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Abstract—A quasilinear approach is considered to simulate generation of a difference-frequency acoustic
wave by the interaction of two intense high-frequency diffracting pump beams with close frequencies. The
boundary condition corresponds to dual-frequency excitation of an existing parametric source used for
underwater research. It is shown that the linear field of primary waves has a high directivity with a total beam
divergence angle of several degrees; therefore, the nonlinear-diffraction problem is solved numerically in the
parabolic approximation. The pump wave field is calculated in the linear approximation; the solutions
obtained at each step of the numerical grid along the beam axis are used to calculate nonlinear sources in the
equation for a three-dimensional difference-frequency beam. The one- and two-dimensional distributions of
the pressure field and the directivity pattern are analyzed for three values of a difference frequency. Numerical
solutions obtained with realistic boundary conditions at the source and description of diffraction effects are
compared with the known approximate analytical results for the quasilinear approach.
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INTRODUCTION
Parametric processes of low-frequency wave gener-

ation remain a key area in modern acoustic research,
which is associated with their important practical
applications both in underwater acoustics for seawater
tomography [1–3] and in aeroacoustics for generating
highly directional audible sound in air [4–6].

Low-frequency wave is generated by the interac-
tion of two high-frequency primary waves that are
close in frequency. Such interaction is accompanied
by a cascade process in which waves with new frequen-
cies are formed. Since absorption of acoustic waves
increases with frequency, the high-frequency compo-
nents of the nonlinear wave field gradually attenuate as
they propagate from the source, therefore at large dis-
tances, only a difference-frequency wave remains in
the medium [7, 8]. The main disadvantage of such
parametric excitation is the low-efficient energy con-
version from pump waves into the difference-fre-
quency wave; therefore, for a long time, this approach
remained beyond the scope of practical applications.
However, parametric effects have a number of signifi-
cant advantages [9], such as the possibility of creating
highly directional broadband sources of small wave
sizes with suppressed sidelobes in their directivity pat-
terns. Interest in this research area in underwater

acoustics [3, 10] and aeroacoustics [11, 12] is still not
decreasing.

When describing the processes of the generation
and propagation of a difference-frequency wave, the
one-way Westervelt equation serves as a sufficiently
complete model [7, 13], which takes into account the
effects of nonlinearity, diffraction, and thermoviscous
absorption. This equation in the fully three-dimen-
sional formulation can be solved numerically by the
operator-splitting method [14, 15], in which for each
operator in the numerical algorithm, its own finite-
difference scheme is applied. In many practical prob-
lems, when calculating the fields of parametric
sources, it is possible to use the paraxial approxima-
tion, and in this case, the simplified Khokhlov–Zabo-
lotskaya–Kuznetsov (KZK) equation [16] is used. For
modeling the KZK equation, effective numerical
algorithms have been developed both in the fre-
quency-domain, time-domain, and combined repre-
sentations [17–20]. To calculate parametric sources,
an entire class of approximate semianalytical solutions
have been derived, which use additional approxima-
tions when setting the boundary conditions on the
source and describing the beam divergence geometry,
interaction length, and nonlinear and diffraction
effects for the pump waves [21–23]. A wide range of
30
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models in this case uses the approximation of a given
field of pump waves or the quasilinear theory [8, 24, 25].

In this study, the quasilinear approach is also used
as a necessary step in developing a fully-nonlinear
three-dimensional diffraction numerical model for
the description of parametric interactions using the
Westervelt and KZK equations. However, in this
study, in contrast to the existing methods, a realistic
boundary condition on the source is used for high-fre-
quency pump waves, which corresponds to the opera-
tion of a recently developed underwater parametric
array [26]. The generation of a difference-frequency
wave in a free field is numerically modeled, taking into
account the diffraction effects in both directions
transverse to the preferred direction of wave propaga-
tion. Pump wave beams are calculated in the linear
approximation; the solutions obtained at each step of
the numerical grid along the beam axis are used to cal-
culate nonlinear sources in the description of the
three-dimensional difference-frequency field. The
developed quasilinear approach is planned to be fur-
ther extended to solve a three-dimensional fully-nonlin-
ear diffraction problem using the optimized spectrum-
filtering method developed in an earlier work by the
authors, which can significantly reduce the number of
operations in calculating the nonlinear operator [27].

