
ISSN 1063�7710, Acoustical Physics, 2016, Vol. 62, No. 1, pp. 38–45. © Pleiades Publishing, Ltd., 2016.
Original Russian Text © A.V. Nikolaeva, S.A. Tsysar, O.A. Sapozhnikov, 2016, published in Akusticheskii Zhurnal, 2016, Vol. 62, No. 1, pp. 29–37.

38

INTRODUCTION

The occurrence of the acoustic radiation force is a
nonlinear acoustic effect conditioned by the transfer
of wave momentum to absorbing or scattering objects
[1–3]. A similar effect is widely known for electro�
magnetic waves, especially in optics, where it is called
light pressure. A visual demonstration of the manifes�
tation of the radiation force of ultrasound is the
“acoustic fountain” effect—the phenomenon of a
hydrodynamic jet that occurs when an ultrasound
beam is focused on the free surface of a fluid [4, 5].
The radiation force also makes it possible to achieve
levitation of small particles and microbubbles or to
create hydrodynamic flows in a fluid (acoustic stream�
ing) owing to absorption of the ultrasound beam by the
fluid [6–9]. The phenomenon of the acoustic radia�
tion force is used quite widely in practice. Thus, this
effect is used in modern ultrasound metrology to mea�
sure the acoustic power of therapeutic and diagnostic
sources [10]. Recently, other applications of the radia�
tion force effect have been developed: an example is
ultrasound devices for remote manipulation of human
kidney stones [11]. Since the corresponding forces are
relatively small, it is very important to develop precise
methods for measuring them.

Theoretical models describing the phenomenon of
the radiation force nowadays are quite well developed.
It is possible to single out the case of particles whose
diameters are much smaller than the wavelength. For
this, radiation force theory is appreciably simplified
[12]. However, in practice, the sizes of scattering
objects are frequently comparable to or larger than the

wavelength. This work considers precisely this case.
For such situations, analytic methods for calculating
the size of the radiation force have also been developed
[13–17]. In addition, the effects have been described
and expressions obtained for finding the force when
calculating the viscosity of the surrounding fluid [18].

In addition to analytic models, differing numerical
methods have also been developed to calculate the
radiation force. Many authors have succeeded in
determining the force, which with good accuracy
agrees with theoretically obtained data. Thus, the
well�developed mathematical apparatus opens up
great possibilities for the practical application of this
phenomenon, for which of undoubted importance is
the problem of conducting precise measurements of
the magnitude of the radiation force. The authors of
[19] described one of the first experiments on measur�
ing the radiation force exerted by a plane traveling
wave. All measurements were performed for the fre�
quency range of 450 kHz–1 MHz. The obtained
experimental points coincide within error limits of 3%
with the theoretical results obtained in [14] taking into
account the elasticity of the scatterer. As a result, dif�
ferent modifications of experimental setups and meth�
ods for measuring the force were proposed [20–22],
each of which has its own pluses and minuses. How�
ever, even though the experiments coincide quite well
with the theoretical results, obtaining accurately mea�
sured and reliably predicted force values is still prob�
lematic. This is the subject of our paper.

In this work, using known analytic relations, a
numerical model is developed to calculate the force for
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spherical scatterers of different sizes and arbitrary fre�
quencies of the incident acoustic wave. We describe in
detail experimental research on measuring the radia�
tion force in a wide range of incident beam intensities
using two chosen methods differing in the way the tar�
get is controlled. Schemes of experimental setups and
methods of measuring the radiation force are pre�
sented, as well as obtained experimental data in graph
form, and the results are analyzed.

THEORETICAL STUDY OF THE ACOUSTIC 
RADIATION FORCE

Following [14, 17], let us briefly present the main
information on the theoretical model used in this
study to find the value of the radiation force acting on
an elastic spherical scatterer in a fluid. To determine the
radiation force on some obstacle, it is necessary to take
into account the change in the wave momentum related
to scattering at the wave by this obstacle. Therefore, the
calculation algorithm consists of two main stages: first,
the problem of sound scattering by a sphere is solved and
then the results for calculating the scattered wave are
used to calculate the radiation force.

