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INTRODUCTION

Investigation of focusing for high�amplitude pulsed
and periodic signals is an important trend in nonlinear
acoustics [1]. The interest to this topic is connected in
particular with various medical applications of power�
ful ultrasound. Focused pulsed shock�wave beams are
used, for example, in lithotripsy [2] for destruction of
kidney stones and periodic waves are used in noninva�
sive surgery for destruction of soft tissue tumors [3, 4].
The efficiency of these procedures depends strongly
on the operational mode of a radiator, i.e., the number
and shapes of generated pulses and their amplitude
and length. To select the most optimal mode of radia�
tor operation it is necessary to be able to predict the
parameters of created fields and the biological effects
caused by them. It is necessary also to take into
account the that the wave amplitude growth in the
process of focusing is accompanied by strengthening
of nonlinear effects and leads to formation of shock
fronts in the focal region of a beam. In the case of
strong manifestation of nonlinear effects, the effect of
saturation is observed: the acoustic field parameters in
the radiator focus stop depending on the pressure
amplitude at the source.

The mechanisms causing saturation are different
for periodic and pulsed fields. This leads to the fact
that the limiting values for the parameters of an acous�
tic field in the focus also differ for periodic and pulsed
modes of focusing. For example, frequently in medical
applications it is necessary to obtain a high value for
the peak positive or negative pressure in the radiator
focus. In a weak�nonlinear case, it is sufficient for this
to increase pressure amplitude at the source. However,
if nonlinear effects in a medium are considerable, the
pressure increase at the source does not provide pres�
sure increase in the radiator focus because of the satu�
ration effect. To attain higher pressure amplitude in
the focus, in this case it is possible to use a signal with
a different time structure at the source. Here we com�
pare the efficiencies of focusing for pulsed and peri�
odic wave beams, as well as physical mechanisms caus�
ing saturation in the fields under investigation.

The phenomena of limiting the pressure value in
the focuses of periodic and pulsed beams are described
in reviews [5, 6]. The effects of saturation in periodic
fields generated by piston focused sources were inves�
tigated in detail both analytically in the approximation
of geometrical acoustics [7] and numerically taking
into account nonlinear and diffraction effects [8]. To
describe nonlinear sound beams in a preshock mode,
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the Gaussian beam model was used [9]. It is possible to
make analytical calculation much simpler within this
model. A model for a powerful source with apodiza�
tion close to the Gaussian one is also interesting from
the point of view of practice [2]. It is necessary to note
that the saturation effects for focused sources with the
Gaussian spatial apodization have been investigated
much more poorly than in the case of piston sources.
The results obtained in the approximation of geomet�
rical acoustics, i.e., not taking into account diffraction
effects, are known. For example, in [10], to describe
nonlinear effects in a focused beam, the propagation
of a wave in a ray tube with a cross section area varying
with distance in the same manner as the cross section
of a linear Gaussian beam considered. A similar
approach provided an opportunity to estimate analyt�
ically the saturation pressure for a periodic acoustic
field. Apart from periodic fields, the pulsed signals
used in lithotripsy are also interesting [2]. In [11] esti�
mates for the limiting value of pressure in the radiator
focus and the dimensions of the focal region were
obtained proceeding from analysis of focusing for a
pulsed Gaussian beam under the assumption of
absence of diffraction. However, the obtained esti�
mates are approximate. To obtain more precise quan�
titative results, it is necessary to take into account also
the diffraction and thermoviscous absorption effects,
in addition to the nonlinear ones. The equations tak�
ing into account the above effects have no analytical
solutions and, therefore, need a numerical analysis.

Numerical simulation of focusing for shock pulses
is a more complex problem in comparison with simu�
lation of periodic waves, since it needs more calcula�
tion resources. In particular, in the case of identical
steps for the time and spatial grids for simulating
focusing of pulsed signals, it is necessary to use time
windows with a larger dimension (more than ten times
for weakly focused beams). This leads to an increase of
the random�access memory needed for calculation
and a corresponding increase of calculation time even
in the case of linear propagation. Numerical descrip�
tion of pulse focusing in a nonlinear mode became
possible only lately due to the rapid progress of com�
puting machinery and methods of parallel computing.