THEORETICAL METHOD
Westervelt equation, which governs the directional

propagation of a nonlinear acoustic wave, can be writ-
ten in the retarded time coordinate system as [7]:

(1)

where p is the acoustic pressure, z is the direction
along the beam axis, τ = t – z/c0 is the retarded time,
c0 is the sound speed, ρ0 is the density of the medium,
and β and δ are the coefficients of nonlinearity and
thermoviscous absorption in the medium, respec-
tively.

In the case of linear propagation of a wave gener-
ated by a plane dual-frequency ultrasound source in a
homogeneous medium with dissipation, the solution
to linearized Westervelt equation (1) can be written as
a Rayleigh integral [28, 29] with a complex value of the

wavenumber k1,2 = :

(2)

where P1,2(r) are the complex pressure amplitudes of
the pump waves; p1,2 = ½P1,2(r)exp(–iω1,2τ) + c.c. is
the distribution of the real pressure field with angular
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frequencies ω1,2 = 2πf1,2; k1,2 =  are the

wavenumbers;  are the attenuation coefficients;

 are the complex amplitudes of the normal compo-

nents of the vibrational velocity (r') ×
exp(‒iω1,2τ) + c.c. on the surface of the source; r' is
the radius vector on the source surface; r is the radius
vector at the observation point;  are the integration
domains, which are the surfaces of the array’s ele-
ments radiating at angular frequencies ω1,2 [26]. For a
uniform distribution of the vibrational velocity,
Vn(r') = v0 is the real value, where v0 and p0 = v0ρ0c0 are
characteristic amplitudes of the vibrational velocity
and pressure at the source.

If the fields of high-frequency pump waves gener-
ated by the source considered here and calculated
using the Rayleigh integral (2) has a high directivity
with a total divergence angle in the far field of several
degrees, as will be shown below, then the Westervelt
equation (1) can be replaced by the nonlinear para-
bolic KZK equation, which is simpler for numerical
solution [16]:

(3)

Following the quasilinear approach, we seek the
solution to Eq. (3) by the successive approximations
method [8, 24] in the form p = pA + pB, where
pA = 1/2Ppump1(x, y, z)exp(–iωpump1τ) + 1/2Ppump2(x, y,
z)exp(–iωpump2τ) + c.c. is the linear field of pump
waves, which is the sum of two harmonic waves with
frequencies fpump1 = ωpump1/2π and fpump2 = ωpump2/2π
with complex pressure amplitudes Ppump1(x, y, z) and
Ppump2(x, y, z); pB is a small correction that includes the
fields with new frequencies equal to the sum of the pump
frequencies and their second harmonics, as well as the
field of the difference-frequency wave 1/2Pdif(x, y,
z)exp(–iωdifτ) + c.c. with frequency fdif = |fpump1 – fpump2| =
ωdif/2π. In this case, the complex pressure amplitudes
of the pump waves satisfy the linear equation

(4)

and the pressure amplitude of the difference-fre-
quency wave satisfies the linear equation with the
given source term:

(5)
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Fig. 1. (а) Geometry of ellipsoidal source with axes L = 318 mm and D = 188.5 mm with band structure radiating pump waves at
two frequencies: fixed frequency fpump1 = 150 kHz (corresponding elements of source are marked in red) and varying frequency
fpump2 = 135–145 kHz (corresponding elements of source are marked in green). The array consists of 544 elements with a size of
a × b = 4 × 20 mm2 and gap h = 0.5 mm between them and four inactive areas with a size m × n = 9.5 × 6 mm2. (b) A diagram
of the source near one of the inactive areas is shown. 
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BOUNDARY CONDITION

The difference-frequency wave field (5) was simu-
lated using the parameters of a recently developed
underwater parametric array (Fig. 1) with an ellipsoidal
shape and a band structure of the surface distribution of
radiating elements for channels with different frequen-
cies [26]. Half of the rectangular elements operate at the
fixed frequency fpump1 = 150 kHz; the other half—at a
frequency varying from 135 to 145 kHz. The shape of the
source is an ellipse with axes L = 318 mm vertically and
D = 188.5 mm horizontally. The array consists of 544
elements with dimensions a × b = 4 × 20 mm2, a gap
h = 0.5 mm between the elements, and 4 inactive areas
of m × n = 9.5 × 6 mm2 size.