Let us assume that the medium surrounding the
scatterer is an ideal fluid with density ρ and sound
propagation velocity in it с. Let us place the origin at
the center of the considered sphere (Fig. 1).

Consider a plane harmonic wave of frequency
 falling onto a sphere of radius a, so that the

corresponding wavenumber is  In this case,
the acoustic pressure  and particle velocity

 are written in the form

( )= ω π2f
= ω .k c

( )' ,p tr
( )' ,tv r

(1)

where P and V are the complex amplitudes of pressure
and velocity, respectively. The pressure complex
amplitude P is the solution to the Helmholtz equation

 The total acoustic field is the sum of the
incident and scattered waves:  where P,
Pinc, and Psc are the complex amplitudes of the total,
incident, and scattered (by the obstacle) fields, respec�
tively. The expression for the amplitude of the plane
wave Pinc in spherical coordinates is represented in the
form of a series [23]:

(2)

where r and θ are the spherical coordinates (Fig. 1),

 =  is the spherical Bessel function,
and  is the Legendre polynomial. The scat�
tered field  in turn is represented in the form of an
expansion [23]:

(3)

where  =  +  is the Hankel func�

tion of the first kind;  =   is
the Neumann function. The coefficients bn character�
izing acoustic wave scattering are found from the
boundary conditions on the surface of the scatterer.
Since the fluid is considered inviscid, these conditions
consist in the continuity of the normal velocity and
stress components, as well as in the absence of shear
stress on the surface of the scatterer. For a solid spher�
ical scatterer with density ρ* and longitudinal cl and
transverse ct sound propagation velocities in the scat�
terer material, coefficient bn taking into account the
boundary conditions is written as follows:
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Fig. 1. Geometry of problem of a plane wave scattered by a
sphere.
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where ρ is the density of the surrounding fluid,

  σ is the Poisson coefficient for a

solid. In the particular case of an absolutely rigid scat�
terer,  which leads to a value of the coefficient
for scattering of a plane wave by a rigid sphere of bn =

 [23]. The obtained expression for the total

field  for scattering of an acoustic wave by
an elastic sphere takes into account excitation of lon�
gitudinal and shear waves inside the scatterer,

(6)

and makes it possible to calculate the size of the acous�
tic radiation force acting on the spherical scatterer
from the plane wave.

The second stage is direct calculation of the radia�
tion force based on the solved scattering problem. The
radiation force is a quadratic quantity of acoustic per�
turbations; to determine it, it is necessary to take into
account quantities of the second order of smallness
that do not turn to zero after averaging over time. In
the quadratic approximation, the radiation force is
written in the form of an integral over a closed surface
S containing in itself the studied scatterer [24]:

(7)

where  –  n is the vector of the
external normal to the element of the surface dS; v'
and p' are, respectively, the particle velocity and acous�
tic pressure, which are found from the solution to the
scattering problem; and angle brackets 〈.〉 denote aver�
aging over the wave period.

In the case of harmonic wave (1), expression (7) is
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In the case of a spherical scatterer, the sought radi�
ation force F acts along the wave propagation axis z
and has a single component Fz (in the general case, the
radiation force has all three components). The ana�
lytic expression for component Fz is presented in [25].

For numerical calculation in Fortran using the
above�mentioned formulas, a code was written to
determine the radiation force acting on an elastic
spherical scatterer in a fluid. The code assigns the
parameters of the scatterer, such as density, radius,
velocity of longitudinal and shear waves in the scat�
terer material, as well as the parameters of the sur�
rounding fluid c = 1500 m/s and ρ = 1000 kg/m3

(water). During calculations it was considered that the
surrounding fluid was ideal; i.e., the viscosity and heat
conductivity of the medium were not taken into
account. To find the force, expression (8) was used,
written for the force component Fz. For numerical cal�
culation of such quantities as the amplitudes of the
pressure and particle velocity, summation was per�
formed from 0 to some finite number N = 3…5 ka.

Since the radiation force acting on the scatterer
depends on the incident wave intensity, for conve�
nience of analysis in calculations, the dimensionless
quantity Yp is introduced—the specific radiation
force, which is defined as

(9)

where I is the incident wave intensity, с is the sound
velocity in a fluid, and a is the radius of the scatterer.

