(12)

The described variant of image construction corre�
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image is constructed by sequential sending of acoustic
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pulses and recording of the corresponding scattered
signals along each of rays 1, 2, …, N.

The ultrasonic image of the scatterer, which was
positioned at different points, was calculated by the
described algorithm. As an example, Fig. 7 shows an
image of a point scatterer at a point with coordinates
(x, z) = (32 mm, 60 mm) obtained using different
scanner operating modes: irradiation of the investi�
gated region with a plane wave and a focused wave
(Fig. 7). In accordance with the general features of
ultrasonic image construction [11, 12], the scatterer
image that was formed in the mode of irradiation with
a focused wave is the most localized when the scatterer
is positioned at the wave focus. If the scatterer is
removed from the focus to a certain distance (nearer to
or farther from the scanner) or the mode of irradiation
with a plane wave is used, the scatterer image becomes
blurred in the transverse direction. In any case, the size
of the bright spot that corresponds to the localized
scatterer is larger than the scatterer size. Hence, its
size cannot be determined from the brightness pattern.
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Fig. 7. Model image of point scatterer with coordinates (x, z) = (32, 60 mm) in mode of emission of (a) a quasi�plane wave and
(b, c, d) a focused wave with focal lengths of F = 60, 30, 90 mm, respectively.
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4.3. Visualization of Spherical Styrofoam Scatterers: 
Technique for Measuring the True Scatterer Dimensions

A number of experiments on obtaining ultrasonic
images of soft spherical scatterers were performed to
compare the theoretical calculations of images of
strong scatterers to observations. A Terason Ultra�
sound System ultrasonic scanner with a 10L5 antenna
array, which consisted of 128 elements and operated at
a frequency of 3 MHz, was used as the measuring
instrument. An image can be observed on a computer
monitor, which also includes a signal�generating unit
and a data�processing unit. Gelatin was used as the
investigated object (model for biological tissue), and
spherical styrofoam specimens of different diameters
served as strong scatterers that simulated gas bubbles.

In one of the experiments, two styrofoam speci�
mens with diameters of 1 and 0.5 mm were taken. It
was disclosed that the dimensions of the obtained
ultrasonic images are virtually the same (Fig. 8); i.e.,
the resolution of the ultrasonic scanner did not allow
us to obtain an object image with a size corresponding
to the actual one: the sizes of images of both “bubbles”
exceeded the true sizes.

In order to avoid the aforementioned limitation,
one can use a priori information on the regularities of
ultrasonic wave scattering by a perfectly soft sphere.
Let us again apply the theory of sound scattering by a

perfectly soft sphere and consider the scattered�signal
amplitude as a function of the scatterer size. To sim�
plify the calculations in the far�field zone (r → ∞), the
Hankel function asymptotics is used:

(13)

The formula for the scattered�field pressure at a
long distance from the scatterer can be represented in
the form

(14)

where

(15)

Here, as before, а is the scatterer radius and θ is scat�
tering angle (θ = 0° corresponds to forward scatter�
ing). From the standpoint of echo�pulse visualization,
it is useful to analyze the character of changes in coef�
ficient f(ka, θ) for different values of the scatterer
radius at scattering angles θ = 180° (backscattering),
170°, 160°, and 150° (Fig. 9). Calculations show that
an oscillating character of coefficient f(ka, θ) is
observed in directions that form certain angles to the
exact backscattering direction. In other words, when
the scatterer radius or the frequency of the transmitted
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Fig. 8. Comparison of experimental images of two models of bubbles 0.5 and 1 mm in diameter.
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ultrasonic signal increases, the scattered�field pressure is
only a monotonically increasing function for backscat�
tering; in other cases, it increases nonmonotonically.

The fact that the dependence of the scattering
intensity on the scatterer size for backscattering is a
monotonically increasing function is very important
for the bubble visualization problems considered here.
In fact, such a dependence makes it possible to unam�
biguously determine the scatterer size from the ampli�
tude of a backscattered signal (exactly such signals are
used in ultrasonic scanners for image construction).
This method requires that the ultrasonic scanner be
calibrated on a soft scatterer with a known size. The
above�described experiments showed that styrofoam
spheres can be used as standard scatterers. Subse�
quently, when a region with bubbles of unknown
dimensions is scanned, the brightness of their images
can be compared to the brightness of a standard�bub�
ble image, and the scatterer size can be determined
based on the scattered�signal level.

5. CONCLUSIONS

A model of a stationary gas bubble in water in the
form of a styrofoam spherical specimen was proposed
and investigated. Scattering of acoustic pulses by a
perfectly soft sphere was numerically simulated. It was
shown that the theoretical directivity patterns of a soft
spherical scatterer virtually coincide with the experimen�
tal data for a styrofoam specimen. A program was devel�
oped that implements two operating modes of the ultra�
sonic scanner: with plane and focused incident waves.
The calculation results obtained using this program con�
firmed that objects whose sizes are smaller than the
instrument resolution have ultrasonic images that exceed
the true size of the considered object. Experiments per�
formed with an actual ultrasonic scanner and styrofoam

models confirmed these features. The theoretical calcu�
lations for a perfectly soft sphere showed that a method
for determining the true size of a scatterer from the
brightness of its ultrasonic image can be achieved.
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