When calculating the Rayleigh integral (2) for each
pump wave, at z = 0, we assumed the uniform distri-
bution of the vibrational velocity components perpen-
dicular to the element surfaces, i.e., directed along the
z axis. However, since the boundary condition to the
parabolic equations (4) and (5) was set for the complex
pressure amplitude, the velocity distribution was
recalculated to the pressure distribution as follows.
First, the two-dimensional spatial spectrum SV(kx, ky)
with spatial frequencies kx and ky in both transverse
directions was calculated for a given uniform vibra-
tional velocity distribution. Since the array is com-
prised of the identical rectangular elements, an analyt-
ical expression can be obtained for each rectangle:
SV,n(kx, ky) = –ab/(4π2)sinc(kxa/2)sinc(kyb/2), where
n is the number of a rectangle, while the total spectrum
SV(kx, ky) then can be calculated as the sum of contri-
butions from individual elements, taking into account
the geometry of their arrangement. The linearized
Euler equation ∂V/∂t = (–1/ρ0)∂p/∂z yields the rela-
tion between the distributions of the spatial spectra of
the pressure and the z-component of the vibrational
ACOUSTICAL PHYSICS  Vol. 69  No. 1  2023



QUASILINEAR APPROXIMATION 33

Fig. 2. Smoothed boundary conditions for normalized pres-
sure amplitudes |Ppump1,2|/p0 on source for pump waves with
frequencies fpump1 = 150 kHz and fpump2 = 145 kHz. 
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velocity of each rectangular element, SP,n(kx, ky) =
ωρ0SV,n(kx, ky)/(k2–kx

2–ky
2)1/2, which allows for cal-

culating the total spectrum SP(kx, ky). Then, the
resulting boundary condition for the components of
the angular spectrum SP(kx, ky) was filtered with a spa-
ACOUSTICAL PHYSICS  Vol. 69  No. 1  2023
tial filter that limits components with a spatial fre-
quency higher than 0.7kmax, where kmax is the corre-
sponding maximum wavenumber for each of the pump
waves. Such filtering high spatial frequencies smooths
out sharp gradients in the initial spatial pressure field
distribution obtained using the inverse two-dimen-
sional Fourier transform and reduces errors in the par-
abolic approximation when describing field compo-
nents propagating at large angles with respect to the
beam axis. Figure 2 shows the smoothened pressure
amplitude distributions |Ppump1,2|/p0 of pump waves for
frequencies fpump1 = 150 kHz and fpump2 = 145 kHz.

As the parameters of the medium and the value of the
initial pressure, we used experimental data obtained for
an underwater parametric array: p0 ≤ 0.6 MPa, c0 =
1502.25 m/s, ρ0 = 996.81 kg/m3 [26] and characteristic
parameters of seawater: nonlinearity β = 3.5 and
absorption δ = 4.42 ×10–6 m2/s [31]. It should be
noted that in the experiment, for pressure amplitudes
p0 on the order of 0.6 MPa, nonlinear operation of the
array was close to the shock formation regime, since
the characteristic length of shock formation lsh =
ρ0c0

3/(βωpump1p0) in this case is 1.7 m [27], while the
characteristic diffraction lengths for the array dimen-
sions along the x and y axes are, respectively, ld,x =
ωpump1,2(D/2)2/(2c0) = 2.8 and 2.7 (2.6, 2.5) m, ld,y =
ωpump1,2(L/2)2/(2c0) = 7.9 and 7.7 (7.4, 7.1) m for
pump waves with frequencies fpump1 = 150 kHz and
fpump2 = 145 (140, 135) kHz. Therefore, to stay within
the quasilinear approach, further simulation was car-
ried out for the pressure amplitude p0 = 0.06 MPa,
which is ten times less than the maximum one achiev-
able in the experiment.