Here, using the Khokhlov–Zabolotskaya–Kuz�
netsov equation, we simulate periodic and pulsed
acoustic fields generated by focused sources with
Gaussian spatial apodization. The waveform at the
source is selected in the form of a single pulse or a har�
monic wave. Waveforms in the radiator focus are cal�
culated, the point where the maximum peak positive
pressure of an acoustic field is attained being taken as
the focus. Two�dimensional spatial distributions of
peak positive and negative pressures for periodic and
pulsed fields, saturation curves, and the dependences
of the beam energy on the distance from the source are
compared. The results are obtained for different values
of the linear gain factor and pressure amplitude at the
source including the values used in practice [2]. The

obtained numerical solutions are compared with each
other and known analytical estimates.

NUMERICAL MODEL

Nonlinear propagation of focused acoustic waves
can be described using the Khokhlov–Zabolotskaya–
Kuznetsov equation taking into account nonlinear
effects, diffraction, and absorption. The equation in
dimensionless variables for axially symmetrical beams
has the form

 (1)

where P = p/p0 is the acoustic pressure normalized to
the initial wave amplitude p0 at the source, σ = x/F is
the coordinate along the beam axis that is normalized
to the focal distance F, ρ = r/a0 is the transverse coor�
dinate normalized to the source radius a0, θ = 2πτ/T0

is the dimensionless time, τ = t – x/c0 is the time in the
traveling coordinate system, c0 is the sound velocity in
water, and T0 is the pulse length (in the case of a har�
monic wave, it is the length of its single period). Equa�
tion (1) contains three dimensionless parameters, i.e.,

the nonlinearity parameter ,
where ε is the nonlinearity coefficient of a medium
and ρ0 is the density of a medium, the diffraction

parameter , and the absorption param�
eter A.

The initial conditions were selected so that the
waveforms in the focus would be identical for pulsed
and periodic fields in the case of linear focusing and
the identical values of the peak positive pressure P+
(Fig. 1) would be attained. A harmonic wave was
selected as the initial periodic signal,

(2)
A pulsed mode was simulated by a periodic sequence
of pulses with a large off�duty ratio in the form of a sin�
gle period of a harmonic wave and the pressure
between pulses was taken to be constant. In this case
the signal value average over the time window was
zero,

(3)

where 2πn0 is the length of the time window and n0 is
an integer number (in the case of G = 10, the value n0 =
13 was selected). The choice of the initial pulse profile
in the form of a single period of a harmonic wave was
convenient for further comparison of focusing for
periodic and pulsed fields in a nonlinear case.

The boundary condition was set in the plane σ = 0
and corresponded to a circular focused source with
Gaussian apodization. Beam focusing was provided by
introduction of a phase shift increasing quadratically
with the transverse coordinate,

(4)
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A method of splitting in physical factors and a fre�
quency–time approach were used to calculate various
effects in the numerical algorithm for solving Eq. (1)
with the boundary condition of Eq. (4) and the initial
time profiles (Eqs. (2) and (3)) at each step of a grid in
the coordinate s. Diffraction effects were calculated in
a spectral representation with the help of the Crank–
Nicholson scheme of the second order of accuracy
over both spatial coordinates [8]. Taking into account
dissipative effects was performed also in a spectral rep�
resentation using an exact solution for each harmonic
[12]. Nonlinear effects were calculated in a time rep�
resentation. To do this a conservative Godunov’s type
numerical algorithm of the second order of accuracy
in time and the first order of accuracy in the propaga�
tion coordinate was used [13]. This algorithm provides
an opportunity to describe propagation of nonlinear
waves with shock fronts even in the case in which only
three or four nodes of a time grid fit a wave shock front.
Transition between the spectral and time representa�
tions was performed with the help of the fast Fourier
transformation. The algorithm was adapted for paral�
lel computation with the help of the OPENMP tech�
nology, which provided an opportunity to reduce sig�
nificantly the calculation time. To simulate a focused
beam numerically, we selected the following values of
the parameters in Eq. (1): G = 10, 20, and 40 and 0 ≤
Ν ≤ 6. The following physical parameters correspond
to real electric�discharge sources used in lithotripsy:
the effective reflector radius a0 = 77 mm, the effective
focal distance F = 128 mm, the pressure amplitude
p0 = 6 MPa, and the radiated pulse length T0 = 4 μs (a
Dornier HM3 lithotripter [2]). The values of dimen�
sionless parameters in Eq. (1) in this case are: G = 14
and N = 1.4. Here the major results of numerical cal�
culation will be presented for the values G = 10 and
N = 1.0 that are close to real values used in lithotript�
ers. In the case of periodic fields, the above values are
also typical, for example, in the problems of therapy
for soft tissues with the use of medical ultrasonic trans�
ducers [3].

