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INTRODUCTION

The Bloch oscillation (BO) effect characterizes the
behavior of electrons in a solid to which an external
electric field is applied [1, 2]. The BO effect is most
simply described using the quasi�classical model.
According to this model, when a stationary field is
switched on, the electron quasi�momentum begins to
increase as a linear function of time. Due to the peri�
odicity of the structure in a solid, there is also spatial
periodicity in the dependence of the electron energy
on the quasi�momentum. Because the particle veloc�
ity in a quasi�classical description is equal to the deriv�
ative of the energy with respect to the quasi�momen�
tum, the electron velocity is a periodic function of
time for the linearly increasing quasi�momentum. In
other words, oscillatory motion of electrons is initi�
ated, and, therefore, an alternating current is gener�
ated in the solid. The frequency of such (Bloch) oscil�
lations is fB = eEa/h, where e is the electron charge,
E is the electric field strength, a is the lattice spacing,
and h is the Planck constant. This effect of current
oscillations under the action of a stationary electric
field contradicts the usual classical conceptions.

An alternative method for explaining BO is based
on consideration of the electron energy levels. Stark
splitting of the initially uniform electron energy spec�
trum into a set of equidistant lines, which are called

Wannier–Stark ladder, occurs upon application of a
stationary external field [3]. The energy gap between
these lines is ΔW = eEa. Bloch oscillations occur at the
frequency fB = ΔW/h and represent quantum beats
between states of the aforementioned Stark ladder [4].

In order to achieve BO, an electron must have
enough time to change the direction of its motion
before it undergoes scattering; thus, the following
condition must be fulfilled: eEl > W, where l is the
electron free path and W is the width of the permitted
band. Therefore, in traditional semiconductors whose
permitted bandwidths are several electronvolts, the
observation of BO requires virtually unattainable elec�
tric fields of ~1 MV/cm. The possibility of avoiding
this difficulty has appeared only recently owing to the
development of technologies for growing solid�state
heterostructures–superlattices [5]. The constant a of
such nanostructured lattices exceeds the interatomic
spacing by several tens of times, thus providing the
condition for the appearance of BO in relatively mod�
erate electric fields (1–10 kV/cm). The first indica�
tions of the BO effect were described in papers on
superlattices based on GaAs/AlxGa1 – xAs semiconduc�
tor compounds [5–7]. The possible application of the
BO effect is associated with the development on its
basis of a special class of generators and receivers of
electromagnetic waves at terahertz frequencies.
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The BO effect related to the behavior of the elec�
tron wavefunction has analogs for waves of different
natures (e.g., acoustic, optical, or spin waves) that
propagate in appropriate quasi�periodic structures
(QPSs) [8]. It is known that, along with semiconduc�
tor superlattices, another class of heterostructures
exists (photon crystals). The refractive index of light
periodically changes in such crystals; owing to this
effect, permitted and forbidden bands appear (light�
transmission and light�blocking). An experiment that
involved observations of an optical BO analog was per�
formed in [9]. Optical superlattices that were formed
from layers with different refractive indices of light
were investigated, which were grown in a certain suc�
cession. In order to create an analog of the Wannier–
Stark ladder in the transmission spectrum, the authors
of [9] changed the period of the heterostructure in
inverse proportion to the layer number. In this case,
the resonance frequencies of layers were proportional
to the layer number, thus making the transmission
spectrum of this structure equidistant. The produced
structure was illuminated with a short light pulse, and
the time dependence of the transmitted signal inten�
sity was studied. As was predicted by calculations, after
passing through the created structure, the signal had
the form of a train of pulses with decaying amplitudes
that followed one after another at a constant repetition
rate.

The successful observation of the optical analog of
BO initiated studies on the development of systems for
observing BO for acoustic waves [10–13]. In these
studies, waves also propagated in QPSs, and elements
of such structures were chosen based on the condition
that their resonance frequencies were proportional to
their ordinal number. Different types of QPSs were
used. For example, a one�dimensional medium in the
form of a set of jointed elastic rods with circular or
rectangular cross sections was used in [10]. Rods dif�
fered either in length (in the case of elements in the
form of circular cylinders) or in height (in the case of
elements in the form of parallelepipeds). Paper [11]
described experiments in which a layered medium
manufactured analogously to a photon crystal from [9]
was used. The medium consisted of a set of alternate
solid and fluid layers, into which aperiodicity was
introduced by changing the thicknesses of fluid layers.
The equidistant spectrum of sound transmission
through a layered structure (an analog of the Wan�
nier–Stark ladder) was measured in [11], but the
transmitted�signal envelope oscillations themselves,
which simulated BO, were not recorded. One of the
objectives of this study was to perform such observa�
tions. This work is also devoted to studies of some fea�
tures in the propagation of acoustic waves in layered
media with a constant gradient of the reciprocal layer
thickness.