NUMERICAL ALGORITHM

Let us consider three cases when the pump wave fre-
quencies are multiples of the difference frequency and
fpump1 > fpump2, i.e. fpump1 = mfdif and fpump2 = (m–1)fdif.
Then, Eqs. (4), (5) for the complex pressure ampli-
tudes of pump waves Ppump1(x, y, z), Ppump2(x, y, z) and the
difference-frequency wave Pdif(x, y, z) are written as
(6)
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Fig. 3. Two-dimensional distributions of linear field of pump wave |Ppump1|/p0 with frequency fpump1 = 150 kHz: top row, solution
obtained with Rayleigh integral for ideal boundary conditions on source; bottom row, numerical solution of KZK equation with
smoothed boundary conditions. 
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The first two equations of system (6) were solved at
each grid step Δz by the above-mentioned operator-
splitting method that ensured second-order accuracy
of the numerical scheme for all three spatial coordi-
nates:

where the diffraction operator LD,Δz/2 was calculated by
the alternating-direction method [32], and for the
absorption operator LA,Δz, the exact solution in the
form of a decaying exponent at a full grid step Δz was
used. For the last equation of system (6), which
describes the evolution of the amplitude of the differ-
ence-frequency wave, the numerical scheme was writ-
ten as follows:

(7)

where the diffraction and dissipative operators were
calculated in a similar way, and the quasilinear opera-
tor LN,Δz/2 was calculated by adding the function of
nonlinear sources to the difference-frequency wave
amplitude,

(8)

multiplied by a half-step Δz/2. Note that in the opera-
tor scheme (7), nonlinear sources at the first half-step
Δz/2 were calculated as the arithmetic mean of the
term (8), computed on the initial and intermediate
layers, and at the second half-step Δz/2, on the inter-
mediate and final layers.
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RESULTS AND DISCUSSION

As a first step, the linear pressure fields of the pump
waves were calculated using the Rayleigh integral (2).
The top row in Fig. 3 shows an example of two-dimen-
sional amplitude distributions |Ppump1| of a wave with a
frequency fpump1 = 150 kHz normalized to p0 = 0.06 MPa.
As follows from Fig. 3, the pump wave field has a high
directivity with full beam divergence angles in the
directions of the x and y axes of ϕx = 4° and ϕy = 2.5°,
respectively. Angles ϕx and ϕy were calculated at a level
of 0.5 of the maximum amplitude using the corre-
sponding one-dimensional transverse distributions
obtained for z = 20 m and shown by the gray solid line
in Figs. 4a and 4b. Thus, the pump wave field indeed
has a small divergence, which makes it possible to use
the parabolic approximation of Eq. (1), which is valid
for components of the beam angular spectrum with
full divergence angles up to 30° [30].

Figures 3 (bottom row) and 4 (red dashed line)
show simulation results for the linearized KZK equa-
tion for the pressure amplitude of the pump wave with
a frequency of 150 kHz versus the solution to the total
diffraction model (Rayleigh integral). The inset to the
axial pressure amplitude distribution along the z axis
in Fig. 4c shows on an enlarged scale the behavior of
both solutions in the near field of the beam. Clearly,
numerical solution in the parabolic approximation
hardly differs at all from the solution to exact diffrac-
tion problem (2), which confirms the validity of using
the parabolic approximation and correctness of the
numerical algorithm. Some differences, as expected,
occur near the source up to distances of about 1 m, due
to the influence and inaccurate description of the
high-frequency components of the wave spatial spec-
ACOUSTICAL PHYSICS  Vol. 69  No. 1  2023
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Fig. 4. One-dimensional distributions of pump wave
amplitude |Ppump1|/p0 with frequency fpump1 = 150 kHz:
solid gray line, Rayleigh integral; red dashed line, numeri-
cal solution of KZK equation: (a, b) transverse distribu-
tions |Ppump1| along x and y axes, calculated at distance z =
20 m; (c) axial distribution along z axis. Inset: solutions in
near field. 

0

0.2

0.4

0.6

(c)

2 4 6 8 10 12 14 16 18
z, m

0.2

0.6

0.4

0.20 0.4 0.6 0.8 1.0 1.2 1.4

0

0.05

0.10

(b)

–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0
y, m

0

0.05

0.10

(a)
Rayleigh integral KZK

z = 20 m

z = 20 m

|Ppump1|/p0

–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0
x, m
trum in the near field of the beam at distances z <
a(ka)1/3, where k is the pump wavenumber and a is the
characteristic size of the source [30].