The parameters for the numerical scheme were
selected based on the condition of stability for a
numerical algorithm and a preset accuracy of calcula�
tion (2%). The calculation accuracy was estimated by
comparing the solutions obtained at varying the dis�
cretization step two times. If in this case the solutions
differed by less than 2%, the discretization step was
taken to be equal to the current one. The diffraction
step along the propagation coordinate was hσ = 10–3

and the step in the transverse coordinate hρ = 4 × 10–4.
To satisfy the Kurant–Friedrichs–Levi condition in
the Godunov’s type scheme for a nonlinear operator
several steps over nonlinearity were performed within
each diffraction step along the propagation coordi�
nate. The size of the nonlinearity steps hσ_nonl was
selected automatically at each diffraction step hσ and
varied within the limits 7 × 10–5 ≤ h

σ_nonl ≤ 3 × 10–4. The
step of time discretization or the number of the har�

monics taken into account in calculation also varied
with wave propagation. The initial number of harmon�
ics in the case of periodic wave focusing was n = 128,
and in the case of pulse focusing it was n = 128n0. This
number of harmonics was sufficient to describe wave
focusing with the selected precision in linear and
weakly nonlinear cases (N < 0.1). As a wave propagated
nonlinearly and, correspondingly, the wave front
became steeper, the number of the harmonics taken
into account increased. In the focal region, in the case
of calculating the propagation of shock fronts, we used
2048 harmonics for a periodic wave and 8192 harmon�
ics in the case of a pulsed signal. Thus the minimum
time step for a pulsed field was hθ = 5 × 10–3 and hθ =
1.5 × 10–3 for a periodic field. Artificial absorption was
introduced for smoothing large field gradients in
transverse directions, which leads to algorithm diver�
gence [14]. Its value was selected from the condition
for at least three nodes of the time grid to fit a shock
front in the focus. In this case near the source
the absorption was small and increased as the
distance to the geometrical focus of the source became
smaller. In the focal region of a beam, the artificial
absorption increased up to tenfold at G = 10 and
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Fig. 1. Waveforms (a) at the radiator and (b) in the radiator
focus in the case of linear focusing with the concentration
coefficient G = 10. A solid line corresponds to a pulsed sig�
nal; a dotted line, to a periodic wave.
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40 times at G = 40. The minimum value of the absorp�
tion coefficient was A = 5.4 × 10–3.

In the process of problem simulation, we used a
priori knowledge on the focused geometry of a beam.
For example, in the vicinity of the focus, the calcula�
tion in the transverse coordinate was conducted only
over the region where the peak positive pressure
exceeded 0.06% of its maximum value.

RESULTS

Figure 2 presents two�dimensional patterns of spa�
tial distributions for the peak (a, b) positive and (c, d)
negative pressures in a nonlinear beam (G = 10 and
N = 1.0) for (a, c) periodic and (b, d) pulsed fields.
The distance σ = 1 corresponds to the geometrical
focus of a source (the source is on the left at σ = 0).
One can see clearly that larger values of both peak pos�
itive and negative pressures are attained in a periodic
field in comparison with the corresponding values in a
pulsed field. At the same time, the focal region of the
peak positive pressure in a periodic field is more com�
pact in both the longitudinal and transverse directions.
In Fig. 2 the boundaries of the focal region are deter�
mined at the level e–1 of the maximum pressure in each
field and indicated by a white contour. Thus, if the
purpose of focusing is attaining high values of the peak

positive and negative pressures, it is preferable to use
not pulsed, but periodic, focused beams.

To describe cavitation effects, it is important
to know the distribution of the peak negative
pressure P–. As one can see from Fig. 2, the focal spot
for P– has a nonsymmetrical shape in the form of a
large�dimension nonsymmetrical dumbbell in the
direction of the source for a periodic field (Fig. 2c) and
in the opposite direction for a pulsed field (Fig. 2d).
This difference is connected with the fact that there is
no rarefaction phase in the initial pulse profile. It
appears only far from the source because of manifesta�
tion of diffraction effects. The center of the focal
region for the peak negative pressure for both fields is
shifted to the source: the maximum absolute value for
the peak negative pressure is attained at σ ≈ 0.95.