THEORETICAL MODEL

Let us consider a layered medium that is a set of
alternate layers of two different materials. For conve�
nience of practical implementation of layers with a
controlled thickness, we consider that one material is
fluid and the other is solid. However, it should be noted
that a particular type of layer material is of no signifi�
cance for the theoretical simulation. Let the thickness
of the solid layers be the same; the thickness of the
fluid layers changes according to the law (see [9, 11])

 (1)

where m = 1, 2, …, M is the layer number, lm is its
thickness, m0 = M/2 and l0 are the layer number and
layer thickness at the middle of the studied structure,
respectively, and γ = 1/lm + 1 – 1/lm is the relative gradi�
ent of the reciprocal thicknesses, which is assumed to
be independent of layer number m.

A convenient method for analyzing the propaga�
tion of a harmonic wave in a medium that consists of
uniform layers is the transfer�matrix method [14].
Recall the essence of this approach. Let n = 1, 2, …, N
be the layer number (e.g., n = 1, 3, 5, … correspond to
solid�state layers, and n = 2m = 2, 4, 6, …, to fluid lay�

ers);  and  are the complex amplitudes of the
acoustic pressure for waves that propagate in a given
layer to the right and to the left. The following rela�
tionship can then be written for the amplitudes of
waves in two neighboring layers [15]:

 (2)

Here,  is the transfer matrix:

 (3)

The elements  of the matrix depend on the acous�
tic impedances zn, velocities of sound cn, and layer
thicknesses ln. The following notation is used in (3):
kn = ω/cn is the wavenumber and ω is the cyclic fre�
quency. It is assumed that the character of the time
dependence in a wave has the form ~e–iωt. When for�
mulas of type (2) are written for all layers, we find that

the incident and reflected waves in water (  and )
are related via the matrix relationship to the incident

and reflected waves behind all plates (  and ):

, (4)
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We are interested in the situation where a plane–
parallel structure of solid plates is immersed in the
fluid, and the source of the incident wave and the
receiver are to the left and right of the structure,
respectively. It can then be considered that no coun�
terpropagating wave is present in the last (fluid) layer:

 = 0; the reflection coefficient and the coefficient of
transmission through the structure can be expressed

through (4): R =  = a21/a11 and T =  =
1/a11. In order to calculate the values of the wave
amplitudes in layers at the specified amplitude of the

incident wave , algorithm (2) must be consecutively

applied proceeding from values of  = 0 and  =

 When calculating the acoustic energy density in
layers, it is also necessary to know the values of the

vibrational velocity amplitudes:  =

In order to recall the known features of the trans�
mission spectrum of the layered structure, let us ana�
lyze the case of a homogeneous structure (γ = 0) at dif�
ferent parameters of the media that constitute this
structure. This consideration can be simplified by
using a matrix that describes the propagation of acous�
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tic waves through two layers at once. The sought
matrix can be obtained as a result of the product of

matrices (3) for solid and fluid layers:  = ×

where layers 0 and 2 are solid and layer 1 is fluid. Tak�
ing (3) into account, this matrix can be represented in
the form

 (5)

where zi = ρici is the impedance of the corresponding
layer (i = 1, 2); ρi is the density; ci is the sound velocity;
and ki = ω/ci and li are the wavenumber in the layer and
its thickness, respectively.

In order to calculate the transfer matrix of a layered
structure that consists of N pairs of layers, it is suffi�

cient to raise the matrix  to the Nth power. To do
this, let us use the formula [16]
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where ϕ = arccos[Re(a)] is an auxiliary angle that is
determined by the parameters of the layers.