For a pump wave with frequency fpump1 = 150 kHz,
the pressure amplitude on the axis (Fig. 4c) reaches a
maximum at a distance of about 2 m, which is smaller
than the characteristic diffraction length ld,x = 2.8 m
for the shorter side of the array along the x coordinate,
after which it decreases, asymptotically approaching
the dependence 1/z according to the law of a divergent
spherical wave. For pump waves with frequencies
fpump2 = 145 (140, 135) kHz, the pressure field distribu-
tions have a similar form and are not given, since they
differ only by a small—proportional to fdif—decrease in
amplitude in the far field at a distance z = 20 m by 3.2,
6.5, and 9.7%, respectively, due to the stronger diver-
gence of beams with a lower frequency, as well as an
insignificant—also proportional to fdif—shift of the
ACOUSTICAL PHYSICS  Vol. 69  No. 1  2023
maximum in the axial pressure distribution by 3.1, 6.2,
and 9.2% towards the source. It should be noted that,
at the considered distances, the absorption effects
have little effect for pump waves. The characteristic
absorption length labs = 2c /(δω2) in seawater (δ =
4.42 × 10–6 m2/s [31]) for a frequency of 150 kHz is
1727 m, so the pressure amplitude of pump waves for
z = 20 m is only 2% less, while at z = 150 m, 10% less
than without absorption (δ = 0). Thus, the effects of
linear absorption of pump waves in this case will not
limit the distance at which the pump wave energy is
transferred to the difference frequency, i.e., the length
of the end-fire array. Diffraction divergence effects are
the only limiting factor for the quasilinear approach
considered in this paper.

Figure 5 shows two-dimensional—normalized to
p0 = 0.06 MPa—distributions of the difference-fre-
quency wave amplitude |Pdif| for the case fdif = 5 kHz,
also demonstrating the high directivity of the differ-
ence-frequency wave field with full divergence angles
ϕx = 5.2° and ϕy = 4.6° in the directions of the x and y
axes, calculated similarly to pump waves at a level of
0.5 of the maximum amplitude using the correspond-
ing one-dimensional transverse distributions
(Figs. 6a, 6b) obtained for z = 20 m, and the absence
of sidelobes, which is shown in more detail in Fig. 6.

Figures 6a and 6b show one-dimensional trans-
verse distributions of the pressure amplitude of the dif-
ference-frequency wave |Pdif| calculated in the far field
of pump waves at a distance z = 20 m. These distribu-
tions were obtained for three values of the difference
frequency fdif = 5 (red curve), 10 (black curve), and
15 kHz (gray curve) and are normalized to np0, where
n = 1, 2, and 3, respectively. The field of considered
difference-frequency waves is highly directional with
total beam divergence angles of ϕx = 5.2°, 4.7°, 4.5°
and ϕy = 4.6°, 4.0°, 3.7° in the direction of the x and y
axes for fdif = 5, 10, 15 kHz, which is somewhat wider
than the similar directivity patterns of the pump waves.
Clearly, the directivity of the difference-frequency
wave increases with increasing fdif, since the diffrac-
tion effects become weaker with increasing frequency.
Note that for difference-frequency waves, the beam
divergence angles in both directions differ less than for
pump waves, since difference-frequency generation
continues at distances larger than the diffraction
length ld,x of pump waves, where high-frequency
beams expand in this direction, but do not yet diffract
in the direction of the y axis.

The dependences of the difference-frequency wave
pressure amplitude along the beam axis are shown in
Fig. 6c. At distances of up to 3 m, which are smaller
than the diffraction length ld,x of a pump wave with
respect to the x axis, for all three selected values of fdif,
the amplitude of the difference-frequency wave
increases with distance z, since the amplitudes of
pump waves are sufficiently large and their contribu-
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Fig. 5. Two-dimensional distributions of difference-fre-
quency wave field |Pdif| with frequency fdif = 5 kHz, calculated
in quasilinear approach and normalized to p0 = 0.06 MPa.
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tion to pdif exceeds its decrease due to diffraction; then
reaches a maximum at a distance of about 3 m, which
is larger than for the pump waves, and gradually
decreases, mainly due to diffraction effects, since, as
mentioned above, dissipative losses for the physical
values of the parameters of the medium are small. In
addition, the amplitude of the difference-frequency
wave also decreases due to a descent in the contribu-
tion from pump waves owing to a decrease in their
amplitude resulting from the diffraction divergence of
high-frequency beams.