The plot in Fig. 2 shows the dependence of the nor�
malized quantity Yp on dimensionless parameter ka. It
shows the dependences for spheres made of different
materials, steel and glass, as well as for an absolutely
rigid scatterer. The parameters of the materials used in
calculations are as follows: steel—velocity of longitu�
dinal waves сl = 5240 m/s, velocity of shear waves сt =
2978 m/s; glass—сl = 5570 m/s, сt = 3515 m/s. Thus,
the program makes it possible to calculate the magni�
tude of the radiation force for spherical scatterers of
any radius and density for known parameters of a
plane acoustic wave, such as frequency and intensity.

The calculated curves  coincide with
the dependences obtained earlier for the same materi�
als by the authors of other works [21, 22]. One can see
from the plots that in the case of an absolutely rigid
scatterer, with an increase in frequency, the specific
radiation force rapidly increases; however, after the
frequency attains a value at which the radius of the
scatterer becomes on the order of the wavelength, the
increase slows and approaches saturation: the quantity
Yp hardly depends at all on the frequency of the inci�
dent plane wave. For glass and stainless steel, the pat�
tern is somewhat different. For them, it is possible to
distinctly observe local dips of the  curve, which
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Fig. 2. Dependence of specific radiation force on dimen�
sionless parameter ka for different scatterers. Parameters
of immersion fluid: c = 1500 m/s, ρ = 1000 kg/m3 (water).
Circle on curve for steel sphere corresponds to experiment;
here, ka = 8.44 and Yp = 0.92.
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correspond to resonance elastic oscillations of the
sphere at the corresponding frequencies.

During experiments, the acoustic parameters of the
scatterer material can differ somewhat from the tabu�
lated values, which can reflect on the accuracy of the�
oretically calculating the value of the force in cases
when the wave frequency is close to that of any reso�
nance. In order to avoid related errors, it is desirable to
choose the wave frequency in a smooth area of the

 curve. This requirement was taken into
account when choosing the operating frequency of the
source f and the radius a of the steel sphere used as a
scatterer in the above�described experiments. Based
on the calculated theoretical dependences and taking
into account the value of the operating frequency of
the source f = 1.119 MHz, a steel sphere with a radius
of a = 1.8 mm was chosen as the target (Fig. 2). Note
that the size of the normalized radiation force

= 0.92 in this case is close to its value for an
absolutely rigid scatterer.

EXPERIMENTAL MEASUREMENT 
OF THE RADIATION FORCE ACTING

ON A SOLID�STATE ELASTIC SCATTERER

The theoretical model makes it possible to calcu�
late with high accuracy the size of the force acting on
a spherical obstacle. However, an important problem,
as already mentioned, is the possibility of high�preci�
sion measurements of the radiation force. To conduct
similar measurements, it is necessary to satisfy several
conditions: first, it is necessary to suppress the possible
influence of hydrodynamic flows that inevitably arise
in intense fields; second, it is necessary to ensure the
condition of plane wave incidence on the scatterer.

In the study, hydrodynamic forces are eliminated
by introducing a thin sound�transparent film into the
experimental setup, directly in front of the scatterer.

The plane wave condition is fulfilled, first, by using
a special absorber to eliminate reverberation. Second,
the spherical scatterer is placed in a homogeneous, on

( )pY ka

( )pY ka

the scale of the target, region of the field. In order to
exactly determine this region of the scatterer, it is nec�
essary to know the distribution of the field pressure
amplitude in a wide range of distances from the
source. For this, it is possible to use the acoustic
holography method [26–28], which measures the
amplitude and phase of the pressure along some cho�
sen test surface and calculates the acoustic field at the
source by solving the inverse radiation problem using
the Rayleigh integral:

(10)

where  are the complex amplitudes of the
normal component of the particle velocity at the sur�
face of the source and the acoustic pressure on the test
plane, respectively; dS ' is the element of the integra�
tion area along the test surface. Knowing the distribu�
tion at the surface of the source, we can easily deter�
mine the field of the source at any point in space by
solving the direct problem. This very method was used
to determine the field of a piezoceramic plane source
(operating frequency 1.119 MHz, diameter 100 mm)
used in the experiment to determine the radiation
force. The procedure of measuring the field is
described in detail in [26, 28]. As a result of recon�
structing the source field using acoustic holography,
the distance used in the experiment was z = 325 m on
the source axis (Fig. 3). The field in a certain region
around this point (on the order of 10 mm in the trans�
verse and 70 mm in the longitudinal direction with
respect to the source axis) is homogeneous, which
makes it possible to use the assumption about a plane
wave.