With consideration for the above values of the ele�
ments of the transfer matrix of the layered structure,
the transmission coefficient can be calculated from the
formula

Let us consider the transmission coefficient provided
that the resonance frequencies of the fluid and solid
layers differ exactly by a factor of 2: k1l1 = 2k2l2 = π +
2ε. In the approximation of a narrow transmission
band (ε  1), we have a ≈ ε(1 + 4ς) + 2iς. This yields

 (6)

where ϕ = arccos[ε(1 + 2ς)], ε =  ς =

 f1 =  is the resonance frequency of the solid
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According to formula (6), the frequency depen�
dence of the magnitude of the transmission coefficient
consists of alternate peaks (maxima) and dips (mi�
nima). The latter do not reach zero but form a certain
pedestal |T|min (Fig. 4a, upper curve). In order to deter�
mine the height of this pedestal, let us consider the
conditions for attaining the minimum in the transmis�
sion coefficient: cos(Nϕ) = 0. From here, the pedestal
is described by the formula

where Δf = 2f1/π(1 + 2ς) is the band halfwidth pro�
vided that the frequency range is f  [f1 – Δf, f1 + Δf].
The maximum value of the pedestal is

The obtained formulas allow the conclusion that an
increase in the ratio of the impedances of neighboring
layers leads to narrowing of the transmission peaks and
a diminished pedestal. These features must be taken
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into consideration when planning experiments: when
the pedestal height is small, the transmission peaks are
more pronounced and can be better observed. When
the impedance contrast is high, a small width of the
peaks indicates the necessity of choosing a sufficiently
small frequency step in measurements of the transmis�
sion spectrum of a layered structure.

Let us find both the frequencies at which dips
between neighboring transmission peaks are posi�
tioned and the number of these dips. For this purpose,

the following condition is used: Nϕ =  + πn. Substi�

tuting this condition into formula (6), we obtain the
expression for the frequencies that correspond to the
minima of the transmission�spectrum magnitude:

Let us perform the same calculations to determine
the positions of the transmission peaks and use the fol�
lowing conditions: cos(Nϕ) = 1 and sin(ϕ) ≠ 0; i.e.,
Nϕ = πn and ϕ ≠ πn:

It follows from the condition Nϕ = πn that the
number of peaks must be N + 1, but because of the
condition ϕ ≠ πn, the two end peaks are not realized.
Thus, the frequency dependence of the magnitude of
the transmission spectrum within one band has N – 1
transmission peaks and N – 2 dips between them [5].
Note that the number of transmission peaks coincides
with the number of fluid�filled cavities in the layered
structure. The total width of the peaks and the depth of
the dips between them are determined by the ratio of
the impedances of the solid and fluid layers.

EXPERIMENTAL SETUP

Achievement of an acoustic analog of the BO effect
requires special selection of the thicknesses of solid�
and fluid layers. We proceed from the fact that only the
thickness of fluid layers is controlled in the experi�
ment. It is then required to create conditions under
which the acoustic energy is stored mainly in the fluid
layers, while the solid�state layers play a passive role.
As is known, the energy is stored in a layer of thickness l
near the resonance frequency multiple of c/(2l), where
c is the sound velocity in the layer. Hence, solid plates
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do not resonate (are passive) within the frequency

ranges far from the frequencies  =
n×csolid/(2lsolid), n = 1, 2, … . The fluid layers efficiently

store energy near frequencies of  =
m×cfluid/(2lfluid), m = 1, 2, … . In order to ensure the
energy localization condition only in the fluid layers, it
is necessary to select a characteristic signal frequency

close to one of the frequencies  and the farthest

from  These requirements are, in particular, sat�
isfied if the resonance frequencies of the fluid layers
are in the middle between the resonance frequencies of
the solid�state layers. At low frequencies, this condi�

tion corresponds to frequencies of f ≈  = 0.5 ·

 thus, the chosen widths of the fluid and solid
layers must be equal to a half� and quarter�wavelength,
respectively. For example, let there be glass layers with
a thickness of lsolid ≈ 1.6 mm with a sound velocity of
csolid ≈ 6000 m/s (see below). The wave frequency must
then be close to csolid/(4lsolid) ≈ 1 MHz, and the fluid�
layer thickness lfluid = 2lsolidcfluid/csolid ≈ 0.8 mm. The
above estimates were used to select the parameters of
the experimental setup that is described below.