Figure 3 presents ray patterns for (a) periodic and
(b) pulsed fields at the parameter values G = 10 and
N = 1.0. A dashed line indicates wave fronts that were
determined at each spatial point according to the max�
imum of the derivative from a waveform at this point.
Solid lines indicate rays plotted as perpendicular to
wave fronts in dimensional coordinates. Shades of gray
show the levels of the peak positive pressure. The
point of the spatial maximum for the peak positive
pressure P+ of the field is taken for the source focus.
For a periodic field, the maximum of P+ is attained
approximately in the geometrical focus of the source
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Fig. 2. Two�dimensional spatial distributions for the peak (a, b) positive and (c, d) negative pressures in (a, c) periodic and
(b, d) pulsed focused fields (G = 10 and N = 1.0). White contours show the boundaries of focal regions. Shades of gray indicate
the levels of the peak (a, b) positive and (c, d) negative pressures.
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(σ = 1.0). In pulsed fields the maximum value of pres�
sure P+ is attained behind the geometrical focus at
σ≈ 1.1. In the linear case, the maximum of the peak
positive pressure for periodic and pulsed fields is
attained at σ ≈ 0.98. A small shift of the focus toward
the source in this case arises due to manifestation of
diffraction effects [1]. Thus the focus position is differ�
ent in the cases of linear and nonlinear focusing and
depends on the time structure of a signal. The focus
shift from the source in a nonlinear pulsed field with a
nonsymmetrical shock front is caused by the phenom�
enon of nonlinear refraction [11]. This phenomenon
arises due to the fact that the propagation velocity for
the shock wave front is determined by the average
value of pressure before the front and behind it. Thus,
a large�amplitude shock front propagating along a
nonperturbed medium has a larger velocity than the
front with smaller amplitude. In the case of a source
with Gaussian spatial apodization, the front velocity at
the axis of a pulsed beam exceeds the front velocity at
the periphery that leads to local defocusing of a beam.
In periodic fields the phenomenon of nonlinear
refraction manifests itself much more weakly than in

pulsed fields. This is connected with the fact that the
shock front formed in an initially harmonic wave stays
almost symmetrical with respect to zero up to the
focus. Figure 3c shows periodic waveforms at the
source axis and at different distances σ from the
source. One can see that, at σ = 0.8, a periodic wave�
form is still symmetrical with respect to zero; this
means that the front velocity in the traveling coordi�
nate system is close to zero. The pulse profile at the
same value of σ (Fig. 3d) has a form such that, at the
left from the shock front, pressure perturbation is zero.
Therefore, the shock front of a pulse propagates with a
larger velocity than does the front of a saw�tooth wave,
which means that the phenomenon of nonlinear
refraction manifests itself more strongly for a pulsed
field. The influence of nonlinear refraction in periodic
fields is significant only in the focal region, where the
waveform becomes asymmetrical (a waveform at σ =
1.0). For pulsed fields the influence of nonlinear
refraction becomes significant immediately after
shock�front formation. The waveforms plotted at σ =
1.0 and σ = 1.07 correspond to the focuses of (c) peri�
odic and (d) pulsed fields. As one can see from the fig�
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Fig. 3. The upper series. Ray patterns for (a) periodic and (b) pulsed fields. Rays are plotted by solid lines and shock fronts by
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the levels of the peak positive pressure (G = 10 and N = 1.0). The lower series. Waveforms at the source axis at different distances
σ in the cases of (c) periodic and (d) pulsed fields.
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ure, the maximum pressure in the periodic waveform
is higher than in the case of a pulse and the pulse
length exceeds the length of a single period for a peri�
odic wave. After crossing the focus (waveforms at σ =
1.2), pressure in both fields decreases and the shock
front in the accompanying time coordinate system is
shifted to the left (i.e., it arrives earlier than a linear
wave would) because of the combined influence of
nonlinear refraction and diffraction effects.

The white dashed lines in Figs. 3a and 3b indicates
the wave fronts of periodic and pulsed fields at the
points of their straightening at the axis. One can see
clearly that straightening of a wave front occurs behind
the focus, and this means that the wave front is still
converging in the region, where the maximum of the
peak positive pressure is attained. Wave front straight�
ening in (b) a pulsed field occurs farther from the focus
than in (a) a periodic field. This is also caused by the
phenomenon of nonlinear refraction, which manifests
itself much more weakly in periodic focused beams
than in pulsed ones.