Yet another important aspect of high�precision
measurements is the method of attaching the scatterer
in the experimental setup. At the first stages of experi�
mental research, a method proposed in a number of
previous works was used—suspension by an inelastic
thread [20]. So that the sphere would deviate only
along one direction, the thread was suspended and
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folded in a V�shape. Here, the lower point of the V was
fixed to the upper point of the studied sphere.

Such a fixation method is highly sensitive to small
displacements of the sphere from a state of equilib�
rium. However, there is also a drawback. As mentioned
above, during experimental research, it is important to
know the region of the field in which the scatterer is
located. It suffices merely to observe the field if the
scatterer during any shift is located on the source axis.
The scatterer suspended on fine threads, when deviat�
ing from a state of equilibrium, begins to rise with
respect to the level of the axis, and the greater the mag�
nitude of the radiation force, the stronger the displace�
ment from the axis (Fig. 4a). Nevertheless, for small
axial displacements, the vertical component is small
and the effect is weakly pronounced, which makes it
possible to conduct measurements. With such an
approach, displacement of the scatterer under the
action of an acoustic wave is measured with a laser
beam (Fig. 5), which makes it possible to calculate the
size of the force using a quite simple formula:

(11)

where a is the radius of the scatterer, ρ is the density of
the scatterer, ρw is the density of the fluid, Δx is the dis�
placement of the scatterer from a state of equilibrium,
l is the thread length, and g is free fall acceleration.

In a series of experiments performed on different
days, we obtained the dependences of the radiation
force acting on a target on the power at the source,
which, according to the theory, should have a linear
character (Fig. 6). In the experiments, the linear
dependence was confirmed, but on different days, dif�
ferent slopes of the straight lines were obtained. This
scatter can be explained mainly by in inaccuracy set�
ting up the scatterer in the same region of the field for
each replication of the experiment.

Δ
= π ρ − ρrad w

34 ( ) ,
3

xF a g
l

To increase the accuracy in measuring the force
and repeatability of positioning the scatterer, an alter�
native scheme of fixing the scatterer was chosen (Fig. 4b).
The sphere is not suspended but fixed on four elastic
rubber threads. These threads are fastened to the scat�
terer on four sides. The entire system is set up in a rigid
ring frame, the location of which in turn is assigned by
a positioning system with micrometer screws with a
positioning accuracy of 0.01 mm. In such a scheme,
the sphericity of the scatterer is violated somewhat
more than in the previous one, since the number of
fixing points has increased. The fixation by four rubber
threads also has a high sensitivity to small displace�

(а)

(b)

F

F

Fig. 4. Methods of fixing scatterer in experimental setup:
(a) on inelastic threads, (b) on four elastic threads.
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Fig. 5. Scheme of experimental setup with method of mea�
suring displacement of scatterer using laser beam. Elastic
steel scatterer 1 with radius a = 1.8 mm, acoustic trans�
ducer 2 with operating frequency f = 1.19 MHz and diam�
eter d = 10 cm, acoustic absorber 3, thin sound�transpar�
ent film 4, signal amplifier 5 with power of 9 W and oper�
ating frequency range of 1–5.5 MHz, Agilent 33250A
signal generator outputting continuous harmonic signal,
oscilloscope 7, laser beam 8.
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Fig. 6. Dependence of acoustic radiation force on electric
power fed to acoustic transducer (displacement measured
by laser). Experiments were conducted on different days.
For plot with square experimental points, the coefficient of
the straight line k1 = 0.483 × 10–5 N/W; with circles, k2 =
0.828 × 10–5 N/W.
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ments of the scatterer (when using sufficiently soft
rubber threads). In addition, an advantage is the
absence of displacement of the scatterer from the
source axis under the action of the acoustic force. The
elastic threads were chosen such that they introduced
no distortions into the field structure, and the size of
the ring frame was chosen larger that the beam diame�
ter in the studied region. Thus, the choice of the type
of suspension and determination of the optimal region
of the field allow us to speak about the maximum
closeness of the experimental conditions to those used
in constructing the numerical model (a spherical scat�
terer in the field of a plane wave).