As was mentioned above, a layered structure of
alternating solid and fluid layers was chosen as the
studied medium (a similar structure was used in [11]).
The layer structure was a construction of six parallel
glass plates that were immersed in water. The plates
were square�shaped with sides 4 cm in length. The
plate thicknesses were measured with a micrometer
(these data are listed in Table 1). The spread at differ�
ent points of the plates was within 8 μm; i.e., the rela�
tive variations in the thickness of each plate were
within 0.5%. As is seen from this table, the thicknesses
of all six plates were the same to within a high accu�
racy. The sound velocity in glass was measured at room
temperature by the pulse�echo method using short sig�
nals, which were excited by the opticoacoustic method
[17]. The results of these measurements are also shown
in the table. The glass density was determined by
weighing samples and measuring their dimensions; the
density was 2503 ± 25 kg/m3. This value is in good
agreement with the tabulated value for the window
glass [18]. It was used in numerical calculations. The
values of the density and sound velocity in water were
taken as 1000 kg/m3 and 1500 m/s, respectively.

Note that the number of fluid layers in the above�
described structure is smaller than the number of solid
layers by unity; i.e., there were altogether five fluid lay�
ers with controlled thicknesses. As was pointed out
above, the realization of an acoustic analog of the BO
effect requires that the fluid�layer thicknesses lm be set
in accordance with formula (1). For this purpose, in
our experiments, inserts with the required thickness
were set between the glass plates. When the acoustic
analog of BO was investigated, measurements were
performed at different values of the gradient γ, thus

( )
nf solid

( )
mf fluid

( )
mf fluid

( )
nf solid .

( )f fluid
1

( )f solid
1 ,

Measured thicknesses and sound velocities in glass plates

Number Thickness, mm Sound velocity, m/s

1 1.662 ± 0.008 5781 ± 31

2 1.630 ± 0.007 5791 ± 13

3 1.628 ± 0.005 5790 ± 17

4 1.654 ± 0.007 5761 ± 77

5 1.632 ± 0.006 5785 ± 31

6 1.653 ± 0.006 5786 ± 20
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requiring a large number of inserts. Each insert con�
sisted of a thick plate that roughly specified the layer
thickness and a set of thin plates that ensured more
accurate thickness adjustment. As the thick part of
inserts, we used automobile clearance gages, which
were plates of high�strength tool steel with calibrated
thicknesses in the range from 50 μm to 1 mm. The
thickness of the fluid layers was more finely adjusted by
adding the required number of 10�μm�thick foil lay�
ers. The thus�formed inserts were strips with a length
of 15 cm and a width of 1 cm. These strips were set at
the opposite edges of glass plates. Thus, two inserts
were used to specify the necessary distance between
neighboring glass plates. The required value and high
parallelism of the gap between the plates was checked
with a micrometer by measuring the thickness of each
insert near each of the four corners of the correspond�
ing plate.

Figure 1 shows a schematic diagram of the experi�
mental setup. The shape of a radiated signal in digital
form was done by a computer (1) and transmitted to a
digital generator (2). An analog signal from the gener�
ator arrived at a piezoelectric transducer (3), which,
together with the studied structure (4), was in a water�
filled pool (5). Acoustic waves excited by the trans�
ducer propagated in the water, passed through the lay�
ered structure, propagated again in the water, and
arrived at the receiving transducer. The received signal
then arrived at a digital oscilloscope (6), from which it
was transmitted to the computer for recording and
processing.

Two identical broadband transducers with a center
frequency of ~1 MHz and a diameter of 38 mm (V392�

SU model, Olympus, United States) were used as the
transmitting and receiving transducers. They were set
opposite each other in optical adjustment devices,
which allowed smooth control of the transducer tilt
angles. Both adjustment devices were fixed to a rigid
frame. One adjustment device was stationary, and the
other could be moved along rails, thus making it pos�
sible to smoothly change the distance between the
source and receiver.

In order to observe an acoustic analog of BO, the
experimental setup must satisfy a number of require�
ments. In particular, (a) the layered structure must be
plane–parallel, (b) the propagation of studied waves
must be nearly one�dimensional, and (c) the source
and receiver must have sufficiently broad frequency
bands for undistorted transmission and reception of
pulse signals.