Figure 6 shows that the higher the frequency fdif,
the greater the maximum amplitude of the difference-
frequency wave is, and it reaches 0.010, 0.034, and
0.069% of the pressure amplitude at the source p0. In
contrast to the plane wave approximation, where the
amplitude of the difference-frequency wave is propor-
tional to fdif, in the considered case of diffracting pump
beams, it increases much faster than by a linear law
due to weakening diffraction of a wave with a higher
difference frequency. In this case, with an increase in
pressure on the source, the efficiency of generating a
difference-frequency wave, i.e., the dependence
|Pdif|/p0 on p0, enlarges linearly, which corresponds to
the analytical results of the quasilinear approach [8].

Figure 7 shows the dependences of the difference-
frequency wave amplitude, normalized to p0, on the
beam axis for the case fdif = 5 kHz and different dis-
tances from the source: the solid line shows the results
of fully quasilinear calculation, and the various dashed
lines show the dependences in the cases where sources
(8) were artificially turned off when distances of z = 8,
12, 16 m (a), 50, 70, and 90 m (b) were reached. It fol-
lows from Fig. 7 that the generation of a difference-
frequency wave continues at distances significantly
exceeding the diffraction lengths of pump waves in
both transverse directions, i.e., in spherically divergent
beams of interacting waves, since a noticeable
decrease in the pump wave amplitudes by e times will
be observed only after the dissipation length is passed
(the dissipation length of the pump waves is about
1700 m), which is many times greater than the diffrac-
ACOUSTICAL PHYSICS  Vol. 69  No. 1  2023
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Fig. 7. Dependences of difference-frequency wave ampli-
tude with fdif = 5 kHz, normalized to p0 = 0.06 MPa, along
z axis: quasilinear calculation up to (a) z = 25 m and (b)
50 < z < 100 m (solid line) and with artificial switching-off
of nonlinearity at various distances z = 8, 12, 16, 50, 70,
90 m (numbers next to curves). 
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Fig. 8. Comparison of results of different quasilinear mod-
els for difference-frequency wave amplitude fdif = 5 kHz on
beam axis: numerical solution of KZK equation in quasi-
linear approach (red line) and approximate analytical
models: calculation for plane waves (1), approximations of
nondiffracting pump waves with initial Gaussian distribu-
tion on circular (2) and rectangular (3) sources, approxi-
mation of diffracting pump waves with initial Gaussian
distribution on circular source (4). Inset: corresponding
solutions in near field. 
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tion length; therefore, when sources are turned off at
distances of at least up to z = 90 m, the difference-fre-
quency wave amplitude begins to decay much faster.
Thus, it should be expected that, as the amplitude of
the pump waves increases and for numerical calcula-
tions without the quasilinear assumption, nonlinear
effects of limiting the amplitudes of the pump waves
due to cascading generation of higher harmonics
would play an important role [22, 23].

Finally, it is of interest to compare the obtained
results with those of existing approximate models that
use the quasilinear approach, that is illustrated in Fig. 8
for the case fdif = 5 kHz. The figure shows the depen-
dences of the difference-frequency wave amplitude on
the distance on the beam axis, obtained by various
methods. The results of numerical solution of the
KZK equation in the quasilinear approach are shown
by red curves versus the results of four well-known
analytical and semianalytical models. One of them
calculates the difference-frequency wave amplitude
under the assumption of plane pump wave interaction,
so it increases limitlessly with increasing distance z [8].
The results of this model are shown in Fig. 8 by the
gray line (Fig. 8, “1”) and are only valid at distances
z  Ld,x, Ld,y, where Ld,x = 0.09 m and Ld,y = 0.26 m are
the diffraction lengths of the difference-frequency
wave in both directions. Another model [8] assumes