To increase accuracy, the method of measuring dis�
placement was also changed in comparison to the con�
ventional optical method. We used the principle of
ultrasound echolocation (Fig. 7). A scatterer is placed
in a water tank and attached in a ring frame by four
elastic threads. The frame is rigidly fixed to a mechan�
ical positioning system. At a distance of 325 mm from
the center of the scatterer is the source of a power “push�
ing” beam radiating at a frequency of 1.199 MHz. At
some angle to the scatterer at a distance of 195 mm
from it is a diagnostic probe combined with an auto�
matic positioning system (Velmex Unislide VP9000,
United States) with step motors with a positioning
accuracy along three axes of 2.5 µm and vertical rota�
tion of 0.01 deg. The distance between the scatterer
and the diagnostic probe was chosen such that the
position of the diagnostic probe did not influence the
structure of the forcing beam. The diagnostic probe
was a plane broadband transducer with a diameter of
13 mm (Panametrics M109SM, Olympus Corp.,
Japan). To increase the signal reflected from the tar�

get, focusing was applied, which was ensured by an
acoustic lens. Measurements were conducted as fol�
lows. A signal generator (HP 33120A) sent a short tone
burst consisting of ten periods with a frequency of
5 MHz to the diagnostic transformer and an oscillo�
scope (Tektronix TDS 520A, United States) for con�
trol. A trigger pulse from another generator (Agilent
33250A) was fed to the oscilloscope, thereby ensuring
the start of a power pulse in the required time interval
and of the required duration. The delay time of the
reflected diagnostic signal with deviation of the scat�
terer was measured by the oscilloscope. Thus, one
operational cycle of the system consists of the follow�
ing elements, depicted in Fig. 8. The cycles follow at a
rate of 5 Hz, which corresponds to a cycle duration of
200 ms. From 190 ms, a pulse is emitted at a frequency
of 1.119 MHz, exerting a powerful action on the scat�
terer. During the subsequent 300 µs, the diagnostic
transducer operates, sending short sequential pulses
and receiving corresponding echo signals (reflections
from the sphere). Within several seconds of 5 Hz
cycles, the scatterer is displaced from its state of equi�
librium to a certain distance determined by the force
of the action and the elasticity of the threads. Mea�
surement of the arrival time of the reflected diagnostic
pulses makes it possible to observe this displacement
with a high accuracy.

The magnitude of the radiation force when the
scatterer is fixed on elastic threads is determined by the
known value of displacement in accordance with
Hooke’s law:

(12)
where k is the effective stiffness coefficient of all four
threads and d is displacement. Here, the geometry of

= −rad ,F kd
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Fig. 7. Scheme of experimental setup with acoustic method of measuring displacement of scatterer. Acoustic power source 1 with
resonance frequency f = 1.119 MHz, steel spherical scatterer 2, sound�transparent film 3, diagnostic probe 4 with operating fre�
quency f = 5 MHz and absorber 5 to eliminate acoustic wave reverberations.
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the experiment introduces a small correction to the
value of the measured radiation force (Fig. 7). Since
the diagnostic transducer is located at an angle α to the
direction of wave propagation, the size of the displace�
ment measured by it is proportional to some compo�
nent of the radiation force acting on the sphere. In the
general case, reconstruction of the real value of the
radiation force can be quite a complex problem. How�
ever, in the case of plane wave, the radiation force act�
ing on the scatterer is found from the relation

 where Fz is the force calculated by formula

(12). Angle α in the experiment was found by photo�
graphing the setup from above and measuring the cor�
responding angle. It was  during the
first experiment and  in the second
experiment.