The plane–parallelism of layers was guaranteed by
the above�described process of the structure assembly.
The one�dimensional character of propagating waves
was ensured by the wide�aperture receiver and its posi�
tion in the near�field zone. The length of the near�
field zone can be evaluated as L = πa2/λ, where a =
1.9 cm is the radius of the transducer aperture and λ ≈
0.15 cm is the wavelength at the center frequency. This
estimate yields L ≈ 76 cm, which appreciably exceeds
the source–receiver distance used in the experiment
(~30 cm). However, in reality, the near�field diffrac�
tion effects could be appreciable at shorter distances.
In order to determine the degree of influence of wave
divergence on the amplitude of acoustic waves, we pre�
liminarily measured the received signals at different
transmitter–receiver distances. These measurements

1 MHz
2

3 4

5

6

1

Fig. 1. Schematic of experimental setup: (1) computer, (2) generator, (3) piezoelectric transducers, (4) layered structure, (5) bath
with water, and (6) oscilloscope.
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were performed using an automated translational sys�
tem that could displace the receiver with a step of
10 μm along three mutually perpendicular axes
(Velmex, United States). One of the axes that was per�
pendicular to the surfaces of the transducers was used
to set the distance; two other axes, to bring the centers
of the transmitter and receiver into coincidence. The
transducers were adjusted before measurements. First,
they were brought toward each other until contact to
bring their centers into coincidence and to approxi�
mately set their surfaces in parallel positions. The
receiver was then moved to the maximum possible dis�
tance (30 cm) under the experimental conditions,
where the parallelism of the transducer was finely
adjusted by setting the maximum amplitude of the
received signal during transmission of a high�fre�
quency signal. Subsequently, the distance between the
transducers was again reduced almost to zero in order
to test their coaxiality. If the coaxilaity was violated, it
was corrected by a transverse displacement of the
receiver. The described adjustment procedure was
repeated until the result became reproducible.

The effect of diffraction�limited divergence was
studied by recording the amplitude of received acous�
tic waves as a function of the distance upon emission
of a long radio pulse with a rectangular envelope and
harmonic filling. Such measurements were performed
at different frequencies. The use of a pulsed mode
made it possible to avoid the influence of repeated
reflections between the transmitter and receiver. Fig�
ure 2 shows the experimental dependence (dots) of the
signal amplitude at a frequency of 800 kHz on the dis�
tance between the transducers. The solid line is the
theoretical dependence for a piston transmitter that
was obtained using the method described in [19]. For
convenience of the comparison, both dependences
were normalized to the corresponding maximum val�
ues. As is seen, the experimental dependence is prop�
erly described by the theoretical curve. In this case, the
both curves indicate a certain decline in the wave
amplitude with an increase in the distance to the
receiver. Note that up to a distance of 30 cm, the signal
did not decrease by more than 25%, thus allowing the

diffraction�limited divergence to be considered weak
in this region.

As was mentioned above, an analog of BO can be
observed if the transmitter and receiver possess suffi�
ciently wide frequency bands. This condition was
checked via emission and reception of a short pulse for
a 30�cm distance between the transducers (exactly this
distance was used in the subsequent experiments with
the layered structure). First, the parallelism of the
transducers was adjusted using the above�described
scheme. Then, a short electric radio pulse u1(t), whose
spectrum S1(f) occupied a frequency band of
~500 kHz–1.5 MHz, was fed to the transmitter. An
excited acoustic pulse propagated in the water and
arrived at the receiver, at whose output an electric sig�
nal u2(t) was recorded. In order to select the frequency
response of the transducers, the received signal u2(t)
was recorded from the moment of arrival of the signal
front to the moment of arrival of a pulse that was re�
reflected from the transmitter (i.e., the duration of the
time window was equal to the time of the triple path
from the transmitter to the receiver). The correspond�
ing spectrum S2(f) was then calculated. In order to
take the double electroacoustic transformation (dur�
ing transmission and reception) into account, the effi�
ciency of transmission and reception at a specified fre�
quency G(f) was characterized by the square root of the
ratio of the spectral amplitudes of the received and

excited signals: G(f) =  Figure 3 shows
the plot of this function, which is normalized to its
maximum value. As is seen, the function G(f) insignif�
icantly changes within a frequency range of 800 kHz–
1 MHz, thus guaranteeing correct measurements of
the shapes of nonstationary acoustic signals in this fre�
quency range.