The characteristic distortion of waveforms in the
source focus at different values of the nonlinear

parameter N can be observed in Figs. 4a and 4b. The
front position for a harmonic wave changes insignifi�
cantly, while the pulse front becomes strongly shifted
to the left because of nonlinear refraction. As the non�
linear parameter N grows, the pulse length increases
and the length of a single period for a continuous wave
does not change, the initially harmonic wave becom�
ing a saw�tooth wave. At the value for the coefficient of
linear focusing G = 10, a singularity in a periodic wave
and a pulse in the focal region starts to form at N = 0.5.
In a weak nonlinear case (at N < 0.5), the value of the
peak positive pressure in pulsed and periodic fields
grows with the increase of the nonlinear parameter N
and then decreases after formation of a shock front (at
N > 0.5) due to absorption at the formed singularity.
Before formation of a singularity (at N < 0.5), the
compression phase of a pulse shortens and then at N  >
0.5 it lengthens. The rarefaction phase of a pulse
increases monotonically with the growth of N. In a
periodic wave, the compression phase shortens as
nonlinear effects become stronger and the rarefaction
phase lengthens, but these changes are stressed much
more weakly in comparison with the pulsed case.

Figure 5a presents saturation curves for the peak
positive pressure in periodic and pulsed fields. Satura�
tion curves for a periodic field are shown in gray and
for a pulsed field in black. We assume that saturation is
achieved starting from the moment at which the deriv�
ative of a saturation curve is 5% of its maximal value.
In this case for a periodic field saturation of the peak
positive pressure occurs at N = 5 and for a pulsed field,
at N = 1.5. Thus saturation in pulsed fields occurs ear�
lier than in periodic fields, i.e., at smaller values of the
nonlinear parameter N and therefore at smaller values
of pressure at the source. In a weakly nonlinear mode
(at N < 0.5) saturation curves for periodic and pulsed
fields are close to each other; i.e., the fields have close
values of positive and negative pressures (Figs. 5a and
5b). At large values of the nonlinearity coefficient N,
the peak positive pressure and the modulus of the peak
negative pressure in a periodic field are larger than in a
pulsed field. Saturation for the peak negative pressure
is not observed in the interval of studied parameters N
(Fig. 5b).

The following formula obtained in [11] in the
approximation of nonlinear geometrical acoustics
provides an opportunity to estimate the maximum
value for pressure amplitude in a pulsed field:

(5)

where  is the internal pressure in a medium,

α is the opening angle of the source aperture in the
case of focusing, and  In a dimensionless
form, this formula is written down as follows:

(6)
As one can see from Fig. 5a, in the case of saturation
for the peak positive pressure in pulsed fields, the
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numerically calculated coefficient Thus
the saturation pressure in pulsed fields that is predicted
according to Eq. (6) is approximately 20% smaller
than that calculated in the case of more precise
description, taking into account diffraction effects. It
is interesting that, like in the solution to equations of
geometrical acoustics (Eq. (5)), the saturation pres�
sure turned out to be independent of the parameter G
value, i.e., the initial pulse length.

An analytical expression for estimating pressure in
the focus of a source for periodic waves was obtained in
[10],

(7)

Equation (7) can be written down in a dimensionless
form for the peak positive pressure as

 (8)

The values of saturation pressure obtained using this
formula for different values of the linear focusing
parameter G are shown in gray at the right from the
legend in Fig. 5a. As one can see, at N = 6 the approx�
imate formula of Eq. (8) produces a pressure value
approximately three times smaller than that obtained
in numerical calculation for a periodic field.

Since saturation curves for the peak positive pres�
sure (Figs. 5a and 5b) in periodic and pulsed fields
turned out to be almost independent of the focusing
coefficient G, this provided an opportunity to select
convenient approximations for saturation curves in a
periodic field,

 (9)

and a pulsed field,

 (10)

In Figs. 5a and 5b, the curves plotted using these
approximations are shown by thick light�gray lines.
One can see that, in both cases, the quadratic increase
of the peak positive pressure in the weakly nonlinear
case gives place to a slow logarithmic increase. Pre�
cisely this increase describes saturation.

An analogous approximation was also selected for
estimating the limiting peak negative pressure. Since
the values of the peak negative pressure in periodic and
pulsed fields are close, identical approximations were
selected for both fields. Opposite to the saturation
curves for the peak positive pressure, the values of the
peak negative pressure at the given N depend on the
linear coefficient of field concentration G,

 (11)
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even at a small distance from the beam axis (ρ = 0.24),
the waveforms are almost undistorted, though a shock
front is formed at the source axis in both (a) periodic
and (b) pulsed fields.