!
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the interaction of nondiffracting pump waves with a
Gaussian boundary distribution on a circular source of
a radius (S/π)1/2, where S = 0.04352 m2 is the area of
the array considered in the study. The results for this
model are shown by the solid light gray line (Fig. 8,
“2”); at small distances they correspond to the numer-
ical solution of the KZK equation, but then the
approximate solution continues to increase, since only
diffraction of the difference-frequency wave is the lim-
iting factor in it. The third model, shown by the solid
dark gray line (Fig. 8, “3”), replicates the second one,
but was obtained under the assumption of a rectangu-
lar source with dimensions corresponding to the L and
D axes of the ellipse. This solution has been multiplied
by an additional factor S/LD to compensate for the
difference in the areas of the ellipsoid and rectangular
sources and behaves similarly to model 2. Finally, the
fourth model takes into account diffraction of pump
waves [8], which, like in the second model, have a
Gaussian boundary distribution on a circular source
with a radius (S/π)1/2. The results for this model are
shown in Fig. 8 by the solid black line (Fig. 8, "4") and
have a similar trend with the numerical solution of the
KZK equation obtained in this study: an initial
increase in amplitude in the near field of the source
and its slow decrease at large distances, in the zone of
spherical divergence of the interacting waves. How-
ever, quantitatively, the results are very different, due
to the difference in the boundary conditions on the
source. Thus, all four analytical models correctly
describe the behavior of the difference-frequency
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wave amplitude only in the near field on the beam axis
but cannot be used at greater distances.

CONCLUSIONS
In this paper, numerical methods are used to study

the three-dimensional diffraction problem of differ-
ence-frequency wave generation in the case of dual-
frequency interaction of close high-frequency pump
waves in the quasilinear approximation. The exact
solution to the linear diffraction problem for pump
waves using the Rayleigh integral was employed to
demonstrate that the field of the initial waves has a
high directivity; therefore, the KZK equation was then
solved and the algorithm for calculating the diffraction
operator in the parabolic approximation was used, the
results of which barely differed from the solution to the
exact diffraction problem.

In the quasilinear approach, one- and two-dimen-
sional distributions of the difference-frequency wave
amplitude are calculated for three different values of
fdif. It was shown that the directivity pattern of low-fre-
quency radiation is wider and smoother in both trans-
verse directions than for pump waves. In this case, the
greater the value of the difference frequency, the
higher directivity is of the beam generated by the para-
metric array.

The efficiency of generation of the difference-fre-
quency wave field is analyzed as a function of fdif, and
it is shown that with an increase in the difference fre-
quency, the portion of energy transferred into it from
the pump waves increases. Thus, the difference-fre-
quency wave amplitude increases by about 3.5 and 7
times with an increase in fdif from 5 to 10 and 15 kHz,
which differs from the plane wave approximation,
where the amplitude of the difference-frequency wave
increases linearly with increasing fdif.

It was shown that, in the quasilinear approxima-
tion, the absorption and spherical divergence of inter-
acting waves at the considered distances of ~100 m
from the source are not the factors limiting the dis-
tances at which the difference-frequency beam is gen-
erated. Under realistic conditions on the source, when
the pump wave amplitude increases and numerical
calculations are performed without the quasilinear
approximation, the nonlinear effects of decreasing
pump wave amplitudes will play an important limiting
role due to cascade generation of higher harmonics.
An increase in the attenuation coefficient of seawater
may also be a possible factor compared to the ideal
case considered here due to the presence of particulate
matter, algae, and other inclusions.

Comparison of the obtained numerical solution
with the existing analytical results which were also
derived with the quasilinear approach, but under addi-
tional assumptions about the boundary conditions on
the source and behavior of high-frequency pump
waves, showed that the analytical solutions yield a cor-
rect quantitative description of the behavior of the
amplitude only in the near field of the source and only
on the beam axis (model 4), but they cannot be used
for even a qualitative description of the field at larger
distances.

The results obtained in this study provide the basis
for further solving the fully-nonlinear three-dimen-
sional diffraction problem of generating a difference-
frequency wave with an array [26] in the case of more
intense pump waves, when the quasilinear approach
can no longer be applied.
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