CALCULATION AND EXPERIMENTAL 
RESULTS

Let us first consider the characteristic features of
the transmission spectrum of the investigated layered
structure. As was mentioned above, the chosen thick�
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nesses of the liquid layers were such that the thickness
resonance of the liquid layers of interest was observed
at frequencies far from the thickness resonances of the
solid plates. On this basis, the liquid�layer and solid�
layer thicknesses were chosen to be close to a half� and
quarter�wavelength, respectively, in the operating fre�
quency range, as in [11]. The frequency of the lowest
thickness resonance in glass plates calculated using the
parameters from the table was 1.76 MHz. The chosen
thickness of the average liquid layer in calculations was
l0 = 0.845 mm; this value corresponds to the resonance
frequency f0 = 888 kHz at a sound velocity in water of
1500 m/s. The calculation results of the transmission
coefficient in a wide frequency range are shown in
Figs. 4a and 4b for a strictly periodic structure (γ = 0)
and for the case of a nonzero gradient of the reciprocal
thicknesses of the liquid layers (γ = 3%). The behavior
of the transmission coefficient (Fig. 4a) is typical of
periodically nonuniform media: the transmission
bands (permitted bands) alternate with forbidden
bands. Transmission bands of finite widths are local�
ized in the region of the thickness resonances. Thus,
there is a frequency band with a width of ~100 kHz
near a frequency of 0.9 MHz, which is positioned
around the fundamental thickness resonance of the
liquid layers. The structure of this band is shown in
more detail in the plot–inset above the main graph.
The corresponding segment in the main plot is marked
with vertical dashed lines. It is seen that in comparison
to a certain pedestal in the frequency dependence of
the transmission coefficient, there are peaks whose
number coincides with the number of fluid layers (this
feature was already discussed above). The next trans�
mission band (as the frequency increases) is localized
near the frequency of the thickness resonance of the
solid�state plates (~1.8 MHz) that coincides with the
frequency of the second thickness resonance of the
fluid layers. Therefore, this band is wider than the pre�
vious one and the number of peaks contained in it is
equal to the total number of layers in the structure.
With a further increase in frequency, there is one more
permitted band near a frequency of 2.7 MHz. This
band is related to the third resonance of the fluid lay�
ers. The observed regularity recurs at higher frequen�
cies. As the fluid�layer thicknesses change in accor�
dance with formula (1), the general character of the
frequency dependence of the transmission coefficient
remains unchanged (Fig. 4b). However, the fine struc�
ture of the permitted bands changes. This can be seen
in the inset, which shows the behavior of the transmis�
sion coefficient near the main thickness resonance of
the fluid layers. It is seen that side peaks in the fine
structure begin to decrease. Another specific feature is
more important: the pedestal decreases and the dis�
tance between the latter peaks begins to increase as
compared to the case of γ = 0. Note that it is exactly
these peaks in the permitted band that form the analog
of the Wannier–Stark ladder. Their behavior with an
increase in γ is discussed below in more detail.

The effect of spatial localization of electrons in var�
ious regions of a crystal as a function of the energy
acquired by electrons is one of the fundamental fea�
tures of the behavior of electrons under conditions
when BO is displayed. Analogous localization in wave
analogs of BO must manifest itself in the form of a spa�
tial redistribution of the energies of waves of different
frequencies. The above�described theoretical algo�
rithm allows studying the localization character in the
case of the acoustic analog of BO. As an example,
Fig. 5 shows the calculated distribution of the energy
density of the acoustic field for frequencies of 0.8–
1 MHz inside the experimentally studied layered
structure. The latter frequency range corresponds to a
permitted band near the frequency of the lowest thick�
ness resonance of the liquid layers. Numbers denote
glass plates, between which fluid layers are located.
For convenience in visualizing weak signals, shades of
gray are put in correspondence to the energy density
logarithms. The coordinate and the frequency (in
megahertz) are plotted along the abscissa (glass plates
1.65 mm thick are denoted by numbers) and ordinate
axes, respectively. In calculations of the energy density
at each frequency, the result was normalized to the
energy density in the incident wave. As is seen in the
presented pictures, the wave energy in the chosen fre�
quency range is predominantly localized in the liquid
layers. The striped structure within each layer corre�
sponds to peaks in the above�considered frequency
dependence of the transmission coefficient. For con�
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venience, this dependence is shown in the inset to the
right of the main image. Figure 5a corresponds to the
case of identical thicknesses of the liquid layers (γ = 0).
The wave energy at all frequencies is distributed
approximately uniformly over the liquid layers; i.e.,
localization is absent. When a nonzero reciprocal�
thicknesses gradient is introduced into the system, the
character of the energy distribution changes (see
Figs. 5b and 5c). The energy at low frequencies is
localized on the left side, in thicker layers, while the