There are many different methods for determining
the effective stiffness coefficient k. In the experiment
an approach was chosen that was also based on the

=

α

,
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zF
F

α = ± °1 (33.0 0.5)
α = ± °2 (36.5 0.5)

phenomenon of the radiation force and the principle
of echolocation. When the scatterer is fixed on four
elastic threads, it is an oscillatory system, the reso�
nance frequency of which depends on the stiffness of
the threads and the effective mass of the scatterer

 =  The effective mass of the scatter is
added from the proper mass (m0 = (710 ± 5) mg) and
the associated mass arising as a result of fluid flow

around the scatterer (Δm =  = (46 ± 5) mg).

Thus, from the known values of the effective mass and
rate of proper oscillations of the system, it is easy to
calculate the effective stiffness of the threads.

To generate oscillations of the system, pulse action
was also used along with the radiation force. During
such action, the system responds with oscillations at
the resonance frequency. Displacements of the scat�
terer during oscillations is measured by the principle of
echolocation with sound pulses, as described above.
The resonance frequency of oscillations of the scat�
terer is determined by quadrature processing of the
received signals, in which the main measured parame�
ter is the signal phase, which slowly changes with time.

Experiments were conducted on different days to
measure the radiation force and effective stiffness of
the threads by the above�described methods (Fig. 10).
It was found that the radiation force acting on the
sphere for an electric power of W ≈ 11 W corresponds
to a displacement of the scatterer of x ≈ 0.3 mm.

During measurements with the steel spherical scat�
terer attached by four elastic threads, the found effec�

tive stiffness coefficient  =  kg/s2.
Here, both experiments confirmed the linear depen�
dence of the radiation force on the total acoustic
power (experimental points are approximated by a
straight line with a reliability coefficient of approxima�
tion of R2 = 0.998); the obtained relative measurement
error is no more than 5–7%, in contrast to the 12–
15% for suspension by two thin threads. Note also that
the coefficient of the slope of the line obtained while
measuring displacement of the scatterer by the acous�

ω = π0 02 f .k m

ρ
π
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3 2
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= ω

2
0k m ±(0.215 0.007)
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300 μs

f = 5 MHz f = 1.119 MHz

Fig. 8. One operating cycle of experimental setup to measure displacement by acoustic method. The diagnostic pulse consists of 10 peri�
ods; at a time delay of 270 µs from it, the pulse reflected from the scatterer is detected ; a power pulse consists of 212610 periods.
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Fig. 9. Dependence of radiation force on electric power fed
to transducer (displacement measured by echolocation).
Experiments were conducted on different days. For the
plot with triangular experimental points, the coefficient of
the straight line k1 = 0.890 × 10–5 N/W; with circles,
k2 = 0.854 × 10–5 N/W.
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tic method, as well as during suspension on four elastic
threads, proved very close to the coefficient obtained
when measuring the displacement of the scatterer on
thin threads using the optical method.

CONCLUSIONS

The paper presents results of numerical simulation
of the force action on metal spheres, conducted using
a Fortran algorithm based on the classical solution to
the problem of the acoustic radiation force exerted on
an elastic spherical scatterer. It was shown that the
dependences of the normalized value of the radiation
force of the acoustic wave frequency agree well with
similar plots for specific materials obtained earlier by
other authors.

An experimental setup was implemented to deter�
mine the acoustic radiation force based on a method
used by other authors, which consists in suspending a
scatterer by a thin thread and measuring its displace�
ment using a laser beam. It was shown that in the indi�
cated method, the source of the error is related to
measuring the position of the scatterer due to its non�
axial displacement when measuring the force.

A novel method is developed for high�precision
measurement of the acoustic radiation force for a tar�
get in the form of solid spheres; the method is based on
measuring the displacement of the receiver using
echolocation by ultrasound pulses. An experimental
setup was created for studying the force action of
spherical targets of millimeter size using this method.
In the experiments with steel spheres of millimeter size
in water, a force measurement accuracy of 5 µN was
achieved. As well, the theoretically predicted linear
character of the dependence of the radiation force on
the acoustic intensity was proved experimentally.
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