Larger values of the peak positive pressure in peri�
odic fields (Fig. 5a) can be explained qualitatively in
the following way. Because of the Gaussian spatial
apodization of pressure amplitude at the source, the
peak pressure in the waves coming from the central
part of it is larger than from the waves coming from the
source periphery. Since nonlinear effects manifest
themselves stronger for waves with larger amplitudes in
the cases wherein a shock front is formed in the waves
from the central part of the source, the waves coming
from the source periphery are distorted much weaker
(Figs. 6a and 6b). In nonlinear periodic fields, waves
from the center of the source and its periphery are
focused almost to the geometrical focus of the source
(Fig. 2a). In this case, if the pressure amplitude at the
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source grows, saturation occurs in the central region of
a beam, but from the source periphery, where satura�
tion is not attained yet, waves arrive. This is precisely
the reason that the saturation curve for a periodic field
in the range of the studied parameters does not stabi�
lize at a constant level and the value of the peak pres�
sure in the focus continues to grow slowly (Fig. 5a).

In contrast to periodic fields, the phenomenon of
nonlinear refraction is very significant in pulsed fields.
Waves from the central part of the source are focused
behind the geometrical focus due to nonlinear refrac�
tion, while weaker waves from the beam periphery still
come approximately to the geometrical focus of the
source. Thus, in distinction to a periodic field, in a
pulsed field the waves from the central part of the
source and from the source periphery are focused at
different points and, therefore, they do not amplify
each other. This leads to the fact that, in pulsed fields,
a saturation curve stabilizes at a constant pressure level
lower in comparison with pressure in periodic beams
with the same pressure amplitude at the source. Thus
limitation of the peak positive pressure in pulsed fields
is caused by the phenomenon of nonlinear refraction.

Figure 7 presents the dependences of the wave
beam energy on the distance from the source in (a)

periodic and (b) pulsed focused fields at different val�
ues of the nonlinear parameter N = 0.2, 0.5, 1.0, and
3.0. The energy of a pulsed field at an arbitrary dis�
tance from the source was calculated as an integral
over a time window and the beam aperture in squared
pressure at each point and normalized to its initial
value, and the energy over a single period was calcu�
lated as the energy of a periodic wave and also normal�
ized to its initial value,

 (12)

One can see from Fig. 7 that, near the source, the
energy of periodic and pulsed beams remains con�
stant. Then, starting from the distance σ correspond�
ing to the length of shock formation in waveforms at
the beam axis, the energy starts to decrease on account
of nonlinear absorption in shocks. It is well known
that, in a plane nonlinear wave, the energy of a pulsed
signal after shock formation decreases with the dis�
tance as 1/σ and the energy of a periodic perturbation
decreases faster as 1/σ2 [1]. In this case the effect of
pressure saturation is observed in a plane periodic
wave, while there is no saturation for a pulsed signal [5,
6]. As one can see from Fig. 7, in the case of a focused
radiator, the energy of a periodic field decreases with
the distance also faster than the energy of a pulsed
shock�wave field. Thus nonlinear absorption at the
shock front of a wave for focused periodic fields man�
ifests itself stronger than for pulsed ones. This allows
us to conclude that the major mechanism leading to
saturation in focused periodic fields is nonlinear
absorption. The influence of nonlinear refraction
manifests itself only in a small region near the focus
and is insignificant on the whole. For pulsed fields the
major mechanism leading to saturation of the peak
positive pressure is nonlinear refraction.

It is interesting to note that, despite the fact that the
energy of a periodic beam decreases faster, the maxi�
mum attainable value of the peak positive pressure in a
periodic field is larger than that in a pulsed one. This
feature for manifestation of nonlinear effects indicates
that pulsed beams are more suitable for transmission
of wave energy to the focus with smaller losses and
beams of periodic waves, for attaining high pressure
values in the focal region.

CONCLUSIONS

Here we compare physical mechanisms leading to
the effects of saturation in focused periodic and pulsed
fields generated by sources with Gaussian spatial
apodization. It has been demonstrated that saturation
for the peak positive pressure in focused periodic
beams occurs due to nonlinear absorption at the shock
front of a wave. Pressure saturation in pulsed fields is
connected with manifestation of the nonlinear refrac�
tion effect. The limiting attainable values of the peak
positive pressure in periodic fields turned out to be
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higher than the analogous values in pulsed acoustic
fields. It has been demonstrated that the saturation
pressure for the peak positive pressure in pulsed and
periodic fields does not depend on the initial pulse
length or the frequency of the initial harmonic wave.
The total energy in a beam of periodic waves decreases
with the distance from the source faster than in the
case of a pulsed field; however, it becomes concen�

trated within a significantly smaller spatial region near
the focus.
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