energy of the high�frequency components is stored on
the right side of the structure, where the liquid layers
are thinner. For large γ, the localization effect is more
pronounced (Fig. 5c).

Another important feature of the changes that
occur with an increase in g is a decrease in the density
of the vibrational states (density of peaks on the fre�
quency scale). As is seen in Fig. 5, this effect exactly
corresponds to the behavior of the transmission peaks
in the considered permitted band and is nothing but an
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quency dependence of the transmission coefficient is shown in the inset (right). Data are presented for different reciprocal�thick�
ness gradients: (a) γ = 0%, (b) γ = 3%, and (c) γ = 5%.
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analog of the effect of expansion of the Wannier–Stark
ladder, which is observed with an increase in the exter�
nal electric field in a crystal.

This phenomenon is shown in more detail in
Fig. 6a, in which shades of gray show the calculated
distribution of the transmission coefficient as a func�
tion of the frequency and the reciprocal�thickness gra�
dient γ. An increase in γ from a zero value does not
immediately cause an increase in the intervals between
the transmission peaks. In the region of small γ, the
intervals between the transmission lines remain virtu�
ally constant, but beginning already with γ = 2%, they
scatter almost linearly as a function of γ. In the same
way, the difference in the frequencies of peaks in the
electron spectrum is a linear function of the electric
voltage applied to a crystal (the Wannier–Stark effect).
An increase in γ also leads to a decrease in magnitude
of the transmission coefficient at side peaks, which is
associated with the substantial difference between the
impedances of fluid and solid layers. It can be con�
cluded from Fig. 6a that an acoustic analog of BO in
the considered system can be observed in a range of γ
of 2–8%.

The above�described theoretical results were com�
pared to the experimental ones. The measurements
were performed with the transducers set at a distance
of 30 cm from each other. Before the studied multilay�
ered structure was submerged in water, the parallelism
of the receiver and transmitter surfaces was adjusted.
For this purpose, a radio pulse with a rectangular enve�
lope at a frequency of 1.1 MHz was emitted. The pulse
duration was chosen as 40 periods: in this case, tran�
sient processes in the transducers terminated at the
end of the pulse and the envelope reached a steady�
state level that corresponded to continuous emission
mode. The optimal positions of the transducers, in
which the amplitude of the received signal in the
region of the steady�state envelope was maximized,
were sought by changing the tilt angles of the transduc�
ers. After this adjustment, the studied structure was
placed between the transducers. The parallelism of the
transmitter surface and the front�plate surface of the
multilayer structure was also set using the acoustic

method according to the maximum amplitude of the
plate�reflected signal.

The frequency dependence of the transmission
coefficient of the layered structure was determined by
comparing two runs of measurements—with and
without the structure. The same amplitude (5 V) of the
generator output pulse was used in both runs. The
pulse duration was 40 wave periods. The amplitude of
the received wave was measured in the time interval
with a steady�state envelope of the receiver signal in
approximately 15 periods after the arrival of the signal
front, thus corresponding to the continuous�wave
mode. The frequency was changed in a frequency
band of 800 kHz–1 MHz with a step of 0.4 kHz. The
transmission coefficient at each frequency was calcu�
lated as the ratio of the wave amplitudes in the pres�
ence and absence of the studied structure.

Figure 6b shows the results of experimental study of
the frequency dependence of the layered�medium
transmission coefficient for different γ. For proper
comparison of the theoretical and experimental
results, the data in Fig. 6b are represented in the same
form as those in the theoretical curve in Fig. 6a. For
this purpose, the curves of the frequency dependences
at different γ are transformed into bands with a width
Δγ = 1%, the shades of gray in which characterize the
transmission coefficient. Comparison of Figs. 6a and
6b shows that the experiment confirms the presence of
a Wannier–Stark ladder with an almost linear diver�
gence of the transmission peaks with an increase in the
reciprocal�thickness gradient γ.

The frequency dependence of the transmission
coefficient for γ = 3% is shown in more detail in Fig. 7.
The theoretical and experimental dependences are
shown by the upper and lower curves, respectively, and
the coincidence is good. The only difference is a slight
shift (~10 kHz) of the experimental “comb” with
respect to the theoretical one toward lower frequen�
cies. This shift amounts to approximately 1% of the
frequency of the central model peak (890 kHz) and
can be explained by the visible thickening of layers due
to a certain nonparallelism of the transducer surfaces
and layers in the layered structure.
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Observation of an analog of BO requires the
appearance of a signal at the output of the layered
structure, the spectrum of which must contain several
(at least two) peaks of the Wannier–Stark ladder. As is
seen in Fig. 7, this occurs if the spectrum of the inci�
dent wave falls within a transmission band, i.e., a fre�
quency band that contains transmission peaks. The
dashed line in the lower plot shows the bell�shaped
spectrum of the incident wave chosen to implement
BO. The center of the incident�wave spectrum was
slightly displaced to the right relative to the most
intense transmission peak in order to suppress this
peak and amplify a weak peak–satellite, thus making
the transmitted wave a composition of two quasi�
monochromatic waves with comparable amplitudes.

Figure 8 shows the results of calculations (a) and
measurements (b) of the BO effect observed upon
incidence of a wave, whose spectrum is shown in
Fig. 7b (dashed line), on the studied structure. The
temporal profile of the incident signal is shown in the
upper plots in Fig. 8. The signal has the shape of a
radio pulse with a Gaussian envelope with a filling fre�
quency of ~0.9 MHz and a duration of about 20 μs.
Other plots in Fig. 8 show the shape of a transmitted
signal at different values of the reciprocal�thickness
gradient γ. It is important that in the calculations and
experiments, the transmitted signal had the form of
pronounced quasi�periodic beats. The experimental
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profiles of a signal from the receiving transducer
decayed much more rapidly than the theoretical pro�
files; this can be explained by diffraction losses and
structural imperfection. The lifetime of beats in the
experiment was ~150 μs, thus allowing observation of
several oscillations of the transmitted�signal envelope.
As the reciprocal�thickness gradient γ increased, the
oscillatory structure of the envelope remained con�
stant and the oscillation frequency increased (see
Fig. 8b). Thus, an acoustic analog of BO was observed.

Figure 9 shows the dependence of the BO fre�
quency on the reciprocal�thickness gradient γ. The
experimental points denoted by 1 were found from the
spectral function of the layered�system transmission
(curves of the type shown in Fig. 7b) on the basis of the
frequency difference between the main transmission
peak and peaks–satellites that close to it. The experi�
mental points denoted by 2 were calculated proceed�
ing from the envelope oscillation frequency (see Fig.
8b). In the region of γ < 1%, the oscillation frequency
was measured at a smaller step in the parameter γ in
order to confirm the weak dependence of the beat fre�
quency on the reciprocal�thickness gradient, pre�
dicted theoretically. This conclusion was confirmed
experimentally. A range of γ ≥ 3% is more interesting.
In this region, the beat frequency increases almost lin�
early with an increase in the parameter γ. As is seen,
the experimental points properly fall on a straight line
drawn from the origin.

CONCLUSIONS

The use of the layered structure of plane–parallel
plates the gaps between which are filled with a fluid
makes it possible to achieve an effect analogous to the

quantum BO effect. In the acoustic case, the linear
gradient of the reciprocal thicknesses of the fluid layers
serves as an external electric field and the signal enve�
lope undergoes oscillations at the output of the struc�
ture, on which a short pulse is incident. In this study,
the first direct experimental observation of the acous�
tic analog of BO was performed using the structure of
glass plates submerged in water. It was shown that an
increase in the gradient of the reciprocal thicknesses of
fluid layers leads to a linear increase in the oscillation
frequency.
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